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Real-Time Hair Filtering with Convolutional Neural Networks

ROC R. CURRIUS, ULF ASSARSSON, and ERIK SINTORN, Chalmers Institute of Technology,
Sweden

Fig. 1. From left to right: hair rendered with stochastic transparency, filtered using our method, and the
ground truth.

Rendering of realistic-looking hair is in general still too costly to do in real-time applications, from simulating
the physics to rendering the fine details required for it to look natural, including self-shadowing.

We show how an autoencoder network, that can be evaluated in real time, can be trained to filter an image
of few stochastic samples, including self-shadowing, to produce a much more detailed image that takes into
account real hair thickness and transparency.
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tialiasing.
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1 INTRODUCTION
Rendering realistic hair and fur in real time is still an unsolved problem. An average human head
has on the order of 100,000 hair strands, and rasterizing that much geometry has only recently
become feasible in real time [Tafuri 2019]. Hair fibers, being semi-transparent, scatter light in
a complex manner [Marschner et al. 2003], and while approximations exist [Zinke et al. 2008],
rendering hair with correct indirect lighting is still only possible in off-line renderers.
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Even direct lighting from a single light source is complex due to hair strands being extremely
thin (15-200 µm). Common practice has until recently been to render a simplified textured geometry
that represents several strands. Unfortunately, this method is usually quite noticeable; requires a
lot of work from artists, and the simplified mesh is difficult to animate realistically. Thus, recently,
the industry has turned to rendering strand-based hair [de Rousiers et al. 2020; Tafuri 2019], but
aliasing remains a serious problem.

To avoid aliasing through supersampling, hundreds of samples per pixel would be required. This,
and the fact that hair fibers are somewhat transparent, has led to approximating hair strands as
thicker semi-transparent lines and resolving the image with alpha-compositing. Similarly, light-
visibility can then be evaluated with Shadow Map [Williams 1978] techniques. However, alpha
compositing traditionally requires fragments to be processed in back-to-front order, and most Order
Independent Transparency (OIT) techniques are either very expensive or give insufficient quality
for the high depth complexity of hair [Kern et al. 2021; Münstermann et al. 2018; Salvi et al. 2011].
Many stochastic transparency methods have hair strands randomly sampled by discarding

fragments based on their transparency [Enderton et al. 2011], which leads to unbiased but noisy
alpha compositing, unless a large amount of samples are taken.

In this paper, we suggest a method for denoising the results of Stochastic Transparency, which
allows for fast rendering of very complex hair geometry, without noise, while maintaining high
frequency details. Similarly to recent work on denoising, e.g. path-traced indirect illumination [Chai-
tanya et al. 2017], we train a U-Net [Ronneberger et al. 2015] with skip connections to reconstruct
a high-quality result from stochastically rendered input data. Our method achieves high-quality
close-up results, including shadows, at over 60 fps at a resolution of 1024x1024 pixels.

2 PREVIOUS WORK
2.1 Hair Rendering
Kajiya and Kay showed a first attempt at approximating a transfer function for hair [Kajiya and Kay
1989]. More physically accurate models have since been suggested [Marschner et al. 2003; Sadeghi
et al. 2010; Zinke et al. 2008]. These models produce high-quality results for off-line rendering, but
may be too computationally expensive for real-time applications. Several real-time approximations
have been suggested [Karis 2016; Scheuermann 2004a]. As our proposed method for transparency is
mostly orthogonal to the shading model used, we use the simple phenomenological model proposed
by Scheuermann.
Fully evaluating the indirect illumination in hair is still much too computationally expensive

for real-time applications, but treating hair as being completely opaque leads to very unrealistic
results [Sintorn and Assarsson 2009]. A common compromise is to render hair as semi-transparent,
using alpha-blending, both for primary rays and shadows. Unfortunately, most Order Independent
Transparency (OIT) methods are very inefficient in cases where depth complexity can be very
high. For this purpose, Sintorn and Assarsson suggest a method for sorting line segments on the
GPU [Sintorn and Assarsson 2008] which, however, can be inefficient for complex hair geometry.
The same authors later suggest approximating a per-pixel visibility function [Sintorn and Assarsson
2009], however this method only works when all fragments have the same opacity, and quality
deteriorates when the fragments are unevenly distributed. Adaptive Transparency [Salvi et al.
2011] is a similar method, except that the visibility function is more accurate due to adaptively
minimizing the error while rendering. Unfortunately, it has unbounded memory requirements on
current hardware and is quite costly due to the large amount of data that needs to be saved for
each pixel. The method by Münstermann et al. also estimates a visibility function but with power,
or trigonometric, moments [Münstermann et al. 2018]. This results in a low frequency visibility
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function and is found by Kern et al. to frequently over or under estimate visibility [Kern et al. 2021].
Maule et al. present a comprehensive survey of OIT methods [Maule et al. 2011].

Rendering shadows cast by transparent objects is similarly difficult. An early method, intended
for off-line rendering, is Deep Shadow Maps [Lokovic and Veach 2000], in which an A-buffer is
compressed to a piecewise linear visibility function per pixel. A real-time alternative, Opacity
Shadow Maps [Kim and Neumann 2001], stores discrete functions in a 3D texture, and in Deep
Opacity Maps [Yuksel and Keyser 2008] the depth resolution is improved by maintaining a depth
range per pixel. At high resolutions, these methods use a large amount of memory and require
several rendering passes over the geometry.
Recent approaches to rendering strand-based hair include the method by Tafuri, where alpha

blending is avoided and MSAA is used to reduce aliasing [Tafuri 2019]. However, at reasonable
sample counts, this method does not allow for realistically thin hair. For shadows, a few layers
of Deep Opacity Maps are used. In a different approach, suggested by Jansson et al., the hair is
voxelized and ray-marched each frame for distant characters, while for close-up views, the authors
fall back on rasterizing alpha blended lines using a k-buffer [Bavoil et al. 2007], and the voxelized
volume can also be used for self shadowing [Jansson et al. 2019].

Enderton et al. propose a method for rendering transparent objects in any order by randomly
discarding each fragment based on its transparency [Enderton et al. 2011], extending the idea of
Screen-door Transparency [Mulder et al. 1998]. Similarly, a stochastic shadow map can be created.
The authors show that this method produces correct results on average and that a large number of
samples per pixel can be achieved by combining this method withMulti Sample Antialiasing (MSAA).
The technique has since been improved to allow for colored shadows [McGuire and Enderton 2011].
Laine and Karras show that variance can be reduced by applying stratification techniques [Laine
and Karras 2011], but this is only suitable for geometry with few overlapping surfaces. Unless
a large amount of samples are taken, these techniques still produce noisy images. This noise is
even more visible in animations. To reduce temporal noise, Wyman and McGuire use a hashing
algorithm based on the discretized model-space position of each fragment to determine whether
it should be discarded [Wyman and McGuire 2017]. In this paper, we show that images rendered
with Stochastic Transparency with just a few samples per pixel for primary-ray visibility and a
single sample per pixel for shadows can be reconstructed to closely resemble the alpha-blended
ground truth.

2.2 Neural Networks Hair Generation
In our suggested method, a Convolutional Neural Network (CNN) is used to reconstruct a plausible
image from a noisy input. There exists some previous work on using machine learning to generate
images of hair. For instance, Chai et al. target generating realistic-looking hair on real-life images
from an input example and the desired shape, and add temporal conditioning to reduce the temporal
variance [Chai et al. 2020]. In the work by Wei et al., latent-space information from processing
real-life hair images is gathered and applied to the input, which consists of a processed rendering
of hair strands [Wei et al. 2018]. The result is a plausible image at interactive rates, but the method
is not directly applicable to scenarios where control over local lighting or compositing with a 3D
scene is required. Qiu et al. instead use for input a style reference image and a processed hand
drawing representing the desired shape of the hair [Qiu et al. 2019]. Similarly, Qiao and Kanai apply
a GAN to transfer the hairstyle from a reference image to an arbitrarily rendered image [Qiao and
Kanai 2021]. They also target reproducing realistic lighting on the hair based on the scene.

NeRF-Tex [Baatz et al. 2021] is a method for rendering fur by randomly distributing volumetric
patches over a mesh. A Neural Radiance Field (NeRF) [Mildenhall et al. 2020] is trained for the patch,
i.e. an MLP with positional encoding that can approximate the emitted radiance for a given position,
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viewing direction, and light direction. The patch intersected by a primary ray is ray-marched to
estimate the radiance in the viewers direction. This method yields promising results but is still
much too costly for realtime applications.

2.3 Denoising
Rendering a sparsely sampled image and applying denoising has been studied for many decades.
The most common application is to reduce variance in Monte Carlo rendered images. The objective
here is to smooth the image, while retaining sharp image features, such as edges in geometry or
materials. This is achieved by filtering the image in the spatial and/or temporal domain, or even
filtering in path space [Keller et al. 2014]. The survey by Zwicker et al. provides a detailed list of
such methods [Zwicker et al. 2015], and we will cover only those most related to our work.
For denoising at interactive or real-time framerates, a common approach is to employ edge-

avoiding filters [Bauszat et al. 2015; Dammertz et al. 2010; Hanika et al. 2011; Munkberg et al. 2016].
While such methods may be applicable to reconstructing a few layered transparent surfaces with
stochastic transparency, the geometry in our use-case is composed exclusively of edges, which
means that very few samples will be found to lie on the same surface.
To address the problem of filtering these sparsely sampled signals, many authors make use

of auxiliary features per pixel from the rendering process, e.g., positions, normals and material
properties [Gastal and Oliveira 2012]. With higher dimensional input, successfully choosing filter
parameters can be difficult, and therefore Kalantari et al. turn to machine learning algorithms for
learning the parameters of a non-local means filter [Kalantari et al. 2015]. More recently, Bako et al.
use a Convolutional Neural Network (CNN) to decide the best filter kernels for each point of their
input features, treating diffuse and specular information in separate networks [Bako et al. 2017].
This method is intended for offline rendering and requires higher quality input and more complex
networks than is currently feasible in real time. Chaitanya et al., however, describe a recurrent CNN
with which they achieve high-quality denoising of inputs with very few samples per pixel, suitable
for real-time rendering [Chaitanya et al. 2017]. Although the problem solved by that paper, which
reconstructs contiguous geometry with sparsely sampled illumination, is quite different from ours,
i.e. reconstructing sparsely sampled geometry, their ability to learn high-quality filters that can
plausibly reconstruct a very sparsely sampled input image has served as a direct inspiration to us.

A related technique is Temporal Anti Aliasing (TAA), which has been used both for antialiasing
and as a denoising method for Monte Carlo rendering. We refer the reader to a recent survey of
such techniques [Yang et al. 2020]. In these methods, the current pixel sample is reprojected onto
the previous frame and a history buffer is queried. If the color in the history buffer can be validated
as representing the same surface point, it is weighted in with the new color. The output image then
becomes the history buffer for the next frame. This technique has been shown to work acceptably
to denoise a few layers of transparent surfaces rendered with Stochastic Transparency [Salvi 2016].
When rendering hair, however, a pixel will contain one stochastically chosen fragment of the very
many that project to that pixel, and there is no one-to-one mapping to the history buffer.

3 METHOD
3.1 Overview
Rendering hair with stochastic transparency results in very noisy images if few samples are
taken, and taking a sufficient number of samples is expensive, both in terms of computation and
memory. Our approach is to render a few samples with stochastic transparency and train a U-net
to reconstruct the original image. As input to the network, we provide not only color but also
additional features such as tangents and depth, and we show that the trained network can denoise
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novel views and even different hair styles with very good quality. Figure 2 shows a high level
diagram describing our method.

Fig. 2. Overview of our method. Stochastically sampled color factor, highlight, alpha, depth and tangents are
filtered with a CNN to obtain the filtered color factor, highlight, and alpha, which are composited to produce
the final image.

3.2 Input Rendering
The true light transport in hair is very complex and indirect illumination effects are impor-
tant [Marschner et al. 2003]. In this paper, we consider only direct illumination and use a simplified
approach [Scheuermann 2004a,b]. The formulas are shown in Figure 3. Real-time estimates to
achieve indirect illumination exist [Zinke et al. 2008] but are orthogonal to our work.

𝛼𝐻 -𝐿 = cos−1
(
𝑇

∥𝑇 ∥ · 𝑃𝐿 − 𝑃

∥𝑃𝐿 − 𝑃 ∥

)
𝐹𝑑 = sin(𝛼𝐻 -𝐿)
𝐹𝑅 = sin(𝛼𝐻 -𝐿 + 𝛼𝑅)250

𝐹𝑇𝑅𝑇 = sin(𝛼𝐻 -𝐿 + 𝛼𝑇𝑅𝑇 )80

𝐿𝑜 = 𝐿𝑆
(
𝐶𝐻

(
𝐹𝑑 + 𝐹𝑇𝑅𝑇

)
+ 𝐹𝑅

)
Fig. 3. Formula for shading hair. 𝐹𝑑 is the diffuse factor; 𝐹𝑅 and 𝐹𝑇𝑅𝑇 are the Reflected and the Reflected-
Transmitted-Reflected specular factors [Scheuermann 2004a]; 𝐿𝑜 is the outgoing radiance; 𝑇 is the tangent;
𝑃𝐿 and 𝑃 are the positions of the light and the fragment, respectively; 𝐶𝐻 is the color of the hair; 𝐿𝑆 is the
intensity of the light source; 𝛼𝑅 and 𝛼𝑇𝑅𝑇 are the specular angle shift values, for which we use values from
the ranges suggested by the earlier work that inspired it [Marschner et al. 2003].

To make the network capable of handling arbitrary hair colors, we separate the outgoing radiance
of the hair into two components: one factor that will be multiplied to the color of the hair, (𝐹𝑑+𝐹𝑇𝑅𝑇 )
in Figure 3, and one factor that will only depend on the intensity of the light, 𝐹𝑅 . We refer to these as
the color factor and specular highlight respectively. This separation is discussed further in Section 5.
We also add a small ambient term to the colored component of the light.

The input to the network is composed of stochastically sampled values for several features (e.g.
color, depth, transparency). To obtain more than one sample per pixel in a single pass, we use a
coverage mask for a multisample buffer by setting or unsetting each of the bits with a probability
of alpha [Enderton et al. 2011]. While the average of these samples is still an unbiased estimate,
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Fig. 4. Diagram of the network used to filter the hair. Convolutions are followed by a ReLU. Encoding steps
are downsampling convolutions, while decoding steps are transposed convolutions set up to obtain outputs
double the size of the input. All convolutions are followed by ReLU.

the result is still very noisy even at high number of samples, as can be seen in Figure 6(c). Since
rendering the hair at its actual size would produce aliasing, even at high sample rates, we render
the hair strands at 1px width and approximate the real size by baking the area factor into the alpha
value.

The semi-transparency and thin geometry also precludes using standard shadow-mapping.
However, Enderton et al. show that a stochastic shadowmap can be created in a similar manner
and provides an unbiased estimator to the light visibility. In our case we, use a single sample per
pixel for self-shadowing.
To reduce temporal noise, we make use of Hashed Alpha Testing [Wyman and McGuire 2017],

i.e., we create random samples by applying a hash function to the model-space position of the
fragment in such a way that adjacent points in screen-space will have stable random values.

3.3 Network
3.3.1 Input and Output. The input features to our network are: the color factor and specular
highlight (Section 3.2), the alpha (transparency) value, the screen-space depth of the sample, and
the view-space tangent (only x and y components, since they are the ones that will give the
directionality information most relevant to our purpose). Reducing the number of input features
improves the evaluation time of the network. However, we have found that removing either of our
chosen features leads to poorer results and is not compensated with enough gain in performance.
In Figure 10, we show how the presence of these features impact the MSE of the training.

The network is trained to reconstruct the color factor, the specular highlight, and the alpha. To
compose the final image, we multiply the color factor by the color of the hair, add the predicted
highlight, and blend with the background using the reconstructed alpha.

3.3.2 Architecture. The network is composed of several downsampling convolutions, each reducing
the resolution to half of the input by using a stride of 2. These are followed by the same number of
transpose convolutions, each doubling the resolution of their input, to upsample the encoded data
back to the original size. We use the downsampling and upsampling properties of the convolutions
to avoid using pooling and unpooling layers and thus reduce the evaluation time. As in previous
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work, to improve quality of the output of the upsampling steps, skip connections are added between
each pair of down and upsampling layers except for the first one. The input to the network is
not skipped, as that would require an extra one-to-one convolution which is quite expensive, and
we have not found that this provides much benefit in quality. All convolutions and transpose
convolutions are followed by a ReLU, except for the output layer. Figure 4 shows a diagram of the
layers and connections of the network.
The output of the last convolution is treated specially for each of the channels, because each

represents different kinds of information that has to fit different ranges. Specifically, the output
corresponding to the alpha is clipped to be between 0 and 1, using 𝑦 =𝑚𝑖𝑛(1,𝑚𝑎𝑥 (0, 𝑥)); the color
factor output is modified by 𝑦 = 𝑥3/32 + 𝑥/5 + 1, so as to provide more precision around 1; the
specular highlight is only clipped to be positive by 𝑦 =𝑚𝑎𝑥 (0, 𝑥). In these formulas, 𝑥 represents
the corresponding output of the network, and 𝑦 corresponds to the value used in the formula for
the compositing of the final image.
We use the MSE of outputs as our loss function. As we do not care about the value of the color

or highlight functions where they are invisible, we premultiply the color outputs with alpha prior
to calculating the MSE. As the structure of the hair is important, we additionally add the MSE of
image gradients as a secondary loss.

3.3.3 Training and Validation. To train the network, we create several hundreds of images for two
different styles of hair (straight and wavy, except for Figure 9), taken from randomised distances
and orientations of the camera and light. Figure 12 shows how the network generalises well for
different light directions thanks to this. We set aside 10% of these images to be used as the validation
set to verify the correct training of the network.

The input training data is obtained by rendering the hair with stochastic transparency, producing
multisampled images with the different features that the network will receive. The target training
data is composed of images rendered at very high resolution and downsampled to the same size as
the input. The hair translucency is approximated by averaging images rendered with stochastic
transparency in the supersampled resolution, until converged.

The training itself is performed using the PyTorch library. Our implementation takes between 6
and 12 hours to converge, depending on network size and number of input features. The trained
parameters are then exported to be used in the real-time application.

3.3.4 Inference. For the real-time implementation, we use a combination of OpenGL and CUDA
with cuDNN. First, the input features are rendered into OpenGL multisampled color buffers. Then,
the result is moved to cuDNN tensors and the convolutional network is applied. The resulting
tensors are copied back to an OpenGL texture to be composed into the final image.
We make use of the convolution backwards algorithm in cuDNN to implement the transposed

convolution layers, as CuDNN does not provide a specific API for transposed convolutions.

4 RESULTS
Our experiments are run on an Nvidia RTX 2080, for images of 1024x1024 pixels. The inference
time of the network is proportional to the resolution, and so the numbers presented here are chosen
to represent close-ups at HD resolution.

We release the source code used to evaluate the results presented at https://gitlab.com/ror3d/hair-
filtering-cnn.

In order for the network to optimally use the GPU’s tensor cores for acceleration, we keep both
convolution parameters and data tensors as 16-bit floating point values, stored as NHWC, and the
number of channels of the intermediate tensors as multiples of 8.

Table 1 details the variants of the network we use for the presented results.
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Name Samples
per Pixel

Down-
sampling
layers

Channels per layer

Base 4 spp 3 32 > 64 > 128
Base@1spp 1 spp 3 32 > 64 > 128
Base@2spp 2 spp 3 32 > 64 > 128

Large 4 spp 3 64 > 128 > 256
Small 4 spp 3 16 > 32 > 64

Shallow 4 spp 2 32 > 64
Deep 4 spp 4 32 > 64 > 128 > 256

Table 1. The different variations on the input and architecture used in the various results tables. All networks
have the same number of upsampling layers as downsampling layers, with a skip layer between each pair,
with the exception of the first layer. The number of inputs depends on the number of samples per pixel. The
output is always 3 channels.
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Fig. 5. Performance timings for the execution of the network during real-time evaluation (Network Eval. Time),
and the time to render the input for different network sizes (Render Time). Also included is the time taken for
16 samples of pure stochastic transparency, and for rendering with only MSAA, disregarding transparency.
Shadowmap Time is the time taken to render the stochastic shadowmap at a resolution of 1024x1024, 1SPP.

Figure 5 shows the computation times of our method. The time required to evaluate the network
is mostly dependent on the size of the network, while the time taken to render the input depends
mostly on the number of fragments generated (constant in our experiments) and the number
of stochastic samples per pixel. We find that using 4 samples per pixel and our Base network
configuration gives very compelling results and is about twice as fast as Stochastic Transparency
with 16 samples per pixel, which still produces a noisy output.

In Figure 6, we compare our method to Stochastic Transparency and, for completeness, to
rendering without transparency at highMSAA rates. While stochastic transparency alone converges
to the ground truth with increasing number of samples, even 16 samples per pixel produces a
noisy output. Disregarding transparency and relying on MSAA alone is much faster than stochastic
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transparency (due to hi-Z culling not being available when discarding samples, and the cost of
computing the hashes), but the hair looks opaque and does not converge to the ground truth. Our
network can reconstruct acceptable images with only 1 sample. However, we find that 4 samples is
a good performance/quality trade-off.

(a) Stochastic 1spp (3.5ms) (b) Stochastic 4spp (6.5ms) (c) Stochastic 16spp (23ms) (d) MSAAx16 (opaque)
(13.5ms)

(e) Base@1spp (6.5ms) (f) Base@2spp (8.5ms) (g) Base@4spp (12.5ms) (h) Ground Truth (200ms)

Fig. 6. Result of rendering the hair using different methods: (a), (b), and (c) use stochastic transparency at
different SPP; (d) is the hair rendered with MSAAx16 without transparency; (e), (f), and (g) are the results of
our network for different SPP; (h) is the super-sampled reference image. In parentheses is the total time to
render a frame.

Figure 9 shows how the network trained for a single hairstyle can generalise to other hairstyles,
with better or worse results depending on how similar the hairstyles are to the one used for training,
and the result of using all hairstyles in training.

4.1 Network configurations
As can be seen in Figure 7, which compares results for networks of different sizes, the number of
convolution layers determines the effective filter size. We do not find much visible improvement
with more than 3 convolution and corresponding deconvolutions. Conversely, in Figure 8, it can be
seen that increasing the number of channels per layer tends to improve the visual results, at the
cost of inference time. We have found the skip connections in the inner layers to be necessary to
get good quality in the results.

4.2 Input parameters
In Figure 10, we show the convergence of the network for different sets of input features. Providing
tangent information is vital for good results, while depth and alpha give relatively low improvements
in MSE. We find that all three features provide large visual improvements to the image, however.
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(a) Shallow (12ms) (b) Base (12.5ms) (c) Deep (14.5ms)

Fig. 7. Results for different sizes of the network. Details for each configuration are in Table 1.

(a) Small (11ms) (b) Base (12.5ms) (c) Large (14.5ms)

Fig. 8. Results for different numbers of layers in the network. Details for each configuration are in Table 1.

5 DISCUSSION AND LIMITATIONS
The simplification we use for separating the components of the radiance as only 3 values per
pixel would not be applicable if the lighting setup was significantly more complex; using multiple
differently colored lights, for instance, is not possible, as there is no way to differentiate them. Such
cases would require to either evaluate the network several times, once for each color, or to train
the network to receive and produce RGB values for color and highlight.

Similarly, the presented algorithm is only intended to work with hair of uniform color, but note
that, thanks to the way the color is accounted for, the same network can be used to render any hair
color without retraining, as demonstrated in Figure 11. Training for 3-color channels for the input
and output of the network, which would allow for multi-colored hair, increases complexity, and we
have not found it to work straightforwardly, but it might be interesting to further explore in future
work.

A remaining problem with the method is temporal stability. We originally attempted a recurrent
architecture as suggested by Chaitanya et al. [Chaitanya et al. 2017], but that provided very little
improvement at a high cost. Temporal reprojection is not easily applied either, since the high
frequency geometry means that a large amount of the samples are invalid due to occlusion when
reprojected. The hashed alpha method significantly improves temporal stability. However, as can
be seen in the accompanying video, some flickering remains.
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Fig. 9. Results of training the network for a single hairstyle and evaluating it for different hairstyles. Each
row has the network parameters trained for the corresponding hairstyle.
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Fig. 10. Plot of MSE during training up to 250 epochs for different sets of the input features to the network.

Fig. 11. As the values produced by the network are independent of color, and used as a multiplicative factor
to the color of the hair, the same network parameters can be used for any uniform hair color.

6 FUTUREWORK
As mentioned in the limitations section, the presented method requires uniformly colored hair
across the same mesh. An improvement would be to allow for any color variation for the hair and
the light, including color gradients in the hair, by using RGB channels or some intermediate color
space. There is the possibility that the network would need to be too large for good performance
with current hardware to handle such input, albeit the first issue to address would be obtaining the
larger amount of training data with enough variation that would be needed to train this version of
the network.
Rendering the stochastic input constitutes a large part of the total frame time (Figure 5). In

order to achieve higher frame rates, as well as less memory usage, the mesh could potentially be
simplified while having the network still produce good-looking results. Other ways of obtaining the
stochastic samples that do not require processing each hair strand individually could perhaps also
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Fig. 12. Hair illuminated from different light directions.

work, such as a parametric probability distribution that determines the depth in the hair volume at
which the view is blocked.
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