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Pre-training and fine-tuning

Examples:

BERT → BioBERT

LLaMA → Alpaca, Vicuna (and other instruction tuning)
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Full fine-tuning can be costly

It takes a lot of time

It takes a lot of space

It takes a lot of memory
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Can we tune just the output head?

Simple approach: fine-tune just the top layer

But: as shown in the BERT paper (and elsewhere), fine-tuning the
whole model is generally more effective
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Prompt and prefix tuning
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Prompt and prefix tuning: intuition

Variations:

One or more additional embeddings?

Parameters only in bottom or in several layers?
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https://adapterhub.ml/

https://adapterhub.ml/
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LoRA: Low-rank Adaptation
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LoRA: Key ideas

Rewrite fine-tune weights in terms of difference to pre-trained:

WFT = WPT +∆W

Use a low-rank decomposition of the difference term:

WFT = WPT +BA
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PEFT library in Hugging Face

https://github.com/huggingface/peft

https://github.com/huggingface/peft
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Takeaways

Practical adaptation of LLMs typically involves lightweight
fine-tuning

We typically add some small set of parameters that are
fine-tuned

When combined with quantization (e.g. QLoRA), we can make it
even more efficient in time and memory
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