
Multiple Hypernode Hitting Sets and Smallest

Two-Cores with Targets

Peter Damaschke
Dept. of Computer Science and Engineering,

Chalmers University, 41296 Göteborg, Sweden
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Abstract

The multiple weighted hitting set problem is to find a subset of nodes in a hyper-
graph that hits every hyperedge in at least m nodes. We extend the problem to a
notion of hypergraphs with so-called hypernodes and show that, for m = 2, it remains
fixed-parameter tractable (FPT), parameterized by the number of hyperedges. This
is accomplished by a nontrivial extension of the dynamic programming algorithm for
hypergraphs. The algorithm might be interesting for certain assignment problems, but
here we need it as a tool to solve another problem motivated by network analysis: A
d-core of a graph is a subgraph in which every vertex has at least d neighbors. We
give an FPT algorithm that computes a smallest 2-core including a given set of target
vertices, where the number of targets is the parameter. This FPT result is best possible
in the sense that no FPT algorithm for 3-cores can be expected.

Keywords: hitting set, job assignment, parameterized algorithms, dynamic programming
on subsets, cores in graphs

1 Introduction and Contributions

Hitting set problems are fundamental in various branches of computer science and in com-
binatorial optimization. Since the problems are NP-hard, the complexity of several param-
eterized versions is interesting. We refer to recently developed parameterized algorithms
for hitting sets in hypergraphs of fixed rank [7] and for enumerations of all hitting sets [6],
which is also known as monotone dualization [5].

In the Multiple Weighted Hitting Set problem we are given a family of hyperedges
(a hypergraph) on a set V of nodes with positive real weights, and an integer m, and we seek
a subset of nodes with minimum total weight that intersects every hyperedge in at least m
distinct nodes. (We use the words “intersect” and “hit” interchangeably.) The unweighted
case with m = 1 is the ordinary Hitting Set problem.

We further generalize the former problem as follows. Besides the hyperedges we are
given another family of subsets of V that we call hypernodes. Every hypernode (rather than
every node) has a positive weight. We seek a subset S of hypernodes with minimum total
weight such that the union of all hypernodes in S intersects every hyperedge in at least m
distinct nodes. We refer to this problem as Multiple Weighted Hypernode Hitting
Set (MWHHS). The aforementioned Multiple Weighted Hitting Set problem is the
special case of MWHHS where the the hypernodes are singleton sets, one for each node in
V .

In MWHHS we may assume without loss of generality that all hyperedges are pairwise
disjoint: If they are not, we “disjunctify” them as follows. For each pair v, e of a node v and
hyperedge e 3 v, we replace v with a copy ve of v that appears exclusively in e. The weights
of hypernodes remain unchanged. While this transformation makes the hypernodes larger,
it does not change the problem, and the blow-up is obviously polynomial in the size of the
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hypergraph. Disjoint hyperedges are easier to handle in algorithms for the problem. Note
that, if we apply the above transformation to a usual weighted hypergraph (an instance
of Multiple Weighted Hitting Set), then the obtained hypernodes are also disjoint,
as they come from single nodes. But we stress that hypernodes may still overlap in the
general case of MWHHS. In the following, k always means the number of hyperedges which
we denote V (1), . . . , V (k). For easier orientation we also give the definition more formally:

Multiple Weighted Hypernode Hitting Set (MWHHS)
Input: a set V of nodes, k hyperedges, i.e., sets V (1), . . . , V (k) ⊂ V which can be assumed to
be pairwise disjoint, another family of subsets of V called hypernodes, each with a positive
weight, and a fixed integer m (multiplicity).
Output: a set S of hypernodes with minimum total weight, such that at least m distinct
nodes of every hyperedge are contained in the hypernodes in S.

We assume that the reader is familiar with the theory of fixed-parameter tractable (FPT)
problems; introductions can be found, for example, in [3, 10]. Hitting Set is known to be
W [2]-complete (thus probably not in FPT), but Hitting Set is in FPT in parameter k, the
number of hyperedges. (This was observed, e.g., in [8] in dual form, i.e., for the Set Cover
problem). This result can be easily extended to MWHHS with m = 1: The idea is to use
dynamic programming on the subsets of the index set {1, . . . , k}. We process the hypernodes
successively. Every new hypernode is used in the solution or not. We only have to keep
track of the minimum weights of solutions that hit every subfamily of V (1), . . . , V (k). The
time bound is O∗(2k). (The O∗ notation suppresses polynomial factors.) We withhold the
straightforward details, because we will treat the more general case m = 2 in Section 2.

The difficulty increases dramatically in the case m = 2. Already for m = 2 it is not
easy to see an FPT algorithm, even a bad one, let alone an FPT algorithm for combined
parameters (k, m). As opposed to the Hitting Set problem, it is not of much help to
classify the hypernodes in 2k types according to which hyperedges they intersect. Since we
want to hit every hyperedge in at least two distinct nodes, we have to memorize the nodes
that are already used up, but we cannot afford to do that for every possible combination
of nodes in the already selected hypernodes, as the |V (i)| are not bounded by any function
of parameter k. In Section 2 we develop an FPT algorithm for MWHHS with m = 2, by a
nontrivial extension of the known dynamic programming scheme for Hitting Set.

Our original motivation for MWHHS was a network problem that we define below and
treat in Section 3 and 4. However, hypernode hitting sets may be of more general interest
in combinatorial optimization, especially for job or machine assignment problems where we
have multiple demands or the need of redundancy. To be a little more concrete, consider
the following problem as an illustration. A number of project groups works during certain
time slots. Every group shall get supervision during at least m time slots. Potential super-
visors are also available during certain time slots. The schedules of all project groups and
supervisors are known in advance, and every supervisor demands a certain fee if she is hired
for the time slots she offered. Assuming that times and fees are fixed and cannot be further
negotiated, the problem is now to select a cheapest subset of supervisors to get the desired
coverage. The nodes, hyperedges and hypernodes are the time slots, project groups, and
supervisors, respectively. In a similar scenario, a set of installations has to be checked by
experts, but this is possible only at certain times when the installations are not in use. The
experts being available for the task have only certain free time slots. For security reasons
we want for every installation the independent opinions of at least m experts. They have to
come at different times, in order to avoid that they influence each other.

There is also a logical formulation of MWHHS: Given a monotone Boolean formula in
CNF, satisfy at least m variables in every clause by a cheapest subset of variables. Clearly,
the hyperedges, hypernodes and nodes are the clauses, variables, and occurrences of vari-
ables, respectively.
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Next we introduce the announced network problem. To avoid confusion, we use the term
vertex in graphs and node in hypergraphs. For a vertex v in a graph, N(v) denotes the
neighborhood of v, that is, the set of vertices adjacent to v.

For any fixed integer d, a d-core in a graph G = (V,E) is a subset C ⊆ V such that
every vertex v ∈ C has at least d neighbors in C. We do not strictly distinguish between
C and the subgraph induced by C. Cores are interesting in network design (as robust
subnetworks), but mainly in graph-theoretic approaches to clustering, as a relaxation of
cliques. A recent bioinformatics application of cores is the prediction of protein complexes
in protein interaction networks [2].

The maximal d-core in a graph is uniquely determined and can be computed by a trivial
elimination algorithm: Starting with C = V , vertices in C that lack enough neighbors in C
are removed from C, in any order. Since the degree of a vertex in C can only get smaller, we
never have to reinsert vertices. However, the problem becomes difficult if we are interested in
minimum d-cores that contain a given set of target vertices. (This is similar to the Steiner
Tree problem that seeks a minimal connected set including a set of target vertices). We
define:

Minimum d-Core
Input: a graph G = (V,E) and a set T ∈ V of t target vertices (also simply called “targets”).
Output: a d-core C with C ⊇ T and minimum |C|.

We call a d-core C minimal if C does not contain a smaller nonempty d-core. Likewise,
C ⊇ T is a minimal d-core including T if no d-core C ′ ⊂ C includes T . Carefully distinguish
between minimal and minimum which refers to set inclusion and cardinality, respectively.

Minimum 0-Core is a trivial problem. Minimal 1-cores in a graph are exactly the pairs
of adjacent vertices. In an instance of Minimum 1-Core, only vertices being isolated in T
need another neighbor in C. Thus we may assume without loss of generality that T is an
independent set, therefore Minimum 1-Core is equivalent to the Hitting Set problem for
the family of hyperedges N(v), v ∈ T . Since Hitting Set is in FPT, with the number of
hyperedges as the parameter, it follows that Minimum 1-Core is in FPT with parameter t.
In Section 4 we will show that Minimum 2-Core is still in FPT with parameter t, using the
preceding FPT result for MWHHS with m = 2. Prior to this final contribution, Section 3
provides some results on the hardness of Minimum d-Core. In particular, our FPT result
for d = 2 is best possible in the sense that Minimum 3-Core is not in FPT, under common
complexity-theoretic assumptions.

Here it is worth mentioning another related hardness result: Finding a chordless cycle
through two target vertices is W[1]-complete [9]. Note that a chordless cycle is a 2-core, but
Minimum 2-Core permits arbitrary 2-cores rather than only chordless cycles. (Cores are
in general not even connected.) The Steiner Tree problem is known to be in FPT, with
the number t of target vertices as the parameter. It can be solved in O∗(3t) time [4]. As
recently shown [1], finding minimum d-cores without specified target vertices is W [1]-hard
for any d ≥ 3, with the size of the solution as parameter.

Our study is exploratory research in problem complexity, not derived from an immediate
application. The use of cores and target (or “seed”) vertices in [2] is very different from the
Minimum d-Core problem, however one may use cores in similar inference tasks. Suppose
we have a model of a protein interaction network with only a sparse set of confirmed inter-
actions, and for some set T of proteins we know that they belong to the same functional
group, moreover, in a functional group we expect each protein to interact with at least d
others. Then it is sensible to ask what is a smallest possible vertex set including T , with
this property.
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2 Weighted Hypernode Hitting Sets with Two Hits

In this section we prove that MWHHS for m = 2 is in FPT with parameter k. First we
outline our dynamic programming algorithm.

Hypernodes are listed in any order, and in each step of the algorithm we consider the next
hypernode from list. We maintain a family F of partial solutions, where a partial solution
is the set of hypernodes we have selected so far, along with their total weight. According to
the specification of MWHHS, only the union of the selected hypernodes is relevant, hence we
may sometimes consider a partial solution just as a set of nodes, without risk of confusion. A
family F of partial solutions is called promising if at least one member of F can be extended
to an optimal final solution, by adding a suitable subset of hypernodes from the remainder
of the list. The algorithm starts with F containing only one partial solution, namely the
empty set with weight 0. Trivially, this initial F is promising. As soon as all hypernodes
have been considered, a promising F clearly contains some optimal solution, hence we can
simply pick the best solution from F . Now we work out the details.

Remember that V (1), . . . , V (k) are the (disjoint!) hyperedges. We use the following
scheme of denotations, for arbitrary letters. For any symbol X (an upper-case letter, perhaps
with further symbols attached) that denotes a subset of nodes, we denote by X(i) the set
X∩V (i). If a set X(i) contains only one node, we denote it by x(i) (using the corresponding
lower-case letter). Conversely, by mentioning a node x(i) we implicitly mean that this is the
only node of X(i).

Consider any completed step, i.e., some prefix of the list of hypernodes has been read.
The signature of a partial solution P is the vector s of numbers s(i) = min{|P (i)|, 2}, for
i = 1, . . . , k. Any final solution extending P can be written as P ∪ Q, where Q contains
the nodes added to the partial solution P by later hypernodes. In the following discussion
we will always split solutions in this way. Given a signature s, a 1-index is an index i with
s(i) = 1, similarly we speak of 0-indices and 2-indices. Let seq be any sequence of pairwise
distinct indices, in particular, seq can be the empty sequence. If index j appears somewhere
in seq, we denote by seqj the prefix of seq before j.

Let T be the hypernode next in the list. We update F by adding all sets P ∪{T}, P ∈ F ,
to the old family F (and add the weight of T ). Since F was promising before this extension,
the new F is promising, too. The tricky part is to remove some partial solutions from F ,
in such a way that F remains promising, but the number of sets in F is kept below some
threshold (which may only depend on parameter k) all the time.

Lemma 1 Any promising family F of partial solutions has a promising subfamily with at
most e22kk! different partial solutions. (Here e denotes Euler’s number.) Such a subfamily
can be computed from F in a time polynomial in the size of F .

Proof. First we only consider the partial solutions with any fixed signature s, therefore we
conveniently suppress s in our notation. Let G[] denote the family of members of F with
signature s. Suppose G[] 6= ∅, otherwise nothing needs to be removed from G[]. Let P [] be
some partial solution in G[] with minimum weight. Consider any optimal solution P ∪ Q,
P ∈ G[], with the property that

Q(i) \ P [](i) 6= ∅ for all 1-indices i.

Then P []∪Q is a valid solution, as we can easily see: For 0-indices i we have |Q(i)| ≥ 2,
and for 2-indices i we have |P [](i)| ≥ 2. For 1-indices i, the displayed property guarantees
|P [](i) ∪Q(i)| ≥ 2. Furthermore, since P [] has at most the weight of P , solution P [] ∪Q is
optimal as well. Hence, partial solutions P ∈ G[] other than P [] are only needed to form
possible optimal solutions P ∪ Q where Q(i) ⊆ P [](i) holds for some 1-index i. Note that
the latter condition implies q(i) = p[](i) and p(i) 6= p[](i) for such a 1-index i and such a P .

This gives rise to the following inductive hypothesis, for any sequence seq of pairwise
distinct 1-indices: Partial solutions P ∈ G[seq] other than some minimum-weight partial
solution P [seq] ∈ G[seq] are only needed to form possible optimal solutions P ∪ Q where

4



q(j) = p[seqj ](j) holds for all j in seq, and p(i) 6= p[seq](i) = q(i) holds for some 1-index i
not occuring in seq. (As we saw above, the hypothesis is true if seq is the empty sequence.
Note that some conditions are vacuously true in this base case.)

Accordingly, for every 1-index i not occuring in seq we define G[seq, i] to be the family of
all partial solutions P ∈ G[seq] with p(i) 6= p[seq](i). Let P [seq, i] be some minimum-weight
partial solution in G[seq, i]. Now we prove the induction hypothesis for the sequence seq, i,
similarly as in the base case.

Consider any optimal solution P ∪Q, P ∈ G[seq, i], with the following properties:

• q(j) = p[seqj ](j) for all j in seq,

• q(i) = p[seq](i),

• Q(j) \ P [seq, i](j) 6= ∅ for all 1-indices j not occuring in seq, i.

Then P [seq, i] ∪ Q is a valid solution: For 0-indices j we have |Q(j)| ≥ 2, and for 2-
indices j we have |P [seq, i](j)| ≥ 2. For 1-indices j not occuring in seq, i, the displayed
properties obviously guarantee |P [seq, i](j) ∪Q(j)| ≥ 2. For the particular index i, observe
that p[seq, i](i) 6= p[seq](i) = q(i), hence we have |P [seq, i](i) ∪ Q(i)| ≥ 2 as well. For
1-indices j in seq we also have p[seq, i](j) 6= q(j), this because q(j) = p[seqj ](j) holds,
and P [seq, i] ∈ G[seq, i] ⊂ G[seqj , j] implies p[seq, i](j) 6= p[seqj ](j) by the definition of
G[seqj , j].

Furthermore, since P [seq, i] has at most the weight of P , solution P [seq, i]∪Q is optimal
among all solutions with the displayed properties. Consequently, partial solutions P ∈
G[seq, i] other than P [seq, i] are only needed to form possible optimal solutions P ∪Q where
q(j) = p[seqj ](j) for all j in seq, and q(i) = p[seq](i), but Q(j) ⊆ P [seq, i](j) for some 1-
index j not occuring in seq, i. The latter condition also implies |Q(j)| = 1, q(j) = p[seq, i](j),
and p(j) 6= p[seq, i](j). This concludes the induction step.

Our inductive definition yields families G[seq] and partial solutions P [seq] ∈ G[seq]
(unless G[seq] = ∅, in which case seq is not extended further). As soon as a sequence
seq contains all 1-indices i, it suffices to keep only some optimal P [seq] in G[seq]. Other
P ∈ G[seq] cannot be parts of optimal solutions P ∩Q anymore, since no 1-indices j are left
where Q(j) could undesirably be contained in P [seq](j).

Until now we considered any fixed signature s. By construction, the family of all P [seq]
for all sequences seq and all signatures s is a promising subfamily of F . Clearly, each
G[seq, i] and P [seq, i] can be obtained from G[seq] and P [seq] in polynomial time (with
respect to the size of F ). It remains to bound the size of this promising subfamily. There
exist 2k−t

(
k
t

)
signatures with exactly t 1-indices, and for every such signature we can form∑t

i=0

(
t
i

)
(t− i)! =

∑t
i=0 t!/i! < et! sequences of distinct 1-indices (where t− i is the length).

Finally observe:∑k
t=0 2k−t

(
k
t

)
et! < e2k

∑k
t=0

(
k

k−t

)
t! < e22kk!. 2

From Lemma 1 we obtain:

Theorem 2 MWHHS with multiplicity m = 2 can be solved in O∗(2kk!) time.

Proof. To summarize the algorithm: We successively add the given hypernodes to the prob-
lem instance, in an arbitrary order, and maintain a promising family F of partial solutions,
i.e., unions of selected hypernodes. Initially, F is the family with the empty set as the only
member. For every new hypernode T we insert all sets P ∪ {T}, P ∈ F , in F . Then we
use the procedure in Lemma 1 to extract a promising subfamily of F with O(2kk!) sets.
When all hypernodes are included, an optimal solution in F is also an optimal solution to
the problem. All auxiliary computations are obviously polynomial. 2
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3 Hardness of Minimum Cores Including a Target Set

We turn to minimum d-cores with target vertices. Remember that Minimum 1-Core is
basically the Hitting Set problem and thus NP-complete. The following result is quite
easy to obtain, however it does not directly follow from the case d = 1.

Theorem 3 Minimum d-Core is NP-complete for any constant d.

Proof. Consider any d ≥ 2. Given an instance of Hitting Set where, without loss of
generality, the hyperedges cover the whole set of nodes, we construct a graph as follows.
Every node of the hypergraph is represented by a vertex of the graph. Furthermore, every
hyperedge e is represented by a target vertex, adjacent to those vertices representing the
nodes of e. Finally, we attach to every vertex v, of both types, a (d+1)-clique of new target
vertices, and insert an edge between v and d− 1 vertices of this (d + 1)-clique.

By construction, target vertices in the attached cliques have enough neighbors in any
d-core which includes the target set. Since every target vertex which is not in an attached
clique needs yet another neighbor in a d-core, we obtain a one-to-one correspondence between
d-cores and hitting sets in the hypergraph. Note that every non-target vertex added to a
d-core is in fact adjacent to d−1 vertices in its attached clique, and to another target vertex
representing a hyperedge. 2

Due to NP-completeness, it is natural to study the parameterized complexity of Minimum
d-Core. As mentioned earlier, case d = 1 is fixed-parameter tractable in the number t of
target vertices, and for d = 2 we will show this in Section 4. For d ≥ 3 we cannot get an
analogous FPT result because of

Theorem 4 The complexity of Minimum 3-Core cannot be bounded by any function of t
and a polynomial factor, unless P = NP .

Proof. We reduce Hitting Set in polynomial time to Minimum 3-Core with t = 1. Since
Hitting Set is NP-complete, already this special case cannot be solved in polynomial time,
unless P = NP .

For any given hypergraph H = (V, F ), i.e., an instance of Hitting Set, we construct
the following graph with one target vertex. We make the target the root of a tree T . The
root has three children, and every inner vertex of T gets exactly two children. We generate
as many leaves as we have hyperedges in F , plus three special leaves. Each of the former
leaves represents a hyperedge. We call them h-leaves. We add further vertices, each of
which represents a node from V . We call them n-vertices. The h-leaf of every hyperedge
f ∈ F is connected by edges to exactly the n-vertices of the nodes in f . Finally, we connect
all h-leaves also to one special leaf, and we connect every n-vertex to the two other special
leaves.

Since inner vertices of T are not adjacent to vertices outside T , any 3-core C that
includes the target vertex must obviously include the whole tree T , in particular all its
leaves. Furthermore, every leaf needs two further neighbors in C. For the h-leaves, one of
these required neighbors in C is the special leaf, and another neighbor in C must be an
n-vertex. On the other hand, every n-vertex selected for C has enough neighbors in C: two
special leaves, and at least one h-leaf. The special leaves get enough neighbors in C by
construction. This way, minimum hitting sets in H correspond to minimum 3-cores in the
graph. 2
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4 Minimum Two-Cores Including a Target Set

In this section we develop an FPT algorithm for Minimum 2-Core, with the number t
of target vertices as the parameter. We use some standard graph-theoretic notation: A
subgraph spanned by an edge set consists of this edge set and all involved vertices (ignoring
any additional edges between them!). The length of a path is the number of edges in this
path.

Consider a graph G = (V,E) with target set T ⊂ V . Clearly, we may assume that
all vertices in G have degree at least 2. We reduce our graph as follows. Every vertex v
gets valency max{2 − |N(v) ∩ T |, 0}, that is, the valency of v is the number of non-target
neighbors that v demands in a 2-core C if we put v in C. Then, target vertices of valency 0
are removed. Edges between target vertices are removed as well. (Note that these removals
do not affect the valencies of the remaining vertices.) For convenience we still use G and
T to denote the reduced graph (with vertices labeled by their valencies) and the remaining
target set, respectively.

For the moment we fix, simultaneously for every target vertex v ∈ T with valency i, at
least i neighbors of v that shall belong to C, and call these neighbors ports. Clearly, each
port has valency 0 (if it is adjacent to several targets) or 1. Later we will discuss how we
actually choose these ports, and this is the point where we will need the MWHHS algorithm
for m = 2.

A path in G is said to be regular if all its inner vertices are non-targets and have valency
2. In particular, trivial paths of length 0 or 1 are regular. An u, v-path is a path from vertex
u to vertex v. A subset F of edges is called saturating if, for every vertex v in the subgraph
spanned by F , the number of edges from F incident to v is at least the valency of v. Since
ports in C are fixed, we get straight from the definitions:

Lemma 5 C ⊃ T is a 2-core if and only if some saturating edge set spans exactly the
vertices in C \ T of valency 1 and 2. 2

Hence, in the following we can work with saturating edge sets rather than 2-cores, and
take advantage of their special structure:

Lemma 6 Let F be a saturating edge set that spans at least the set of ports of valency 1
and is minimal with this property. Then the subgraph spanned by F consists of connected
components of the following types:
Star: a vertex called the center is connected to distinct ports by internally vertex-disjoint
regular paths (in particular, a star might consist of a single path to only one port),
Loop: a regular path (possibly of length 0) with a port v at one end, and a cycle of vertices
of valency 2 attached to the other end. We call this structure a loop for vertex v.

Proof. In the following, all vertex degrees are understood with respect to F , and removing a
vertex also means to remove all incident edges from F . Consider any connected component.

Let u0 be a vertex of degree larger than 2. First we claim for every path u0, . . . , uk, with
edges in F , that all ui, 0 < i < k, have valency 2, and uk has either valency 2 as well, or uk

is a port, or uk = u0 (the path is a cycle). We proceed by induction on k. For k = 0, the
claim is vacuously true with uk = u0. Suppose that the claim holds for u0, . . . , uk−1. Note
that the degree of u0 is larger than its valency. If also the the degree of uk is larger than its
valency, but uk 6= u0, then we can remove u1, . . . , uk−1 (or remove edge u0u1 from F in the
case k = 1), contradicting the minimality of F . Hence uk cannot have valency 0. If uk has
valency and degree 1, then uk must be a port, otherwise we can remove u1, . . . , uk from the
component, which contradicts again the minimality of F . This proves the claim.

Due to the claim, if every path starting in u0 ends in a port, the component is a star.
The other case is that a cycle containing u0 is in the component. Then, at most one further
path (to some port) can start in u0, otherwise the start edges of two of these paths would
already provide two neighbors for u0, and the cycle could be removed from F . Similarly,
the component cannot contain more than one cycle: vertices of all further cycles (except u0
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itself) can be removed, contradicting the minimality of F . Hence the component is a loop
in this case.

If no vertex u0 with degree larger than 2 exists, the component is just a path or cycle.
No two distinct vertices u, v of degree 2 but with smaller valency can exist, since otherwise
we could remove the edge or subpath between u and v, leaving both u and v with at least
one neighbor.

Thus, a cycle component has exactly one port and no other vertices of valency smaller
than 2. That means, such a component is a loop, consisting of a cycle and a trivial path of
length 0.

A path component cannot end with a subpath of vertices with valency 2, since we could
remove a maximal such subpath. We conclude that a path component has two end-vertices
of valency smaller than 2. Moreover, as we saw above, at most one inner vertex has valency
smaller than 2. If such an inner vertex exists, say w, then both end-vertices must be ports,
otherwise we could again remove a subpath on one side of w. Thus, we get a star consisting
of two paths. If all inner vertices have valency 2, still at least one end-vertex is a port, and
we get a star with one or two paths and an appropriately chosen center. (Note that, by the
definition of star, in a regular path connecting two ports we can declare an arbitrary vertex
the center.)

Now we have treated all cases. 2

Next step is to observe that, for every port, we can efficiently compute several items
specified in Lemma 6:

Lemma 7 For every port u we can compute in polynomial time a shortest regular path from
u to every vertex v, and a minimum-size loop for u (if one exists).

Proof. Computing shortest paths (here restricted to paths with inner vertices of valency 2)
is a standard task, thus we only have to prove the statement for loops. For every v, where
either v = u or v has valency 2, we compute a shortest regular u, v-path, and also a shortest
cycle through v where all vertices (except v itself if v = u) have valency 2. Let us call it
a regular cycle through v. For computing a shortest regular cycle through v we may check
every neighbor w of v with valency 2 and determine a shortest regular w, v-path avoiding
the edge vw.

We claim that a minimum-size loop for u consists of some shortest regular u, v-path
and a shortest regular cycle through v, for some vertex v. To prove the claim, consider a
minimum-size loop for u, and let v be the vertex where path and cycle of this loop intersect.
If there exist several minimum-size loops for u, we choose one where the u, v-path is as short
as possible. Assume that some shortest regular u, v-path and some shortest regular cycle
through v intersect in further vertices other than v. Then, obviously, there exists either a
smaller loop for u, or a loop with the same vertices and edges, where path and cycle intersect
in exactly one vertex v′ 6= v at a smaller distance to u. Both cases contradict our choice of
the loop. This establishes the claim for the specified vertex v.

Hence, in order to compute a minimum-size loop for u we only need to do the following:
For all vertices v, combine some shortest regular u, v-path and some shortest regular cycle
through v, and finally pick a combination with the minimum number of vertices. 2

Now we construct in polynomial time an instance of MWHHS from the given graph and
target set, based on Lemma 7.

Disjoint hyperedges from target vertices: A hyperedge is assigned to each target vertex u,
and the nodes in the hyperedge of u are the vertices in N(u). However, we “disjunctify” the
neighborhoods of target vertices as follows. For any vertex v of G that is adjacent to several
targets u, we put one copy of v in the hyperedge of every such u.

Moreover, for every target u of valency 1, we represent each vertex v ∈ N(u) by two
nodes (two copies of v) in the hyperedge of u.
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Hypernodes from single vertices: For every vertex v of G being adjacent to more than one
target, all nodes built from v (see above) form a hypernode of weight 1.

Hypernodes from stars: We consider every vertex c of G as the center of several possible
stars. By the regular distance between two vertices of G we mean the length of a shortest
regular path connecting them.

For every fixed vertex c, we do the following. In the neighborhood of every target
vertex of valency 2, we determine two vertices with the smallest regular distances to c (ties
are broken arbitrarily). Similarly, in the neighborhood of every target of valency 1, we
determine one vertex with the smallest regular distance to c. These distinguished vertices
will become ports in several stars with center c. We select some shortest regular path from
c to each of the (at most 2t) ports. Then we consider the (less than 4t) unions of subsets of
these selected regular paths starting in c. Among these unions we keep only the stars, i.e.,
unions of regular paths that are pairwise internally vertex-disjoint. Finally, for any such star
we create a hypernode, consisting of the nodes corresponding to the ports. (In particular,
for any port adjacent to a target u of valency 1, we include both corresponding nodes in
the hypernode, so that it hits the hyperedge of u twice.) The weight of a hypernode is the
number of vertices in the corresponding star in G.

Hypernodes from loops: For every vertex v of G such that a loop for v exists, we create
a hypernode corresponding to some minimum-size loop for v. It consists of all nodes cor-
responding to v (see above), and its weight is the number of vertices in the minimum-size
loop.

This finishes the reduction. We fix m = 2. The relationship between MWHHS and
Minimum 2-Core is established by:

Lemma 8 From any optimal solution to the MWHHS instance as constructed above, we
can compute, in polynomial time, a minimum 2-core including T in graph G.

Proof. By construction, every hypernode corresponds to: some star in G (with ports
adjacent to targets), or some loop for one port (adjacent to some target in G), or a single
vertex adjacent to more than one target. For convenience we refer to these single vertices
as ports of valency 0. Recall that a port has valency 1 (0) if the port is neighbor of exactly
one (at least two) target(s).

Let S be an optimal solution to our instance of MWHHS with m = 2. Then, the vertices
in the corresponding stars, loops, and ports of valency 0 extend the target set T to a 2-
core. This follows from the shape of stars and loops, and from the fact that S hits every
hyperedge at least twice. By definition of hypernode weights, the weight of S is at least
the total number of vertices in the stars and loops, plus the number of ports of valency 0
(in other words, the number of non-target vertices in the 2-core). We claim that the 2-core
defined by S has already minimum cardinality.

Consider a 2-core C ⊇ T with minimum cardinality, and assume for contradiction that
C has fewer vertices than the 2-core we obtained from S. In the following we refer to the
vertices of C being adjacent to any target vertices as ports.

Since C is a 2-core, every target is adjacent to at least the required number of ports and,
by Lemma 5, some saturating edge set F spans the vertices of C \T of valency greater than
0. In particular, F spans at least the ports of valency 1. We may assume that F is minimal
with this property, since otherwise a proper subset of F is saturating and spans the same
ports of valency 1, and together with the ports of valency 0 this gives a 2-core no larger than
C. Due to minimality, F has the structure reported in Lemma 6, that is, ports of valency 1
are connected by stars and loops which are pairwise disjoint.

Consider any loop component of F , say, a loop for port v. We may assume that this loop
has minimum size among all possible loops for v, since otherwise we may replace it with a
smaller loop for v and get a smaller 2-core, a contradiction. Hence, there exists a hypernode
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for any loop component of F . Similarly, consider any star component of F , say with center
c. Let v be any port in this star, and let u be the target adjacent to v. Note that v has
valency 1 and is adjacent to no other target. If u had valency 2, and v is not one of the
two closest ports v1, v2 in N(u) selected in the reduction (i.e., those with smallest regular
distances to c), we replace the path from c to v in the star with a shortest regular path from
c to v1 or v2, provided that one of them is not yet in another star or loop. If both v1 and
v2 are already occupied, u has already these two neighbors in C, and we can just remove
the path from c to v. Thus, we either obtain a smaller 2-core (contradiction), or we need
only those ports v1, v2 selected in the reduction. The reasoning is similar for a target u of
valency 1: We only need to consider some port with minimum regular distance to c, and the
resulting node was doubled in the reduction. In summary, after these replacements there
exists a hypernode also for any star component in F .

Since, by assumption, C had already minimum size, F is still a minimal saturating edge
set that spans the (possibly changed) ports of valency 1, thus it complies with the structure
described in Lemma 6. But now the connected components of F and the ports of valency 0
in C correspond to hypernodes and form another solution S′ to our MWHHS instance. Since
the components are pairwise vertex-disjoint, the weight of S′ equals the number of vertices
spanned by F plus the number of ports of valency 0. This contradicts the minimality of the
weight of S. 2

We are ready to state our final result:

Theorem 9 Minimum 2-Core with t targets can be solved in O∗(2tt!) time.

Proof. This follows from Theorem 2 and Lemma 8, since in the reduction to MWHHS we
needed only O∗(4t) time to construct the weighted hypernodes. 2

5 Conclusions and Open Problems

We defined the Multiple Weighted Hypernode Hitting Set (MWHHS) problem
where a minimum weight subset of “hypernodes” has to hit every hyperedge in at least
m nodes, for some fixed m. Its complexity may find interest in logical inference and op-
erations research (job assignment and scheduling). Our first result was that MWHHS for
m ≤ 2 and with the number k of hyperedges is in FPT, using some intricate dynamic pro-
gramming. Our time bound is O∗(2kk!). It would be nice to simplify the algorithm and
proof. It might also be possible to improve the k! factor by using similarities between partial
solutions with different index sequences (see the proof of Lemma 1). An more ambitious
question is whether an exponential bound with a constant base can be accomplished. We
also conjecture that the scheme can be extended to any constant m (using even more com-
plex indices), which may lead to an FPT algorithm with another parameter m. However,
this is not easy to see.

Then we used MWHHS with m = 2 as an auxiliary problem to solve another problem in
the analysis of networks: finding a minimum 2-core that includes a prescribed set of t target
vertices. It is related to known problems like Steiner tree and finding cycles through given
vertices. We developed an FPT algorithm with time bound O∗(2tt!), using star-shaped
subgraphs of potential solutions as hypernodes in MWHHS. The same open question as
for MWHHS, regarding improved bounds and simplifications can be formulated also for
Minimum 2-Core. Unfortunately, the analogous problem for 3-cores etc. is even unlikely
to be in FPT, but there may be other natural parameterizations that make the problem
tractable. We also propose a systematic effort to define degree-based notions of subgraphs
with density requirements, and figure out the complexity of finding such subgraphs. This
would enrich the arsenal of clustering paradigms in graphs. Various types of dense subgraphs
are needed, e.g., to predict meaningful subgraphs in biological interaction networks, because
apparently no type of cluster fits them all.
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