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Abstract

We study a novel generalization of the Vertex Cover problem which is motivated
by, e.g., error correction (data cleaning) prior to inference of chemical mixtures by their
observable reaction products. We focus on the important case of deciding on one of two
candidate substances. This problem has nice graph-theoretic formulations situated be-
tween Vertex Cover and 3-Hitting Set. In order to characterize its parameterized
complexity we devise parameter-preserving reductions, and we show that some minimum
solution can be computed faster than by solving 3-Hitting Set in general. More ex-
plicitly, we introduce the Union Editing problem: In a hypergraph with red and blue
vertices, edit the colors so that the red set becomes exactly the union of some hyperedges.
The case of degree 2 is equivalent to Star Editing: In a graph with red and blue edges,
edit the colors so that the red set becomes exactly the union of some stars, i.e., vertices
with all their incident edges. Our time bound is O∗(1.84c) where c denotes the total
number of recolored edges.

Keywords: vertex cover, hitting set, graph editing, error correction, parameterized complex-
ity, problem kernel

1 Introduction

1.1 Definitions

A computational problem with input size n and another input parameter k is fixed-parameter
tractable (FPT) if it can be solved in p(n) · f(k) time where p is a polynomial and f any
function. Since we focus on the f(k) factor, we adopt the O∗(f(k)) notation that suppresses
polynomial factors. (The polynomial factor cannot be neglected in practice, but usually it is
moderate, such that f(k) “dominates” the complexity.) We deal with graph problems and
denote by n the number of vertices. For introductions to parameterized algorithms we refer
∗This is an extended version of a conference paper that appeared in: 12th Algorithms and Data Structures
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to [8, 15]. However, for readers not being familiar with the basic notions of FPT we introduce
some of them very briefly. Many FPT algorithm follow the bounded search tree paradigm: In
a branching step, alternative choices are made regarding some items of the solution to a given
problem, and the problem instance is split into several instances (branches) that are further
processed independently and recursively, resulting in a tree of instances. Branching rules must
be designed in such a way that the parameter value is properly reduced in every branch. The
branching vector indicates how much the parameter is reduced in every branch. For instance,
branching vector (2, 2, 3, 3, 4) means that 2 is deducted from the parameter in two branches,
3 is deducted in two other branches, and 4 is deducted in yet another branch. The branching
number, informally, is the base x in the number xk of leaves of the search tree when the initial
parameter value is k. It can be calculated via the characteristic equation of the branching
vector. For instance, the characteristic equation of (2, 2, 3, 3, 4) is xk = 2xk−2 + 2xk−3 + xk−4,
or simpler x4 = 2x2 + 2x + 1, with the solution x < 1.84. For brevity, a branching rule is said
to be a bv rule if its branching number is less than or equal to that of branching vector bv.

The following is a classical FPT problem, and a tremendous amount of work has been
devoted to its parameterized complexity.

Vertex Cover: In a graph, find a set C of at most k vertices being incident to all edges.

A hypergraph is a vertex set equipped with a family of subsets of vertices called hyper-
edges. The degree of a vertex is the number of hyperedges it belongs to, and the degree of a
hypergraph is the maximum vertex degree. We introduce the following problem.

Union Editing: Given a hypergraph whose vertices are colored red and blue, paint at most
k blue vertices red, and paint at most m red vertices blue, such that the set of red vertices
becomes exactly the union of some of the hyperedges.

Note that the hyperedges in that union are in general not disjoint. Union Editing

(Degree r) is, as the name suggests, the Union Editing problem on hypergraphs of degree
at most r. The generalization of Vertex Cover to hypergraphs is known as

Hitting Set: In a hypergraph, find a set C of at most k vertices intersecting all hyperedges.

The rank of a hypergraph is the maximum size of its hyperedges. r-Hitting Set is the
Hitting Set problem for rank r.

1.2 Motivation

Union Editing arises from chemical analytics. In fact, it was proposed in [13], however
without algorithmic analysis. Every hyperedge represents a possible substance in an unknown
mixture, and the vertices therein represent the reaction products that can be directly identified
by experiments. For instance, unknown protein mixtures can be analyzed by splitting the
proteins enzymatically into peptides which are then identified by, e.g., mass spectrometry. A
database of proteins and their peptides is finally used to identify the proteins from the set of
peptides. Many peptides, especially those with large masses, are unique for a protein, others
appear in r different proteins, very often just r = 2. The problem to resolve these ambiguities
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[7, 11, 14] is easily seen to be the Set Cover or Hitting Set problem, as also observed by
biologists. Case r = 2 is Vertex Cover.

However, here we do not address this inference step but another problem that appears prior
to the actual mixture reconstruction: Ideally, the set of observed vertices should be exactly
the union of some of the hyperedges (those representing the substances in the mixture). But
in practice, observations may be corrupted in two ways: by at most k vertices that should
appear but are not observed, and by at most m vertices that are observed but should not
appear. (Our red vertices are the observed ones.) The question arises how we can efficiently
correct a limited number of such errors, assuming that reliable bounds k and m are known
from experience. Different problem versions may be considered: decide the existence of a
solution with k and m errors, enumerate them all, or enumerate all vertices being recolored
in some solution (the error candidates).

1.3 Contributions and Related Work

Union Editing (Degree 1) is a trivial problem, in a sense: As the hyperedges are pairwise
disjoint, we only have to decide for every hyperedge whether to color it completely red or blue.
For each pair (k, m) we can solve the problem in polynomial time by dynamic programming,
as this is essentially a knapsack problem with unary representations of numbers. We can
even enumerate all possible solutions in an implicit way, as the system of all paths in a
certain directed graph of partial solutions. All this is a straightforward exercise in dynamic
programming, therefore we skip the details. In this paper we mainly deal with Union Editing

(Degree 2) which is the “smallest nontrivial case” but is already important in the intended
application.

In Section 2 we introduce several equivalent formulations as (hyper)graph editing prob-
lems. We relate them to each other and to established problems. These problems are NP-
complete but also in FPT, with the solution size as the parameter. Union Editing (Degree

2) turns out to be a special case of 3-Hitting Set. In Section 3 we give a parameterized
O∗(1.84k+m) time algorithm for minimizing k + m (corresponding to the total number of
error corrections). This is clearly faster than the state-of-the-art result for 3-Hitting Set

in general. The gain is not very high, nevertheless the result indicates that our problem is
also an interesting subcase from an algorithmic point of view. We can also compute, within
the same time bound, a kernel that contains all optimal solutions. Enumeration results and
kernels are given in Section 4, and Section 5 concludes the paper with open questions.

The currently fastest Vertex Cover algorithm [3] runs in O∗(1.2738k) time. Several
other Vertex Cover variants and generalizations addressed in the literature [1, 9, 10, 12, 16]
include vertex covers with additional constraints and partial vertex covers. One of our problem
formulations is a case of partial vertex covers where, however, the number of uncovered edges
is also limited by a parameter.

2 Parameterized Graph Problems Equivalent to Star Editing

In the following we translate Union Editing (Degree 2) into an equivalent graph problem.
Since we are then on more familiar grounds, this will make it easier to characterize the
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complexity of the problem. Our graphs may contain loops and parallel edges. In a graph, we
call the set of all edges incident to some vertex v the star with center v. (This should not be
confused with other notions of “star” in graph theory.) Specifically we define:

Star Editing: In a graph with red and blue edges, recolor at most k blue edges and m red
edges, such that the union of some stars becomes exactly the set of red edges, or equivalently,
the edge set of some induced subgraph becomes exactly the set of blue edges.

Theorem 1 Union Editing (Degree 2) and Star Editing are equivalent, through some
polynomial-time reduction that preserves parameters k and m.

Proof. Given any hypergraph H of degree 2, we construct a graph G as follows. For every
hyperedge of H create a vertex of G. Every vertex of H that belongs to the intersection u∩ v

of hyperedges u and v becomes an edge between u and v in G. (Thus, parallel edges may
appear.) Every vertex of H that belongs to only one hyperedge v becomes a loop at v in G.
This defines a one-to-one correspondence between hypergraphs of degree 2 and graphs with
loops and parallel edges, as we can also reconstruct H from G: Every edge of G becomes a
vertex of H, and every star in G becomes a hyperedge in H. Obviously, the solutions of the
two problems in H and G correspond to each other. �

Alternatively we may view Star Editing as a vertex selection problem, rather than an
edge selection problem. This is what we show next.

Deficient Vertex Cover with Cost Edges: In a graph with red and blue edges, find
a subset C of vertices incident to at most k blue edges and non-incident to at most m red
edges.

This problem extends the ordinary Vertex Cover problem, in graphs with only red
edges, in two directions: m red edges may remain uncovered by C, and the “cost” k of C is
the number of incident blue edges. In the special case when all blue edges are loops, they
merely encode an integer-valued cost function on the vertices. The new twist is that any two
vertices u and v joined by a blue edge uv share one unit of cost, in the sense that only one of
them, say u, pays for this blue edge when u ∈ C, while the cost of adding v to C is reduced
by one. Because of this role of the blue edges we also call them cost edges. These pairwise
dependencies of costs have no counterpart in the ordinary Vertex Cover problem. Also
note that we may add to any vertex cover C, at zero cost, vertices whose incident blue edges
are already incident with C.

Let Vertex Cover with Cost Edges denote the special case when m = 0. We remark
that the other natural special case, Deficient Vertex Cover where all blue edges are
loops, was also studied in [1], though in a weighted version and under a different name.
Both FPT and W-hardness results are shown in [16] for another interesting Vertex Cover

generalization called Vector Dominating Set where the number of uncovered incident
edges is individually prescribed for each vertex.

Theorem 2 Problems Star Editing and Deficient Vertex Cover with Cost Edges

are equivalent, via a polynomial-time reduction that preserves the parameters k and m.
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Proof. Consider a set C that solves Deficient Vertex Cover with Cost Edges for
parameters k and m. By recoloring the blue edges incident to C and the red edges non-
incident to C we get a solution to Star Editing for parameters k and m, where C is the set
of centers of stars whose union consists of exactly the red edges. For the opposite direction,
consider a solution to Star Editing where at most k blue and m red edges are recolored.
Then, the set C of all centers of entirely red stars, after recoloring, solves Deficient Vertex

Cover with Cost Edges. �

Vertex Cover with Cost Edges still appears as a proper generalization of Vertex

Cover, so the following reduction to Vertex Cover might be a little surprising.

Definition 3 A conflict triple as a set of three edges: two blue edges uv and xy joined by a
red edge vx, where v 6= x. The other vertices are not necessarily distinct, i.e., we can have
u = y, or the blue edges may be loops, or parallel to vx.
The red degree and blue degree of a vertex is the number of incident red edges and blue edges,
respectively, where a loop counts only once.

Theorem 4 Vertex Cover and Vertex Cover with Cost Edges are equivalent, through
some polynomial-time reductions that preserve parameter k.

Proof. The reduction from Vertex Cover to Vertex Cover with Cost Edges is trivial,
as already mentioned: Attach to every vertex a blue loop that encodes the vertex cost.

Conversely, consider any instance of Vertex Cover with Cost Edges, i.e., an edge-
colored graph G and a parameter k. If a red loop is attached to some vertex v, clearly we
must put v in the solution C, moreover we can remove v and all incident edges and subtract
from k the blue degree of v. If parallel red and blue edges join two vertices u and v then some
of u and v must eventually be in C, hence we can immediately remove the blue edges uv and
subtract their number from k. After these data reductions, G has neither red loops nor blue
edges parallel to red edges.

Now we construct a graph G′ as follows. Every blue edge of G becomes a vertex of G′.
For any conflict triple uv, vx, xy, we create an edge between vertices uv and xy in G′. Note
that the same red edge vx may give rise to several edges of G′; we call them copies of vx.

Consider any vertex cover C of cost k in G. Let C ′ be the set of blue edges incident to
C. Observe that C ′ has size k and is a vertex cover in G′: For any red edge vx in G, we have
v ∈ C or x ∈ C, by symmetry assume v ∈ C. Hence all blue edges incident with v are in C ′.
It follows that all copies, in G′, of the edge vx are covered by vertices from C ′.

To see the opposite direction of the equivalence, consider any vertex cover C ′ of size k in
G′. For every red edge vx from G, all blue edges at v or all blue edges at x must belong to
C ′, in order to cover all copies of the edge vx in G′. Define C as the set of all vertices v of
G such that all blue edges incident to v are in C ′. Due to the sentence before, C is a vertex
cover in G. The cost of C is the number of incident blue edges, which is at most k, as these
edges were in C ′. �

Recall the r-Hitting Set problem. Next we refine it to a two-parameter problem which
is also closely related to the problems discussed here.
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s, r-Hitting Set: Given is a hypergraph whose vertices are colored red and blue, where every
hyperedge consists of at most s blue and r red vertices. We also say that the blue rank and
red rank is s and r, respectively. Find a hitting set C of at most k blue and m red vertices.

Theorem 4 essentially relies on m = 0. For m > 0 we do not see a parameter-preserving
reduction from Deficient Vertex Cover with Cost Edges to Vertex Cover. It seems
that Vertex Cover with both missed edges and cost edges is intrinsically more difficult.
However we can reduce it to the next higher problem in the “hitting set hierarchy”:

Theorem 5 Deficient Vertex Cover with Cost Edges, is reducible to 2,1-Hitting

Set, through some polynomial-time reduction that preserves the parameters k and m.

Proof. Every edge of the given graph G becomes a vertex of a hypergraph H. The hyperedges
of H are the following sets of size 2 or 3: every red loop with every incident blue edge; every
red edge with every parallel blue edge; and every conflict triple. We call the first two cases
conflict pairs.

Let C be any solution to Deficient Vertex Cover with Cost Edges in G. We claim
that the set F consisting of all blue edges incident to C and all red edges non-incident to C

is a hitting set in H. To prove the claim, consider any red edge vx. Assume that some end
vertex is in C, say v ∈ C. If vx forms a conflict pair with some blue edge, then either v = x

(red loop), or vx and the blue edge are parallel. In both cases the blue edge is incident to C,
thus F intersects the conflict pair. If vx forms a conflict triple with blue edges uv and xy,
then the blue edge uv is incident to C, too. If v, x /∈ C then vx ∈ F . Note that F intersects
every conflict pair/triple containing vx.

Conversely, let F be any hitting set of k blue edges and m red edges in H. We construct
a vertex set C in G and show that C is incident to at most k blue edges and non-incident to
at most m red edges. Let vx be any red edge with vx /∈ F . If v = x, we put this vertex in
C. Note that the incident blue edges are all in F , since F intersects all conflict pairs with
the red loop vx. In the following let be v 6= x. All blue edges at v or all blue edges at x are
in F , since otherwise some conflict triple with vx in the middle, or some conflict pair with a
parallel blue edge vx, would be disjoint to F . We put v in C if all blue edges incident to v are
in F , and similarly for x. The construction of C implies: A blue edge is incident to C only if
it belongs to F . Similarly, a red edge is non-incident to C only if it belongs to F . �

3 Solving Star Editing Faster than 3-Hitting Set

We defined Star Editing as a problem with two separate parameters k and m. Nevertheless,
let us consider the simplest version of the problem where we only want to find some solution
minimizing the total number k + m of edits. In the application mentioned in Section 1 this
means to find the minimum number of error corrections that would possibly explain the data.

By Theorem 2 and 5 we can reduce this problem to 2,1-Hitting Set, and trivially we
can further reduce it to 3-Hitting Set, since colors can be ignored as long as we only aim for
a minimum k + m. Thus, some solution can be found by using any parameterized algorithm
for 3-Hitting Set, such as the O∗(2.076k+m) time algorithm from [17]. (Slightly faster
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algorithms have been announced but are apparently unpublished.) However, the hypergraphs
of rank 3 from our reduction enjoy a special structure, thus we might be able to solve Star

Editing significantly faster than 3-Hitting Set in general. In fact, we will now devise an
O∗(1.84k+m) time branching algorithm.

We use the Deficient Vertex Cover with Cost Edges formulation which is more
convenient for stating the branching rules. Accordingly, we use C as a generic variable for a
solution. We describe our algorithm as a list of rules, and we always apply the first applicable
rule in the list. We denote our input graph by G = (V,E).

(1) We always remove every edge incident to some vertex just added to C, and we subtract
from parameter k the number of incident blue edges. If we decided not to put some vertex v

in C, we turn every incident edge into a loop at its other end vertex. If both vertices of a red
edge (or the vertex of a red loop) are not put in C, we remove this red edge and subtract 1
from parameter m. These trivial actions are silently added to the rules below.

(2) If two parallel red edges connect some vertices v and x, then removing one of them can only
lower the deductions from parameter m in branching rules, in those branches where v, x /∈ C.
Hence, in a worst-case analysis we can safely assume that no parallel red edges exist. (That
is, for bookkeeping of parameter m we actually keep them in the graph, but otherwise we
ignore all edges but one, of any bundle of parallel red edges.)

(3) If some vertex v has red degree 0, we immediately decide v /∈ C. A vertex v with blue
degree 0 is put in C at no cost. Thus we can assume henceforth that all red and blue degrees
are positive.

(4) Denote by V1, V2, V3 the set of vertices with blue degree 1, 2, and at least 3, respectively.
Since by (3) all blue degrees are positive, we have V = V1 ∪ V2 ∪ V3. If some red edge vx

connects two vertices v ∈ V2 and x ∈ V3, we decide whether v, x /∈ C or v ∈ C or x ∈ C.
(The last two branches do not rule out insertion of the other vertex in C later on.) Obviously
this gives us a (1, 2, 3) rule, and its branching number evaluates to 1.84. A red edge within
V3, either a normal edge or a loop, gives even better branching numbers, as is easy to check.
When these rules are exhaustively applied, we obtain a graph with red edges only within
V1 ∪ V2 and between V1 and V3.

(5) Next we make a key observation that holds only because this problem version asks for
some (arbitrary) solution with minimum total cost k + m. – Consider any red edge vx with
v ∈ V1. If we decide v, x /∈ C, this red edge costs 1. If we take v ∈ C instead, we pay 1 for the
blue edge incident to v, and this decision is no worse than the case v, x /∈ C. This exchange
argument shows that we can ignore the branch v, x /∈ C. Due to this domination rule we can
set the red edge vx permanent: That is, we commit to put v or x in C, but we defer the actual
choice of v or x. The same reasoning holds for a red loop at any v ∈ V1, but there we can
decide v ∈ C instantly. Now all red edges except those in V2 are permanent and non-loops.

(6) As long as some red edge is incident with V3, being permanent due to (5), we obviously
have a (1, 3) rule. By exhaustive application of this rule, recall also (1) and (3), we eventually

7



make V3 = ∅. Similarly, as long as some red edges connect V1 and V2, they are permanent as
well, which gives us a (1, 2) rule with branching number 1.62. After exhaustive application of
this rule, our graph has blue degree at most 2, and red edges only within V2 and within V1,
and those within V1 are permanent.

(7) If any two vertices u, v ∈ V2 are joined by two parallel blue edges, we can assume that
both u and v or none of them are in C, because if we put one vertex in C, we can add the
other vertex for free. Hence we can merge u and v, thereby turning the blue edges in two blue
loops at the new vertex. Parallel red edges are already excluded by (2). (Alternatively we
might argue as follows: If any two vertices u, v ∈ V2 are joined by two parallel red edges, we
have a (2, 2, 2) rule with branching number 1.74.) Thus we get rid of parallel edges of equal
color in V2.

(8) Consider any w ∈ V2 of red degree at least 2, and let wu and wv be red edges. Due to the
structure already established, we have u, v ∈ V2 and u 6= v.

(8.1) Suppose that no blue edge uv exists. Now we can decide w ∈ C with cost 2, or w /∈ C.
In the latter case we also make the decisions for u and v. For each of them the cost is either 2
for the incident blue edges (if we put the vertex in C), or 1 for the red edge (if we don’t). Since
the blue edges incident to u and v are distinct, this yields a (2, 2, 3, 3, 4) rule with branching
number 1.84.

Now we can assume that for every w ∈ V2 of red degree at least 2, and any two of its
neighbors (via red edges) u, v ∈ V2, exactly one blue edge uv exists.

(8.2) Suppose that some w ∈ V2 has red degree at least 3. Let N be the set of neighbors
joined to w by red edges. Any two vertices of N are joined by a blue edge. Since w and N

are all in V2, it also follows |N | = 3. Again we can decide w ∈ C with cost 2, or w /∈ C. In
the latter case we also make the decisions for N . If we put two vertices of N in C, we can
also take the third, as all blue edges incident to N are already paid. Together this yields the
branching vector (2, 3, 3, 4, 4, 4) rule with branching number smaller than 1.77.

(8.3) Now all vertices in V2 have red degree 1 or 2, hence the red edges form simple paths
and cycles. Note that every red cycle is interweaved with one or two blue cycles, and it forms
a connected component in the entire red-blue graph, so that the problem restricted to each
cycle can be solved trivially. What remains are simple red paths. Let y be an end of a path
of at least two red edges. Denote by yx and yz the two incident blue edges, and by yw the
incident red edge. Note that one of x and z is the next vertex following w on the red path. If
x /∈ C or z /∈ C, there is no reason to have y ∈ C, since y would cover only one red edge but
would have to pay for some blue edge. By contraposition, if we put y ∈ C then we also take
x, z ∈ C. The cost is at least 3 for the incident blue edges. If we decide y /∈ C then we also
decide about w. The cost is 1 if w /∈ C, and 2 if w ∈ C. Hence a (1, 2, 3) rule with branching
number 1.84 is available.

By applying these rules exhaustively, all vertices in V2 get red degree 1.

(9) As said in (2), we can suppose that no parallel red edges exist in V1 (in particular). Next
assume that some edge uv with u, v ∈ V1 is blue. As earlier, if we put either of u and v in C,
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the other vertex can be added to C for free, hence we merge u and v and shrink uv to a blue
loop.

(10) Consider any w ∈ V1 of red degree at least 2, and let wu and wv be red edges. From (6)
we have that u, v ∈ V1 and u 6= v, and these red edges are permanent. Hence we must take
w ∈ C or u, v ∈ C. Since no blue edge uv exists due to (9), vertices u and v together are
incident to two blue edges, hence this branching rule is a (1, 2) rule.

It is helpful to summarize the current situation: All vertices are now in V1 ∪ V2. All red
degrees are 1, by (10) and (12), i.e., the red edges form a matching. Red edges exist only
within V2 and within V1, cf. (6). All red edges within V1 are permanent. Blue edges exist
only within V2, between V2 and V1, and as blue loops in V1.

(11) Blue loops in V1 are removed as follows. When some v ∈ V1 has a blue loop attached,
and vx is a red edge (note that x ∈ V1), we can safely decide x ∈ C, since the option v ∈ C

is only worse.

(12) Let vx be a red edge in V1. Since vx is permanent, we have to put some vertex in C, say
v ∈ C, the other case is symmetric. Vertex v is also involved in a blue edge uv, where u ∈ V2.
Vertex u in turn is incident to some red edge yu, where y ∈ V2. Since we decided v ∈ C, the
blue degree of u drops to 1, thus u moves to V1, so that we can make uy permanent, using
(5). Since we now have to choose u ∈ C or y ∈ C which has blue degree 1 and 2, respectively,
this gives us a (1, 2) rule. We argue similarly in the symmetric case starting with x ∈ C. This
way we have appended a (1, 2) rule to both branches of a (1, 1) rule. Altogether this makes a
(2, 2, 3, 3) rule. Exhaustive application of this rule empties V1.

After application of all the preceding rules, it remains a graph where every vertex has
exactly red degree 1 and blue degree 2. At this point, an optimal solution consists in not
adding any further vertices to C. The cost of this claimed optimal solution is the number of
remaining red edges. We consider any different solution that adds something to C and show
that, in fact, it cannot be cheaper: Every vertex added to C reduces the cost of the red edges
by at most 1 but has to pay for two blue edges. And trivially, at most two vertices in C can
share the cost of a blue edge. Consequently the total cost has not improved. Since 1.84 was
the worst branching number among our rules, this finally shows:

Theorem 6 A solution to Deficient Vertex Cover with Cost Edges (or Star Edit-

ing) with minimal k + m can be found in O∗(1.84k+m) time. �

4 Enumerations and Problem Kernels

The considered optimization version of our problem only asks for some solution with minimum
k + m. But the optimal solution might not be unique, and in the error correction application
one cannot simply assume that an arbitrary optimal solution explains the data correctly.
It would be more appropriate to return all possible minimum solutions, but if these are
exponentially many, this raises new issues. A nice compromise is to return just the set of all
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edges that are recolored in all possible solutions with minimum k+m, i.e., the potential errors.
Enumerating these edges does not cost essentially more time than finding one solution:

Theorem 7 All edges recolored in all solutions to an instance of Star Editing with mini-
mum k + m can be found in O∗(1.84k+m) time.

Proof. The basic idea is natural, only its correct implementation needs a little bit of care:
Let c = k + m be the minimum number of recolorings. For every edge e = uv we test from
scratch whether there exists a solution where e is recolored, and hence c− 1 other edges are
recolored. In the following we use the equivalent Deficient Vertex Cover with Cost

Edges formulation again.
If e is red, we color it blue, that is, we decide u, v /∈ C, and apply the postprocessing steps

mentioned above in step (1). If e is blue, we color it red and mark it permanent. In both
cases we solve the residual problem with parameter value c− 1. To handle the latter case we
have to extend the Deficient Vertex Cover with Cost Edges problem in yet another
direction: We allow permanent red edges already in the input graph. Now we argue that this
generalization can still be solved in O∗(1.84k+m) time, using the algorithm from Theorem 6
with slight modifications. In all branchings we abandon the branches with u, v /∈ C, if there
are some. Trivially, deletion of some branches can only improve the branching numbers. Once
we reach a graph where all vertices have red degree 1 and blue degree 2, and some red edge
is permanent, we clearly have a (2, 2) rule and can continue. All other situations are resolved
as in Theorem 6. �

Next it is natural to ask how many edges can be affected in total. The following result
is based on an old Vertex Cover kernelization [2], however the two colors make it more
tricky.

Theorem 8 All solutions to an instance of Star Editing, with a given k + m, are together
contained in a set of O((k+m)2) red and O((k+m)3) blue edges, being incident to O((k+m)2)
vertices, which can be computed in polynomial time.

Proof. First remember a few trivial reduction rules: All blue degrees are positive, otherwise
we can put the gratis vertices in C. No blue edge joins two vertices of blue degree 1, otherwise
we can contract it to a blue loop. Now any p vertices are incident to at least 2p/3 blue edges
(including loops), where in the worst case the blue edges pair up to components of two incident
edges. Also the red degrees are positive.

Let c be a maximum allowed cost k + m of solutions C. If some vertex v is incident to
2.5c+ 1 or more red edges, and we decide v /∈ C, then 1.5c+ 1 of its neighbors must be taken,
in order to leave at most c red edges uncovered. But these 1.5c + 1 neighbors are incident
to at least c + 1 blue edges, thus too expensive. Hence v ∈ C is enforced. If some vertex
v is incident to c + 1 or more blue edges, clearly v /∈ C is enforced. Hence we obtain, in
polynomial time, a kernel where all vertices have red and blue degree bounded by 2.5c and c,
respectively, and where still any p vertices are incident to at least 2p/3 blue edges. Thus at
most 1.5k ≤ 1.5c vertices can be put in C, which are able to cover at most 1.5c · 2.5c = 3.75c2

red edges, and m ≤ c red edges may exist in addition. It follows that at most 7.5c2 + 2c

vertices and 7.5c3 + 2c2 blue edges are in the kernel. �
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Since our problem generalizes Vertex Cover, the quadratic bound cannot be improved,
due to our result for Vertex Cover in [6]. However, it remains open whether a cubic number
of blue edges is needed.

Next we compute a kernel for all minimal solutions of s, r-Hitting Set, extending a
result from [4] for r-Hitting Set. Naive application of the earlier result would only yield an
O((k + m)s+r) kernel size bound. By an adaptation of the proof we get a better bound which
is even worst-case optimal, subject to a constant factor.

Theorem 9 For any fixed ranks s and r we have the following: A set of (s + r) (s+r)!
s!r! ksmr

vertices containing all minimal solutions to a given instance of s, r-Hitting Set can be
computed in polynomial time in the size of the hypergraph. Moreover, Θ(ksmr) vertices is the
optimal upper bound.

Proof. Given is a hypergraph of blue and red rank s and r, respectively, and integers k and
m to limit the number of blue and red vertices, respectively, in a solution.

We consider sets X consisting of s− i blue and r − j red vertices. Suppose we have some
upper bound function h(i, j) for number of hyperedges that contain X. We want to construct
h(i, j) in such a way that either X is a subset of at most h(i, j) hyperedges, or the instance
can be reduced preserving the solution space. Specifically, in the latter case we insert X

as a new hyperedge and remove the, now redundant, hyperedges that contain X. Then the
value h(s, r) corresponding to X = ∅ will be the total number of hyperedges in the (reduced)
hypergraph.

Once we have such a function h(i, j), then if more than h(s, r) hyperedges are present, we
can simply loop through all O(nr+s) sets consisting of at most s blue and r red vertices, test
whether they are contained in at most h(i, j) hyperedges, and otherwise do the replacements.
That can be done in O∗(nr+s) time, which is polynomial when the ranks are fixed.

Now let us derive the upper bound function h, by induction on i, j. We can set h(0, 0) := 1,
since duplicate hyperedges can be safely removed. For any fixed i and j, let X be a set as
specified above. Let H(X) be the family of all hyperedges containing X. Consider any hitting
set with no vertex from X. Since it must intersect, in particular, all hyperedges of H(X),
some set Z of at most k blue and m red vertices must intersect all Y − X, Y ∈ H(X).
We build the at most k sets X ∪ {z}, z ∈ Z blue, which have s − (i − 1) blue and r − j

red vertices. Similarly we build the at most m sets X ∪ {z}, z ∈ Z red, which have s − i

blue and r − (j − 1) red vertices. All hyperedges of H(X) contain some of these sets. Thus
h(i, j) := k ·h(i− 1, j) + m ·h(i, j− 1) is safe. In the special case when some of the arguments
are 0, say j = 0, our H(X) consists only of hyperedges Y where all vertices in Y − X are
blue, hence all of Z is blue, and we can set h(i, 0) := k · h(i − 1, 0). Solving the recurrence
yields h(i, j) = (i+j)!

i!j! kimj , and finally h(s, r) = (s+r)!
s!r! ksmr.

So far we assumed that for every set X, with at most s blue and r red vertices, some
hitting set with the given size limits is disjoint to X. The other case is that, for some X,
every such hitting set must intersect X. But then we can create a hyperedge X, and remove
all hyperedges in H(X). A hyperedge is removed only due to insertion of a smaller hyperedge,
hence a removed hyperedge is never inserted again. Thus, after finitely many steps we reach a
hypergraph where the number of hyperedges (that fulfill the void condition to contain X = ∅)
is h(s, r). Clearly, they have at most (s + r) (s+r)!

s!r! ksmr vertices.
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To show optimality of Θ(ksmr), we construct a hypergraph where the union of all minimal
solutions has Θ(ksmr) vertices. We take a rooted tree of depth s + r. The root is at level
0 is not a vertex of the hypergraph. All vertices in the first s levels below the root are blue
and have parents with outdegree k/s, and all vertices in the last r levels are red and have
parents with outdegree m/r (fractions are rounded). Every path from the root to a leaf forms
a hyperedge. For any vertex v on the second last level, let P be the path from the root to
v, and let S be the set of all siblings of vertices on P and all children of v. Note that S is a
minimal hitting set with at most k blue and m red vertices, and every vertex belongs to such
a set S. �

A difficult combinatorial problem is the optimal hidden factor in Θ(ksmr), for any fixed
s and r. This matter is already intricate for the one-colored r-Hitting Set problem [6].

5 Open Questions

It would be desirable to improve the base 1.84 for Star Editing further. Our branching
algorithm is already lengthy, but a completely different FPT algorithm design technique like
iterative compression may avoid even more intricate branching.

Also, our Star Editing result does not imply that we can find in O∗(1.84k+m) time a
solution where each of k and m separately respects some prescribed values: Rule (5) does not
apply to this stricter problem version, as it might be beneficial to pay for an uncovered red
edge if k is “too small”.

Our focus on degree 2 is, of course, a limitation, therefore it is worth looking at the
general case. Union Editing (Degree s), for any fixed degree s, can be transformed into
hypergraph editing problems analogously to the case s = 2, where edge is replaced with
hyperedge of size at most s, and vertex cover is replaced with hitting set.

Then, our results raise some further questions for general s: Can we solve the corresponding
optimization problem significantly faster than s, 1-Hitting Set and (s + 1)-Hitting Set,
and even faster than O∗(sk+m)? Can we enumerate all solutions (compute the transversal
hypergraph) faster than in these Hitting Set instances?

Furthermore: Is there a linear kernel for the optimization version of Star Editing (cf.
[1])? What is the parameterized complexity of our problems when k and m are limited
separately, as in the Pareto framework we proposed in [5]?
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