Machine Learning for Natural Language
Processing
Efficient Fine-tuning Methods for Language
Models

UNIVERSITY OF
GOTHENBURG

CHALMERS

Richard Johansson

richajo@chalmers.se

Pre-training and fine-tuning

Pre-training

Fine-tuning

= 0

CHALMERS ®)) UNIVERSITY OF GOTHENBURG

Pre-training and fine-tuning

Pre-training

Fine-tuning

= 0

Examples:

BERT — BioBERT

LLaMA — Alpaca, Vicuna (and other instruction tuning)

CHALMERS @ UNIVERSITY OF GOTHENBURG

Full fine-tuning can be costly

It takes a lot of time
It takes a lot of space

It takes a lot of memory

CHALMERS

@ UNIVERSITY OF GOTHENBURG

Can we tune just the output head?

Simple approach: fine-tune just the top layer

But: as shown in the BERT paper (and elsewhere), fine-tuning the
whole model is generally more effective

CHALMERS @ UNIVERSITY OF GOTHENBURG
4

Prompt and prefix tuning

Prefix-Tuning: Optimizing Continuous Prompts for Generation

Xiang Lisa Li Percy Liang
Stanford University Stanford University
xlisali@stanford.edu pliang@ecs.stanford.edu
Abstract Fine-tuning
Transtormer (ransiation
Fine-uning is the de facto way to leverage ‘ ; ' »--.m.-..n—-l\
large pretrained language models to perform L — e
downstream tasks. However. it modifies all I
the language model parameters and therefore A U J | | L J

necessitates storing a full copy for each task.

e Siaroucks type cofee shop [SEF] Staicks serve <ofiee
In this paper, we propose prefix-tuning, a Rl J O -
lightweight alternative to fine-tuning for nat- Prefix-tuning

ural language generation tasks, which keeps
language model parameters frozen, but opti-
mizes a small continuous task-specific vector
(called the prefix). Prefix-tuning draws inspira-

Transiormer (Pretrained)

e Stacbocks type coffee shop [SEP] Sarbucks serves colfes
-t [y

tion from prompting, allowing subsequent to- et =
kens to attend to this prefix as if it were “vir- Figure 1: Fine-tuning (top) updates all Transformer
tual tokens”. We apply prefix-tuning to GPT-2 parameters (the red Transformer box) and requires stor-
for table-to-text generation and to BART for ing a full model copy for cach task. We propose
summarization. We find that by learning only prefix-tuning (bottom), which freezes the Transformer
0.1% of the parameters, prefix-tuning obtains parameters and only optimizes the prefix (the red pre-
comparable performance in the full data sel- fix blocks). Consequently, we only need to store the
ting, outperforms fine-tuning in low-data set- prefix for cach task, making prefix-tuning modular and
{ings, and extrapolates better to cxamples with space-efficient. Note that each vertical block denote
topics unseen during training. transformer activations at one time step.

=
CHALMERS | ;‘QJ UNIVERSITY OF GOTHENBURG

Prompt and prefix tuning: intuition

CHALMERS

@ UNIVERSITY OF GOTHENBURG

Prompt and prefix tuning: intuition

I
prompt w, w, w,
embedding

CHALMERS

@ UNIVERSITY OF GOTHENBURG

Prompt and prefix tuning: intuition

IO OO I110 00 O00 CEEE OO
prompt w, w, wy
embedding
Variations:
One or more additional embeddings?

Parameters only in bottom or in several layers?

CHALMERS ®)) UNIVERSITY OF GOTHENBURG

CHALMERS

Adapters

Parameter-Efficient Transfer Learning for NLP

Neil Houlsby ' Andrei Giurgiu'* Stanistaw Jastrzebski?~ Bruna Morrone ' Quentin de Laroussilhe '
Andrea Gesmundo' Mona Attariyan' Sylvain Gelly !

Abstract

Fine-tuning large pre-trained models is an effec-
tive transfer mechanism in NLP. However, in the
presence of many downstream tasks, fine-tuning
is parameter inefficient: an entire new model is
required for every task. As an alternative, we
propose transfer with adapter modules. Adapter
modules yield a compact and extensible model;
they add only a few trainable parameters per task,
and new tasks can be added without revisiting
previous ones. The parameters of the original
network remain fixed, yielding a high degree of
parameter sharing. To demonstrate adapter’s ef-
fectiveness, we transfer the recently proposed
BERT Transformer model to 26 diverse text clas-
sification tasks, including the GLUE benchmark.
Adapters attain near state-of-the-art performance,
whilst adding only a few parameters per task. On
GLUE, we attain within 0.4% of the performance
of full fine-tuning, adding only 3.6% parameters
per task. By contrast, fine-tuning trains 100% of

UNIVERSITY OF GOTHENBURG

—104 L

—154 L

Accuracy delta (%)

—204 +— Adapters (ours) L
— ne top layers|

—25 T T T
10° 10° 107 10° 10°
Num trainable parameters / task

Figure 1. Trade-off between accuracy and number of trained task-
specific parameters, for adapter tuning and fine-tuning. The y-axis
is normalized by the performance of full fine-tuning, details in
Section 3. The curves show the 20th, 50th, and 80th performance
percentiles across nine tasks from the GLUE benchmark. Adapter-
based tuning attains a similar performance to full fine-tuning with
two orders of magnitude fewer trained parameters.

Adapters: intuition

CHALMERS @) UNIVERSITY OF GOTHENBURG

Adapters: intuition

self
attention

CHALMERS w=@/}) UNIVERSITY OF GOTHENBURG

i Explore & Upload B Docs w®iBlog O W

i AdapterHub

A central repository for pre-trained adapter modules

| o snstarn acapters

CHALMERS |

i 2

als
Explore Upload

Adapters are Lightweight ¢

"Adapter” refers to a set of newly
introduced weights, typically within the
layers of a transformer model. Adapters

o

GitHub

Modular, Composable, and
Extensible %

Adapters, being self-contained moduar
units, allow for easy extension and

provide an 1o fully fi ing
the model for each downstream task,
while maintaining performance. They also
have the added benefit of requiring as little
as 1MB of storage space per task! Learn
More!

This opens up opportunities
o0 compose adapters to solve new tasks.
Learn More!

Built on HuggingFace &
Transformers 7

AdapterHub builds on the HuggingFace
transformers framework, requiring as little
as two additional lines of code to train
adapters for a downstream task.

https://adapterhub.ml/

UNIVERSITY OF GOTHENBURG

https://adapterhub.ml/

LoRA: Low-rank Adaptation

LORA: LOW-RANK ADAPTATION OF LARGE LAN-
GUAGE MODELS

Edward Hu* Yelong Shen” Phillip Wallis Zeyuan Allen-Zhu
Yuanzhi Li Shean Wang Lu Wang Weizhu Chen

Microsoft Corporation

{edwardhu, yeshe, phwallis, zeyuana,

yuanzhil, swang, luw, wzchen}@microsoft.com
yuanzhil@andrew.cmu.edu

(Version 2)

ABSTRACT

An important p igm of natural language pi consists of large-scale pre-
training on general domain data and adaptation to particular tasks or domains. As
we pre-train larger models, full fine-tuning, which retrains all model parameters,
becomes less feasible. Using GPT-3 175B as an example — deploying indepen-
dent instances of fine-tuned models, each with 175B parameters, is prohibitively
expensive. We propose Low-Rank Adaptation, or LoRA, which freezes the pre-
trained model weights and injects trainable rank decomposition matrices into each
layer of the Transformer architecture, greatly reducing the number of trainable pa-
rameters for downstream tasks. Compared to GPT-3 175B fine-tuned with Adam,
LoRA can reduce the number of trainable parameters by 10,000 times and the
GPU memory requirement by 3 times. LoRA performs on-par or better than fine-
tuning in model quality on ROBERTa, DeBERTa, GPT-2, and GPT-3, despite hav-
ing fewer trainable parameters, a higher training throughput, and. unlike adapters,
no additional inference latency. We also provide an empirical investigation into
rank-deficiency in language model adaptation, which sheds light on the efficacy of
LoRA. We release a package that facilitates the integration of LoRA with PyTorch
models and provide our impl i and model checkpoi for ROBERTa,
DeBERTa, and GPT-2 atfhttps: //github.com/microsoft /LoRAL

CHALMERS | UNIVERSITY OF GOTHENBURG

LoRA: Key ideas

Rewrite fine-tune weights in terms of difference to pre-trained:

Wer = Wpr + AW

CHALMERS @ UNIVERSITY OF GOTHENBURG

LoRA: Key ideas

Rewrite fine-tune weights in terms of difference to pre-trained:

Wer = Wpr + AW

Use a low-rank decomposition of the difference term:

Wer = Wpr + BA

W, r

TR
@ /;) UNIVERSITY OF GOTHENBURG

CHALMERS

PEFT library in Hugging Face

& PEFT

State-of-the-art Parameter-Efficient Fine-Tuning (PEFT) methods

Parameter-Efficient Fine-Tuning (PEFT) methods enable efficient adaptation of pre-trained language models
(PLMs) to various downstream applications without fine-tuning all the model's parameters. Fine-tuning large-
scale PLMs is often prohibitively costly. In this regard, PEFT methods only fine-tune a small number of (extra)
model parameters, thereby greatly decreasing the computational and storage costs. Recent State-of-the-Art
PEFT techniques achieve performance comparable to that of full fine-tuning.

Seamlessly integrated with & Accelerate for large scale models leveraging DeepSpeed and Big Model
Inference.

Supported methods:

- LoRA: LORA: LOW-RANK ADAPTATION OF LARGE LANGUAGE MODELS

. Prefix Tuning: Prefix-Tuning: Optimizing Continuous Prompts for Generation, P-Tuning v2: Prompt Tuning
Can Be Comparable to Fine-tuning Universally Across Scales and Tasks

. P-Tuning: GPT Understands, Too

Prompt Tuning: The Power of Scale for Parameter-Efficient Prompt Tuning

~

AdaloRA: Adaptive Budget Allocation for Parameter-Efficient Fine-Tuning

(IA)*: Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learning

MultiTask Prompt Tuning: Multitask Prompt Tuning Enables Parameter-Efficient Transfer Learning
LoHa: FedPara: Low-Rank Hadamard Product for Communication-Efficient Federated Learning

© e N e s W

. LoKr: KronA: Parameter Efficient Tuning with Kronecker Adapter based on Navigating Text-To-Image
Customization:From LyCORIS Fine-Tuning to Model Evaluation implementation

10. LoftQ: LoftQ: LoRA-Fine-Tuning-aware Quantization for Large Language Models

11. OFT: Controlling Text-to-Image Diffusion by Orthogonal Finetuning

https://github.com/huggingface/peft

S
CHALMERS ‘ UNIVERSITY OF GOTHENBURG
&2

https://github.com/huggingface/peft

Takeaways

Practical adaptation of LLMs typically involves lightweight
fine-tuning

We typically add some small set of parameters that are
fine-tuned

When combined with quantization (e.g. QLoRA), we can make it
even more efficient in time and memory

UNIVERSITY OF GOTHENBURG

CHALMERS @

References

T. Dettmers, A. Pagnoni, A. Holtzman, and L. Zettlemoyer. 2023. QLoRA: Efficient
finetuning of quantized LLMs. arXiv:2305.14314.

N. Houlsby, A. Giurgiu, and S. Jastrzebski et al. 2019. Parameter-efficient transfer
learning for NLP. In ICML.

E. Hu, Y. Shen, and P. Wallis et al. 2022. LoRA: Low-rank adaptation of large
language models. In ICLR.

X. L. Liand P. Liang. 2021. Prefix-tuning: Optimizing continuous prompts for
generation. In ACL-I/CNLP.

C. Poth, H. Sterz, and Indraneil Paul et al. 2023. Adapters: A unified library for
parameter-efficient and modular transfer learning. arXiv:2311.11077.

R. Zhang,). Han, and C. Liu et al. 2023. LLaMA-adapter: Efficient fine-tuning of
language models with zero-init attention. arXiv:2303.16199.

CHALMERS |)} UNIVERSITY OF GOTHENBURG

https://arxiv.org/abs/2305.14314
https://arxiv.org/abs/2305.14314
https://proceedings.mlr.press/v97/houlsby19a.html
https://proceedings.mlr.press/v97/houlsby19a.html
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://aclanthology.org/2021.acl-long.353
https://aclanthology.org/2021.acl-long.353
https://arxiv.org/abs/2311.11077
https://arxiv.org/abs/2311.11077
https://arxiv.org/abs/2303.16199
https://arxiv.org/abs/2303.16199

	References

