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Abstract

We divide a string into k segments, each with only one sort of
symbols, so as to minimize the total number of exceptions. Motiva-
tions come from machine learning and data mining. For binary strings
we develop a linear-time algorithm for any k. Key to efficiency is a
special-purpose data structure, called W-tree, which reflects relations
between repetition lengths of symbols. For non-binary strings we give
a nontrivial dynamic programming algorithm. Our problem is equiva-
lent to finding weighted independent sets with certain size constraints,
either in paths (binary case) or special interval graphs (general case).
We also show that this problem is FPT in bounded-degree graphs.

Keywords: segmentation, dynamic programming, tree computations,
weighted independent set, interval graphs, parameterized complexity

1 Introduction

String segmentation problems appear in language processing, classification,
and machine learning. Application examples include the automatic segmen-
tation of text in Asian languages into word, and segmentation of texts into
parts dealing with one main subject. The putative quality of segmentations
is measured by some objective function based on plausibility of segments. A
main type of quality measure is similarity within the segments, see, e.g., [17].

Segmentation of more abstract (e.g., numerical) linearly ordered data is
a related topic. Efficient algorithms for cutting time series into somehow
homogeneous segments are given in [20], along with interesting motivations

∗This is an improved version of an article presented at the 33rd International Workshop
on Graph-Theoretic Concepts in Computer Science WG 2007, Dornburg near Jena, Lecture
Notes in Computer Science (Springer) 4769, pp. 214–225. The present manuscript slightly
deviates from the journal version, due to small corrections.
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for their use. A similar problem with other demands on the segments is
studied in [19]. Segmentations of labeled point sets in higher dimensions
by linear discriminators according to various homogeneity criteria lead to
nontrivial computational problems which are relevant in neural network and
decision tree learning. We refer to the series of papers [5, 6, 7, 8].

Dynamic programming is the obvious design technique for string segmen-
tation (see [23, Chapter 6, Exercise 5]), but the precise complexity depends
on the objective. In the present work we consider a specific objective. Let
S be a string of n symbols from an alphabet of size b. The segment S[i..j]
is the substring of S from position i to position j. A segmentation splits S
into segments and assigns a designated symbol to each. An exception in a
segment is any occurence of a symbol distinct from the designated one. Our
objective is:

Segmentation with Minimized Exceptions (SME)
Given a string S of n symbols from an alphabet of size b, and some k < n,
compute a segmentation of S with at most k segments that minimizes the
total number of exceptions. By SME-Binary we denote SME over alphabet
{0, 1}.

A general motivation of SME-Binary comes from machine learning. Sup-
pose that some binary feature f of objects depends randomly on a real-valued
attribute x, in such a way that, for value x, we would observe f = 1 with
probability p(x). Function p is unknown but supposed to be “smooth”, that
is, p oscillates only a few times on the x-axis. Once we have sampled many
values of f along the x-axis, these data, sorted by x, naturally form a string
S of symbols 0 and 1. In order to predict f of yet unseen objects with other
values x, we would split S into homogeneous segments, as good as possible,
and always predict f(x) to be the majority symbol in the segment contain-
ing the probed x. Then, the rate of prediction errors is roughly the total
number of exceptions divided by |S|. Optimal segmentation can also serve
as a subroutine in more complex machine learning tasks where real-valued
attributes must be discretized, as in decision tree learning. A similar discus-
sion applies to SME over larger alphabets. As for the choice of k, there is a
trade-off between homogeneity of segments and reliability: A larger k results
in fewer exceptions in the string S of training data, but on the other hand,
predictions in smaller segments are less reliable due to overfitting. Thus we
study SME with an arbitrary, user-defined parameter k.

String segmentation with entropy as the proposed homogeneity measure is
studied in [15, 16] with similar motivations. Entropy minimization requires
different algorithmic techniques. The total number of exceptions has also
been introduced as the training set error, in a more general machine learn-
ing context [28, 1], and also considered for discretization of one-dimensional
binary data sets [24]. A body of work on discretization followed, including
structural properties (so-called well-behavedness), comparisons of the dif-
ferent homogeneity measures from a statistical point of view, and several
practical algorithms and heuristics. The whole literature cannot be surveyed

2



here in detail, we refer to, e.g., [13, 14, 25]. Dynamic programming was redis-
covered several times, but the question of fastest possible algorithms for SME
has not been studied before, to our best knowledge. (Some algorithms were
attributed “linear-time”, but actually this refered to dynamic programming
approaches which run in linear time only for fixed size of the parameters).
In the present paper we accomplish time bounds that save some factors com-
pared to the standard dynamic programming algorithms. The main finding is
an algorithm for SME-Binary running in linear time regardless of the desired
number of segments. Speed can make a difference in applications with very
long strings, such as binarized signals with high sample rates, DNA strings,
etc.

We came across with a concrete application of SME-Binary in biomedical
engineering. The pattern of burst and suppression intervals in electroen-
cephalograms (EEG) gives important information about the brain function.
In an attempt to automatize this segmentation (in order to enable monitoring
of patients), criteria for burst and suppression intervals have been learned by
generic machine learning techniques, based on discretized spectral feartures
of EEG signals and judgements made by EEG specialists [27]. Simple thresh-
olding of spectral features would not yield the excpected segmentations, but
experimental data suggest that SME-Binary could be an excellent approach
to recognize bursts in a simpler and more transparent way: Bursts (sup-
pression intervals) seem to be segments where high (low) amplitudes abound
[26].

Various related topics are continuously interesting as well. The problem
considered in [29] is to compute a single segmentation that is close to a set
of already given segmentations. Dynamic programming is used to minimze
the disagreement distance. Segmentation of sequences of numbers into his-
tograms that minimize standard error functions is considered in [18]. Their
algorithms find approximately optimal solutions on small space and can be
used also for data streams. A practical heuristic for piecewise linear approx-
imation of real-valued functions with desirable properties (from the data
mining point of view) is proposed in [21]. Fast approximation algorithms for
partitioning a sequence of points into segments represented by a single point,
being close to all points in the segment, are given in [31].

Overview of the paper and our contributions: To keep the presentation
self-contained we included proofs of the basic facts and simpler algorithms
which later form the base of our actual contributions, but we presume that
the reader knows standard graph-theoretic notions.

In Section 2 we observe that we never need to split the r runs of S,
that is, the r maximal substrings consisting of only one sort of symbols.
Runs and their lengths are trivially computed in an O(n) time preprocessing,
thus we state all further time bounds as functions of b, k, r, where we count
arithmetic operations with integers as O(1) time operations. The time used
for the actual segmentation is significant especially if S comes from noisy
data with many short runs, so that r remains large. SME is easy to solve by
dynamic programming in O(br ·min{k, r − k}) time, but we develop faster,
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non-obvious algorithms. In Section 3 we show that SME-Binary is equivalent
to computing a minimum weight independent set of exactly m vertices in a
path of (essentially) r vertices, where m ≈ (r−k)/2. Some greedy algorithm
with a carefully specified greedy rule solves SME-Binary in O(r + m log m)
time. In the practically relevant case k � r this would become O(r log r).
However, in Section 4 we use this greedy algorithm to show correctness of yet
another algorithm that works in O(r) time for any k. This result is achieved
by a special data structure that we call the W-tree.

Very recently, a linear-time algorithm has been reported in [2, 4] for the
k-cover problem, which is to determine k disjoint segments with maximum
total score, in a sequence of n positive and negative numbers called scores.
The problem is motivated from bioinformatics [10], and an earlier version of
the algorithm using union-find was slightly slower [3]. However, it turns out
that some reformulations reduce that problem in linear time to an instance of
SME-Binary with n runs and 2k+1 segments, so that a linear-time algorithm
for SME-Binary also implies the result for k-covers. Moreover, from our W-
trees we can read off optimal solutions for any desired number of segments
in a simple and intuitive way.

Computing minimum weight independent sets of exactly m vertices in
general graphs is interesting for its own. In Section 5 we show that this
problem is fixed-parameter tractable (FPT), with m and the maximum de-
gree d as combined parameters.

Back to SME, our method for SME-Binary breaks down if b > 2, and
dynamic programming is still the best approach that we currently have in
the non-binary case. Still we can improve upon the simple time bound. In
Section 6 we reduce SME to the computation of minimum weight independent
sets with length constraints, in special interval graphs. This intermediate
problem which might also be of independent interest, allows us to derive an
O(r(min{k, r − k}) time algorithm for SME.

Section 7 discusses some extensions of SME to real number sequences
and streams. Here we only propose some ways to use W-trees and dynamic
programming, but we do not prove complexity results. Section 8 concludes
the paper with some other open problems.

2 Runs and Exceptions

We collect a few simple properties of an optimal solution to SME. We call
a segmentation alternating if the designated symbols of any two neighbored
segments differ. A run in string S is a maximal contiguous substring with
only one sort of symbol. We call a segmentation regular if every segment is a
concatenation of runs. Throughout the paper, r is the number of runs in S.

Example: S = 001010001110011 has r = 8 runs. 00101000|111|0011 is some
regular segmentation of S in 3 segments. With 0, 1, 0 as their designated
symbols, we have an alternating segmentation with 4 exceptions.
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Lemma 1 There exists an optimal segmentation which is alternating and
regular, and where any symbol at an end of a segment is different from the
designated symbol of the adjacent segment.

Proof. In a non-alternating segmentation we could merge two neigh-
bored segments having the same designated symbol, without creating new
exceptions.

Next consider, in an alternating segmentation, any two neighbored seg-
ments S[i..j] and S[j + 1..m]., without loss of generality with designated
symbol 0 and 1, respectively. Assume, e.g., that S[j] = 1, the designated
symbol of the segment to the right. Then we could move the border and
replace the two segments with S[i..j − 1] and S[j..m], thereby reducing the
number of exceptions. Hence we can always suppose S[j] 6= 1, and similarly
S[j + 1] 6= 0, in some optimal solution. We remark that, if i = j, the left
segment becomes empty, in which case the number of segments decreases as
well, and perhaps further segments with identical designated symbols can be
merged.

Finally, if a segmentation with the above properties cuts through some
run, then the symbol in the run is different from the designated symbols of
two neighbored segments. Hence every position in the run is an exception
in both segments, and we can move borders without changing the number of
exceptions, until the run is entirely in one segment, or a segment disappears.
2

Based on Lemma 1, straightforward dynamic programming on the se-
quence of runs gives:

Theorem 2 SME can be solved in O(br ·min{k, r − k}) time.

Proof. First consider the case k < r−k. Let E(i, j, s), with i ≤ k, j ≤ r,
and symbol s, indicate the optimal number of exceptions in an alternating,
regular segmentation of the first j runs into exactly i segments, with s as
the designated symbol of the jth run. (By Lemma 1 we need to consider
such segmentations only.) For i > j let E(i, j, s) =∞. It is easy to initialize
E(i, 1, s) for any i, s. For the O(bkr) bound, we show for each j > 1 how to
compute all E(i, j, s) from all E(i, j − 1, s) in O(bk) time. Let the jth run
consist of lj copies of symbol sj. The following recursion is obvious:

E(i, j, s) = min{E(i, j − 1, s), min
t6=s
{E(i− 1, j − 1, t)}}+ qj,slj,

where qj,s = 0 if s = sj, and 1 otherwise. For any fixed i we apply it
simultaneously to all symbols s as follows. Find mint{E(i − 1, j − 1, t)} in
O(b) time. The minimum is attained by some t0, ties are broken arbitrarily.
For each s 6= t0 we have mint6=s{E(i − 1, j − 1, t)} = E(i − 1, j − 1, t0), and
mint6=t0{E(i− 1, j− 1, t)} is also found in O(b) time. Hence we can compute
the second term in the recursion in O(b) time for all s together, for any fixed
i, and then we can evaluate the recursion in O(bk) time for all i, s.
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Case k ≥ r − k is similar, but now we let i count the runs that continue
the preceding interval, and adjust the recursive formula for E accordingly. 2

Later we will get rid of factor b, after a deeper problem analysis. In the end
of this section we rule out another tempting dynamic programming approach
to SME that easily comes to mind. Let us scan the given string S from left
to right and fix some penalty p > 0 for changing the designated symbol, i.e.,
starting a new segment. Define the score of a segmentation as the number of
exceptions plus the sum of penalties. A segmentation with minimum score is
computable in O(br) time: For each symbol s in the alphabet and each prefix
of S, maintain a segmentation of this prefix, with s as the last designated
symbol, and minimum score. (The O(b) calculations needed for extending
the prefix by a new run are obvious.) The catch is that we must find a penalty
p which gives the desired number k of segments. It seems that binary search
is inevitable, and the number of search steps needed is not clear. The simple
penalty approach looks promising at first glance, but it does not give us an
o(brk) time algorithm, although typically we may succeed with fewer than k
search steps.

3 Greedy Algorithm for Binary Strings

By Lemma 1 it suffices to consider regular segmentations which do not cut
any run in S. We may suppose that S is already given as the sequence of
lengths of its r runs, computed in a trivial O(n) time preprocessing.

In a regular segmentation, we call a run x an exception run if the symbol
in x differs from the designated symbol of the segment x belongs to. By
Lemma 1, every instance (S, k) of SME-Binary has an optimal segmentation
which is alternating and regular, and where no segment begins or ends with
an exception run. (However, the first and last run of S may be exception
runs.) Thus, no two exception runs are adjacent. Conversely, any set X of
pairwise non-adjacent runs describes a segmentation with X as the set of
exception runs. Thus we can henceforth characterize a segmentation simply
by the set X of exception runs.

We refer to the first and last run of S as outer runs, while all others are
inner runs. Addition of a new exception run x to X (not adjacent to any
previous member of X) obviously reduces the number of segments by 2 if x
is an inner run. The number of segments is reduced by 1 if x is an outer run.
In order to get rid of this case distinction, we decide already in the beginning
which of the two outer runs be in X. For any instance (S, k) we have only
two options for this initial choice: If r − k is even, either no or both outer
runs must be in X. If r−k is odd, exactly one outer run must be in X, either
the first or the last one. After this bifurcation it remains to decide which
inner runs be in X. We proceed as follows in each case: We remove the outer
runs put in X from the instance. Thus, the neighbors of these removed outer
runs become new outer runs, moreover they cannot be added to X anymore.
Hence, this preprocessing on (S, k) yields two problem instances where every
exception run is an inner run (and thus decreases the number of segments by
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2). This way we have reduced our instance of SME-Binary to two instances
of the following problem:
Given a binary string and a number m, find m pairwise non-adjacent inner
runs of minimum total length.
The solution to (S, k) is finally obtained from optimal solutions to these two
instances: Add the lengths of runs that were initially put in X, and take the
minimum sum. As for m, we obviously have:
m = (r − k)/2 if r − k is even, and the outer runs are not in X,
m = (r − k − 2)/2 if r − k is even, and the outer runs are in X,
m = (r − k − 1)/2 if r − k is odd.

The latter problem can be further rephrased as a “graph” problem, where
the graph is merely a path: We represent every run as a vertex, weighted
by the length of the run, and join any two neighbored runs by an edge. We
call the first and last vertex of this path outer vertices, the others are inner
vertices. The weight of vertex v, that is, the length of the run it represents,
is denoted l(v). By l(X) we denote the total weight of a set X of vertices.
By the length of a path we mean the number of vertices. (This should not be
confused with lengths in the string.) What we have shown above is, in this
notation:

Lemma 3 As instance of SME-Binary is linear-time reducible to two in-
stances of the following problem: Given a path P with r weighted vertices
and some number m < r/2, compute a minimum weight independent set X
with exactly m vertices, avoiding the two outer vertices of P . 2

Example: The exception runs (corresponding to elements of X) in the fol-
lowing segmentation (with designated symbols 0, 1, 0) are printed in bold:
00101000|111|0011. The outer runs are the first 00 and the last 11.

In order to split S = 001010001110011 into k = 2, 4, . . . segments, we
either forbid the outer runs to be in X and consider a path with vertex
weights (∞, 1, 1, 1, 3, 3, 2,∞), or we put both outer runs in X and shorten
the path to one with vertex weights (∞, 1, 1, 3, 3,∞), where ∞ stands for a
huge constant (see below).

In the following we use the “graph-theoretic” formulation of the problem
and still call it SME-Binary, and we denote the number of vertices by r, this
will not cause confusion. Since the weights of the outer vertices are irrelevant,
we may set them to a huge constant. These two dummy vertices will simplify
the presentation of the algorithms. We also remark that the vertex weights
need not be integer anymore.

Greedy Algorithm for SME-Binary:
(1) Do the following m times. Merge an inner vertex v with minimum l(v)
and its neigbors u, w into a new vertex z (adjacent to the other neighbors of
u, w), with l(z) := l(u) + l(w)− l(v).
(2) After termination of (1) we have obtained a path of vertices labeled
with odd-length subpaths of the original path, in the obvious sense. Output
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as members of X all original vertices which have even positions in these
subpaths.

Clearly, the segments of our segmentation correspond to the vertices of
the path produced in (1), and these segments have always odd length. In
the following we prove correctness of the greedy algorithm. Trivially, X is an
independent set. Induction on m easily shows |X| = m. It remains to prove
that l(X) is minimized among all independent sets of size m.

Lemma 4 Let v be some inner vertex with minimum l(v). There exists an
optimal solution X that contains either v or both its neighbors u, w.

Proof. Let X be a solution with v /∈ X. If also u, w /∈ X, then replace
any vertex in X with v and obtain another solution that is no worse. If
u ∈ X but w /∈ X, replace u with v (the other case is symmetric). 2

Theorem 5 The greedy algorithm solves SME-Binary correctly and can be
implemented to work in O(r + (r − k) log(r − k)) time.

Proof. We show that the first step of (1) transforms a given instance
(P, m) into an equivalent instance (Q, m− 1), where Q is the path obtained
from P by merging u, v, w into z. Consider any solution X to (P, m) that
enjoys the property of Lemma 4. Let Y be the solution to (Q, m− 1) which
contains all vertices of X other than u, v, w, and where z ∈ Y iff u, w ∈ X.
Since X consists of inner vertices only, so does Y . We also have |Y | = m− 1
and l(Y ) = l(X) − l(v). Conversely, for any solution Y to (Q, m − 1), let
X be the solution to (P, m) which contains all vertices of Y other than z,
and where u, w ∈ X if z ∈ Y , and v ∈ X if z /∈ Y . Note that X has the
property as in Lemma 4, |X| = m, l(X) = l(Y ) + l(v), and X consists of
inner vertices only (since Y does). This correspondence makes the problem
instances (P, m) and (Q, m − 1) equivalent: By our definition of l(z), the
objective function is shifted in both directions by the same amount l(v). In
particular, the transformations turn an optimal X into an optimal Y and
vice versa.

By induction, loop (1) eventually yields an equivalent trivial instance
(R, 0) with ∅ as the only solution. In order to get back an optimal solution
to (P, m) we may trace back (1), expanding in each step the vertices merged
by (1) and applying the above transformation. We show that (2) gives the
same result in a simpler way. This is done by induction on the (odd) length
of any subpath of P merged into one vertex of R: A subpath of one vertex
has no vertices with even positions, and after any expansion of a vertex into
three, the solution still contains exactly the vertices with even positions in
their respective subpaths. This proves the correctness.

Phase (2) is done in O(r) time. Phase (1) may be implemented with
a doubly linked list for the vertices and a priority queue that returns the
minimum and supports deletions and insertions in logarithmic time (in the
maximum size of the queue) per operation. Note that the priority queue is
needed only for the m ≈ (r − k)/2 smallest weights. 2
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Example: A path with vertex weights (∞, 4, 1, 2, 1, 1, 3, 3, 2,∞) is succes-
sively transformed as follows, if we (arbitrarily) prioritize the rightmost small-
est weight in each step: (∞, 4, 1, 2, 3, 3, 2,∞), (∞, 5, 3, 3, 2,∞), (∞, 5, 3,∞),
(∞,∞).

The greedy algorithm solves SME-Binary faster than dynamic program-
ming (Theorem 2) if k = ω(log r). Even better, in the next section we use it
as a base to develop an O(r) time algorithm.

Correctness of the greedy algorithm has some interesting structural con-
sequences: Recall that, once the status of the outer runs (being an exception
run or not) is decided, the parity of k is decided as well, and the optimal
solutions are “nested” in the sense that some optimal solution with k + 2
segments is obtained from some for k segments by inserting new borders,
preserving the existing ones. This is in general not true for numbers k with
different parities:

Example: Consider the string S = 00110001. The only optimal segmenta-
tion with k = 2 is 0011000|1, and the only optimal segmentation with k = 3
is 00|11|0001 which has completely different borders.

Moreover, for the trade-off between the number of segments and excep-
tions we observe:

Corollary 6 For any fixed status of the outer runs, let x(k) be the optimal
number of exceptions in a segmentation with k segments. (Note that argument
k is restricted to either the even or the odd numbers.) Then, function x(k)
is monotone decreasing and convex.

Proof. Both properties follow from correctness of the greedy algorithm
(Theorem 5: Each step reduces k by 2, increases the number of exceptions
by the weight of the middle vertex of the merged triple, and these weights
increase. 2

This sheds new light on the penalty algorithm for SME-Binary. First
of all, we can force the penalty algorithm to output an even/odd number
of segments, simply by appending an empty segment if the wrong parity is
obtained. That is, we add another p to the score in that case. Recall that
the score of a segmentation with k segments and x exceptions is x + pk.
Convexity from Corollary 6 and simple geometric reasoning implies that, for
any k of the considered parity (even or odd) there exists an integer p so that
an optimal segmentation with k segments has also the optimal score with
respect to penalty p. Thus, binary search can be restricted to integer p, but
still this gives no hint which p yields the desired k. Actually, our optimal
algorithm is very different: Next we develop an algorithm that achieves linear
time with help of a special data structure.
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4 Tree-Based Linear-Time Algorithm for Bi-

nary Strings

Remember that, after some preprocessing, an instance of SME-Binary is
represented as a path of weighted vertices (v1, . . . , vr). We refer to it as the
given string. Since l(v1), l(vr) do not matter, we may set them to a huge
number, e.g., larger than the sum of all other weights. Then l(v1), l(vr)
remain always maximal, even after any sequence of merge operations. In the
following we build our supporting data structure.

W-trees: We multiply the weights of vertices in their given order alternat-
ingly by −1 and +1, the start sign is arbitrary. Distinguish carefully between
these signed weights and their absolute values, simply called weights further
on. We will sometimes compare disjoint segments by their total (signed)
weights. For tie-breaking when equality occurs, we apply some arbitrary pri-
ority rule. (For example, the left interval is always considered the “smaller”
one in such cases.) In the sequence of weights of vertices, a weight is a lo-
cal maximum (minimum) if it is larger (smaller) than the weights of both
neighbors to the left and to the right.

Definition 7 An ordered set of at least three vertices is a W-segment if the
weights of all vertices are, alternatingly, local maxima and minima in the
segment, where the weight of the first and last vertex, respectively, is larger
than the weight of its only neighbor in the segment.

Example: The maximal W-segments in (∞, 1, 4, 1, 3, 3, 2,∞), adopting the
above priority rule, are (∞, 1, 4, 1, 3) and (3, 2,∞). The signed weights are
(+∞,−1, +4,−1, +3,−3, +2,−∞), if we start with “+”.

The name W-segment is inspired by the “zigzag” up-and-down pattern of
weights. Now we construct a rooted and ordered tree which we call a W-tree
of the string. To avoid confusion, we speak of nodes rather than vertices in
the tree. The term ordered tree means that a left-to-right order is defined
among the children of any node. This naturally induces an order on the
leaves. A sibship is the orderd set of all children of some node.

Definition 8 A rooted and ordered tree with signed and weighted nodes is
called a W-tree of a string if it enjoys the following properties.
(i) The leaf nodes correspond to the vertices in the given string, in the given
left-to-right order and with the given signed weights.
(ii) The signed weight of any non-leaf is the sum of signed weights of its
children.
(iii) The ordered set of children of any node is a W-segment (except perhaps
the root which may have exactly two children).
(iv) The weight of a node is no larger than the weight of its parent.
(v) Every node (except the leaves and perhaps the root) has an odd number
of children. In every sibship of odd size, we call a node odd/even if it has
an odd/even position in the sibship (where the leftmost node has number 1,
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etc).
(vi) The weight of an even node is never larger than the weights of its (odd)
neighbored siblings.

Properties (v) and (vi) follow from (iii), but we stated them explicitly for
later use.

Lemma 9 We can construct a W-tree of a weighted path in O(r) time.

Proof. We give an algorithm that constructs a W-tree. At any moment
we maintain an ordered set of trees and consider the sequence of their roots
in their natural left-to-right order. Initally, all these trees consist of only one
node, hence the sequence of roots is just the given string.

In every step we take an arbitrary W-segment of current roots and connect
them to a new root, the signed weight of which is defined according to (ii). In
the new sequence of roots, the signs of weights still alternate, this is obvious
from Definition 7. Thus we can iterate this step. Since the two outermost
roots have huge weights, we find some W-segment in every step, i.e., the
process stops only when everything is merged into one tree (r odd) or two
trees (r even). In the latter case we connect the two huge-weight roots again
to a new root.

We obtain in fact a W-tree: (i) holds since the sequence of leaves and
their signed weights are never changed. Properties (ii) and (iii) are true by
construction. These and Definition 7 yield (iv), and the rest follows from
(iii).

Finally we argue that the construction can be done in O(r) time. The
current sequence of roots is stored as a doubly-linked list to support fast
local changes. Observe that some W-segment is found around an arbitrary
local minimum in the sequence of weights. More precisely, a local minimum
together with its two neighbors form a W-segment (which might be extended
by pairs of further elements in both directions, if their weights satisfy Defi-
nition 7). Adding the signed weights and replacing a W-segment with a new
root costs O(1) time per node. By storing all local minima separately in a
queue, we can take a local minimum in each step in O(1) time. This is cor-
rect because each local minimum is preserved until we use the corresponding
node in a W-segment: Since, by (iv), a parent’s weight is not smaller than
the children’s weights, the weights of the neighbors of any local minimum
can only increase. In summary, every node is processed O(1) times. Since
inner nodes of the W-tree have at least three children, the W-tree has size
O(r), which gives the O(r) time bound. 2

Tracing: Now we “trace” our greedy algorithm for SME-Binary: For every
step we update our W-tree so as to obtain a W-tree of the reduced string.

Recall that the greedy algorithm merges some inner vertex v with mini-
mum l(v) and its neighbors u, w, and assigns the merged vertex the weight
l(u)+ l(w)− l(v). Due to (iv) and (vi), we may always choose an even leaf as
v. Let u′ and w′ be the siblings of v next to the left and right, respectively,
in the W-tree. Either we have u′ = u, or u′ is an ancestor of u, and similarly
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with w′ and w. Moreover, u′, w′ are odd nodes. We transform the W-tree
step by step as follows in the resulting cases.

(1) None of u′, w′ is a leaf: Then merge u′ and w′ to a new odd node z′.
The children of z′ are, from left to right, the children of u′, node v, and
the children of w′. The signed weight of z′ is the sum of signed weights of
u′, v, w′.
(2) Exactly one of u′, w′ is a leaf, say w′ (the other case is symmetric): Then
u′ adopts v and w′ as two new rightmost children. To the signed weight of
u′ add the signed weights of v and w′.
(3) Both u′ and w′ are leaves: Then merge u′, v, w′ to a leaf z′. The signed
weight of z′ is the sum of signed weights of u′, v, w′.

These steps are repeated, with updated u′, w′, until case (3) appears.
Furthermore, whenever a node retains only one child, parent and child have
the same signed weight, and we identify them immediately by contracting
the edge.

The procedure will always terminate, as v “goes down the tree”. Check
that, due to the choice of v, every step preserves properties (i)-(vi) of a W-
tree. Hence, upon termination we get a W-tree of the updated sequence, as
claimed.

The following properties of the tracing procedure are crucial: An even
node remains even until it is merged with its neighbored odd siblings into a
new odd node. Odd nodes are merged into odd nodes only. Hence an even
node never changes its (signed) weight until it disappears. The even node
that disappears next is always one with smallest weight. It follows that the
even nodes are processed in their fixed order of increasing weights. Hence,
after any number of steps of the greedy algorithm, the W-tree obtained by
tracing contains exactly those even nodes whose weights are above some
threshold thr, plus certain odd nodes.

Getting the high nodes: Given a threshold thr, we call a node high/low
if its weight is larger/smaller than thr. The following procedure Extract(thr)
constructs, from the initial W-tree of the given string, the W-tree obtained by
tracing until weight thr, but without actually performing the tracing steps.

Extract(thr):
(1) Retain the high even nodes and all their ancestors and siblings. Delete
all other nodes.
(2) In every sibship that contains high even nodes, do the following. Between
any two high even nodes, and on the left/right side of the leftmost/rightmost
high even node in the sibship, merge all siblings into one node and and let
the signed weight of the new node be the sum of signed weights of merged
siblings.

Lemma 10 Procedure Extract(thr) computes, in O(r) time, a W-tree of the
segmentation obtained by running the greedy algorithm for SME-Binary as
long as the weight of the middle vertex in a merging step does not exceed thr.
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Proof. Every low even node v becomes a leaf during tracing. At this
moment, v together with its two neighbored siblings is replaced with one new
node in the sibship. It follows that all siblings between the high even nodes
are eventually merged. Furthermore, invariant (ii) holds, so that adding the
signed weights is also correct. Altogether it follows that Extract(thr) and
tracing yield the same tree. The time bound is obvious. 2

Once we have the W-tree, it is easy to reconstruct the segmentation
in linear time, since its leaves represent the segments. Since the greedy
algorithm is correct by Theorem 5, it follows that we obtain an optimal
segmentation.

Number of even nodes and final result: To get out the desired number
k of segments we have to use the appropriate thr in Extract(thr).

Lemma 11 A W-tree with e even nodes has k = 2e+ 1 leaves if the root has
an odd number of children, and k = 2e+2 leaves if the root has two children.

Proof. It suffices to show the first part. Then the second part follows
immediately. We proceed by induction. The Lemma is true if the W-tree is
just a root with an odd number of leaves as children. If we make some leaf
the parent of a new sibship of, say, 2l + 1 nodes, then e and k increases by l
and 2l, respectively. 2

By Lemma 11, all we need to know is the (k − 1)/2 or (k − 2)/2 even
nodes with largest weights, and then we easily get a W-tree of an optimal
segmentation into k segments. Summarizing the process, we can now state
the main result. Regarding linear-time selection see, e.g., [11], or common
textbooks on algorithm design. Selection means to determine a prescribed
number of largest elements in an unsorted set of numbers.

Theorem 12 SME-Binary can be solved in O(r) time for any k.

Proof. From the given string, given as the sequence of lengths of runs,
build a W-tree as in Lemma 9. By selection, mark the number of high even
nodes specified in Lemma 11. Let thr be the smallest weight of the high even
nodes. Compute a W-tree of an optimal segmentation by Extract(thr) as in
Lemma 10, and from the leaves of this W-tree straightforwardly recover the
segmentation. 2

There remain some practical issues. Selection in worst-case linear time
suffers from a large hidden constant. We may use randomized selection with
pivot elements and content ourselves with expected linear time. (However,
in practice this should be faster than a deterministic selection algorithm. For
recent results on selection see also [22].) In case k � r we may circumvent
selection algorithms and determine the high even nodes in time O(r+k log k)
(with small hidden constant) using a priority queue. We would consider the
even nodes of the W-tree at increasing distance from the root. Due to (iv)
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we can ignore the subtree below a current node x if l(x) is already smaller
than the kth largest weight found so far. Thus we may typically need less
than O(r) time to determine the high even nodes.

The algorithm is easy to apply, as the segment borders correspond to
subtrees rooted at the high even nodes.

Example: Suppose S = 001010001110011, k is even, and the outer runs
are not exception runs. The dendrogram-like table shows a W-tree, drawn
upside down. Note that the huge-weight dummy vertices before and after
the string are not displayed. The even nodes (printed in bold) with largest
weights yield the following segment borders for k = 2, 4, 6: 00101000|1110011,
00101000|111|00|11, 00|101|000|111|00|11. The other cases (where both outer
runs are exception runs, or k is odd) give worse solutions for this string.

| −2 | +1 | −1 | +1 | −3 | +3 | −2 | +2 |
| | +1 | | +3 |
| −4 | |

5 A Parameterized Weighted Independent Set

Problem

The graph problem specified in Lemma 3 is interesting in itself, for general
graphs rather than just paths. For clarity we state the definition again:

Cardinality Minimum Weight Independent Set (CMWIS)
Given a graph and an integer m, compute a minimum weight independent
set with exactly m vertices

Note that minimum may also be maximum without changing the problem,
since m is fixed. By Theorem 5, CMWIS on paths of length r is solvable
in O(r) time. Slightly more generally, CMWIS is linear for graphs with
maximum degree d = 2. By way of contrast we have:

Theorem 13 CMWIS is NP-complete for graphs of any fixed maximum de-
gree d ≥ 3.

Proof. We reduce Maximum Independent Set for degree d ≥ 3 to
CMWIS: Assign unit weights to every vertex. An independent set of size at
least m exists iff an independent set of size exactly m exists. 2

Due to this hardness result it is sensible to consider parameterized algo-
rithms (see [12, 30] for introductions). CMWIS is (probably) not FPT with
parameter m alone: If all weights are equal, we have to figure out existence of
an independent set with m vertices, but this is known to be W [1]-complete.
However, the same problem with dual parameter n − m is a variation of
Weighted Vertex Cover, thus it is FPT. Next we show that CMWIS is
FPT in combined parameters m and d. Generalizing the observation from
Lemma 4 we obtain:
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Theorem 14 CMWIS on graphs of maximum degree d can be solved in
O∗(xm) time, where x = (

√
2d2 − 2d + 1 + 1)/2 ≈ d/

√
2.

Proof. We give a branching algorithm. Whenever a new vertex has been
added to the independent set, remove this vertex and its neighbors from the
graph, and set m := m−1. Consider any rest graph (after removal of chosen
vertices and their neighbors) with m > 0. Let v be a vertex with minimum
l(v). In one branch, add v to the solution. In all other branches (where v is
not taken), we can add at least two of v’s neighbors to the solution, by the
following reasoning: If only one neighbor u is taken, we can replace u with
v in any solution and get an independent set with smaller weight. Assume
that no neighbor of v is taken. Let w be any vertex of the rest graph that
belongs to a solution, w exists since m > 0. But now we can replace w with
v and get an independent set with smaller weight. Altogether, we reduce m
by 1 in one branch and by 2 in at most

(
d
2

)
branches. Characteristic equation

x2 = x + d(d− 1)/2 yields the claimed base x. 2

We remark that CMWIS has been solved in [9] for the more general class
of d-degenerate graphs, however the time as a function of the parameters is
O∗(2dm) there.

In Theorem 14, the worst case of
(

d
2

)
branches with 2 chosen vertices

appears only if v has degree exactly d, and all neighbors of v are pairwise
non-adjacent. Moreover, we can delete further vertices during a branching
step as follows. We can arrange the neighbors of v in an arbitrary order
and decide on the first two neighbors of v to be added to X. Then we can
remove, in every branch, those neighbors of v appearing before the second
chosen vertex in this order. This heuristic does not help our worst-case upper
bound, but it diminishes the rest graphs faster, in a simple way. Heuristics
like these, together with kernelization, may lead to smaller time bounds in
further research. A small problem kernel is very easy to obtain:

Theorem 15 CMWIS has a polynomial-time computable kernel of at most
(d + 1)(m− 1) + 1 vertices.

Proof. We claim that the set K of the (d + 1)(m− 1) + 1 vertices with
smallest weights (ties are broken arbitrarily) contains an optimal solution.
To prove the claim, consider any X, |X| = m, such that K∩X is independent
and a vertex v ∈ X \K exists. At most m− 1 vertices of X are in K, each
having at most d neighbors in K. Hence some u ∈ K exists that is neither in
X nor adjacent to any vertex of K ∩X. Since l(u) ≤ l(v), replacing v with
u in X can only reduce l(X), and K ∩X is still independent. In particular,
if we start from an independent set X, some iterations give an independent
set of smaller or equal weight, contained in K. 2

6 More than Two Symbols

Since Lemma 1 holds for arbitrary alphabet size b, SME can be rephrased
similarly as SME-Binary. However, for b > 2, sets X corresponding to the
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exception runs in regular segmentations are no longer restricted to indepen-
dent sets of a specific size, and the characterization of (optimal) solutions X
becomes more complicated.

We refer to any maximal subpath in X as a block of X. The length of
a block is the number of vertices. (In case b = 2, all blocks had length 1.)
Every block is adjacent to one or two vertices not in X. We say that the
symbols assigned to these vertices are adjacent to the block. Hence, every
block is adjacent to one or two different symbols. The following lemma is
easily proved by arguments similarly as in Lemma 1.

Lemma 16 There exists an optimal segmentation with the following prop-
erties: The segmentation is regular, moreover, each block of exception runs
belongs entirely to a segment, and symbols in a block are always distinct from
the symbols adjacent to this block. 2

Suppose that we add a block B to X, where B is not adjacent to any
block in X. This reduces the number of segments by the length of B, if B
has two different adjacent symbols or contains an end vertex of the path.
It reduces the number of segments by the length of B plus 1, if B has two
adjacent vertices that carry the same symbol (because we can merge two
neighbored segments with the same designated symbol). In the latter case
we say that B has a bonus vertex, in addition to its real vertices. With this
notation, we have:

Lemma 17 SME is equivalent to the following problem: Given a path of r
vertices, each equipped with a positive weight and a symbol, so that, without
loss of generality, neighbored vertices carry different symbols, and an integer
k, compute a minimum weight set X such that the total number of vertices,
including bonus vertices, in X is at least m := r − k, and symbols adjacent
to a block do not occur inside the block. (A block B of contiguous vertices
in X is said to have a bonus vertex if B is flanked by two vertices outside X
with equal symbols.) 2

This reformulation may appear artificial, but actually this problem is a
special case of some multicriteria independent set problem in interval graphs,
and this fact will give us an efficient algorithm. Interval graphs are well-
known as intersection graphs of families of intervals on the real axis. In the
following we consider families of open intervals (not including their endpoints)
whose endpoints have integer coordinates. The length of an interval is defined
as usual.

Fixed Length Minimum Weight Independent Set (FLMWIS)
Given a family of F open intervals whose endpoints are integers in [0, R],
where every interval has a positive weight, and an integer M ≤ R, compute
a minimum weight independent set, i.e., a subset of pairwise disjoint intervals,
with total length at least M .

Let K := R −M be the total number of unit intervals in [0, R] allowed
to be outside the solution.

16



Theorem 18 FLMWIS can be solved in O((R+F ) ·min{M, K}) time, pro-
vided that the intervals are already sorted by their right endpoints.

Proof. We apply dynamic programming, treating the intervals in the
order of increasing coordinates of right endpoints. First we prove the bound
O((R + F )M). For i ≤M and j ≤ R, let w(i, j) be the weight of an optimal
solution with length at least i, for the instance restricted to [0, j]. (That is,
only intervals which are subsets of [0, j] are considered.) If no such solution
exists, let be w(i, j) = ∞. Initialization for j = 0 is trivial. When we
step to the next j, we first set w(i, j) := w(i, j − 1) for all i, and then treat
every interval ending at j. Appending interval (l, j) to a partial solution may
improve some of the w(i, j). Clearly, we simply have to add w(i− (j − l), l)
and the weight of (l, j), compare the sum to the current w(i, j), and take the
minimum. Thus we need O(M) time for each endpoint and interval.

The O((R + F )K) bound is achieved similarly, we only state what is
different. For i ≤ K and j ≤ R, let w(i, j) be the weight of an optimal
solution with length at least j − i, for the instance restricted to [0, j]. (That
is, i bounds the number of unit intervals which are not part of the solution. It
suffices to consider i ≤ K, since we want to leave out at most K unit intervals
in total.) When we step to the next j, we first set w(i, j) := w(i, j − 1) +
1 for all i, corresponding to the case that no interval with endpoint j is
inserted. Appending interval (l, j) to a partial solution may improve some
of the w(i, j). This time we add w(i, l) and the weight of (l, j), compare the
sum to the current w(i, j), and take the minimum. The time is O(K) for
each endpoint and interval. 2

Theorem 19 SME can be solved in O(r ·min{k, r − k}) time.

Proof. From an instance of SME we construct a family of intervals in
[0, R], R = 2r, as follows. Vertices 1, 2, . . . , r of the given path correspond
to short intervals (0, 2), (2, 4), . . . , (2r − 2, 2r). For any two vertices l and j
(l < j) such that l, j have the same symbol s, but all symbols between l and
j are different from s, we introduce the long interval (2l− 1, 2j − 1). (Terms
long and short are only used for reference purposes.) The weight of a short
interval is the weight of the corresponding vertex in the given path. The
weight of a long interval is the sum of weights of vertices between l and j.
Finally, define M := 2m.

From the intervals in a solution to FLMWIS we construct a solution X
to SME (in the formulation of Lemma 17) as follows. (1) For every long
interval as specified above, vertices between l and j are put in X, to form a
block with bonus vertex, called a bonus block. For every short interval, the
corresponding vertex is also put in X. (2) If some block B of vertices coming
from short intervals contains vertices with symbols adjacent to B, we remove
one such vertex from X. This step is repeated as long as possible.

We prove correctness of this reduction. In the following, vertices in X
refers to both real and bonus vertices. Due to Lemma 17, a solution to SME
consists of blocks such that symbols adjacent to a block do not occur inside
the block. Now represent bonus blocks by long intervals, and vertices in other
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blocks by short intervals. If X has at least m vertices, this gives a solution
to FLMWIS with length at least 2m = M and the same weight as X. Note
that the requested long intervals actually exist in our family of intervals, and
that all selected intervals are disjoint.

Conversely, consider any solution to FLMWIS with length at least M =
2m. We claim that X constructed above has at least m vertices and at most
the same weight. This implies that X is optimal.

The unit intervals (2l−1, 2l) and (2j, 2j−1) attached to every long interval
(from l to j) have two roles. First, they ensure that vertices adjacent to the
obtained bonus block in X are actually not in X. Second, they account
for the bonus vertex, thus every vertex in X is now represented by two unit
intervals, and M = 2m yields that X has at least m vertices as desired. Also,
X has so far the same weight as the FLMWIS solution.

Consider any block B of vertices coming from short intervals, containing
vertices with symbols adjacent to B. Removal of such a vertex from X is
compensated by one more bonus vertex, and the weight of X decreases. This
proves the claim. Moreover, if the solution to FLMWIS was optimal, this
case cannot appear, i.e., we can skip phase (2) of the reduction.

Thus, the actual algorithm is to construct the family of weighted intervals
as above, solve FLMWIS to optimality as in Lemma 18, and get X simply
by applying phase (1). We have r short intervals. The crucial point is that
we also have O(r) long intervals, since every vertex of the path is the right
neighbor of at most one long interval. More precisely, F < 2r, and R = 2r,
M = 2m, K = 2k is clear by construction. For computing the weights of
long intervals we have to sum up the weights between any two consecutive
occurences of a symbol. This is easily managed in O(r) time for all symbols
in the alphabet: Compute all prefix sums of weights in the given path, and
hence the start and end position of each run in the string. For every symbol
in the alphabet, create the list of runs where this symbol occurs. Finally, get
the weight of every long interval by one subtraction. 2

Hence we need O(kr) time in the “statistically relevant” case k < r/2.
An open question is whether the factors can be further improved, as in SME-
Binary, perhaps by an approach different from dynamic programming.

7 Binary Segmentations with Thresholds

In some applications as mentioned in Section 1, a sequence of n real numbers
is given, and we want a segmentation into k segments each consisting of only
large or only small numbers, with exceptions minimized. Large and small
numbers, symbolized by 0 and 1, are separated by some threshold. That is,
we have up to n − 1 instances of SME-Binary, for all (essentially different)
thresholds. An appropriate threshold may be given by the application, but we
may also be unsure about the threshold. A natural question is: How difficult
is it to solve all resulting instances of SME-Binary? A naive method treats all
O(n) instances independently, using O(n) time for each (since r ≤ n). Sorting
the given numbers costs O(n log n) time, hence we get away with O(n2) time.
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However, it is intuitively clear that slight changes of the threshold mostly will
not change the segmentations dramatically. This suggests to use W-trees
more directly for this extended problem.

As the threshold grows, symbols 1 are successively turned into 0. Every
switch affects at most three neighbored leaves in the W-tree. (One leaf is
split in three, or a leaf of weight 1 disappears and its neighbors get merged, or
one symbol moves to a neighbored leaf.) We also have to update the signed
weights of ancestors of affected leaves, on a few rooted paths, where signed
weights of inner nodes change by at most 2 units. We need to recompute only
parts of the W-tree around these rooted paths, where the sibships may not be
W-segments anymore. W-segments can be repaired in bottom-up direction,
by local rearrangements. We do not go further into details, as we cannot
prove a complexity result here. The difficulty is to bound the necessary
changes in the W-tree. An amortized analysis seems to be an interesting and
nontrivial question for further research.

In a data stream (or online) version of SME, symbols of the string arrive
one by one, and we wish to maintain a structure that allows, at every desired
moment, to quickly compute optimal segmentations of the prefix seen so
far. This problem version could be interesting for permanent monitoring
of trends or signals. If a W-tree is used, this leads essentially to the same
update problem, where changes are initiated by the rightmost leaf. We have
to leave complexity (space and amortized time) as an open question. It may
turn out that dynamic programming is better suited for the stream version
even if b = 2. For general b, obviously, we may apply dynamic programming
as well, with a somewhat higher complexity than in Theorem 19, since it is
not possible to compute bonus blocks in advance.

8 Conclusions

We devised a tree-based linear-time algorithm for partitioning binary strings
into segments with one sort of symbols, so as to minimize the total number
of exceptions. We also gave a dynamic programming algorithm with time
bound O(kr), for r runs and k < r/2 segments, independent of alphabet
size b. Perhaps the time can be further improved. An intriguing question
is whether similar ideas as for b = 2 can beat the dynamic programming
approach and take away factor k also for general b. The simple exchange
argument of Lemma 6 does not work for b > 2, hence already the greedy
algorithm (the base of our optimal algorithm for b = 2) does not easily
generalize. Other open questions concern the complexity of our segmentation
problem extended to real-number sequences with varying thresholds, and to
data streams.

One could look for problem transformations and data structures to obtain
faster optimization algorithms also for other established homogeneity mea-
sures. Finally, segmentation should find more real-world applications, e.g.,
in data mining and automatic classification.

Computing fixed cardinality minimum weight independent sets in paths
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is essentially equivalent to string segmentation for b = 2, and our dynamic
programming algorithm for general b actually computes minimum weight in-
dependent sets satisfying another minimum size constraint in special interval
graphs. The above problem on arbitrary graphs is certainly of independent
interest. We gave an FPT result for bounded-degree graphs, and an obvious
problem for further research is to improve the time bound.
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Time series segmentation for context recognition in mobile devices, In:
Proceedings of the 1st IEEE International Conference on Data Mining
ICDM 2001, pp. 203–210

[21] E.J. Keogh, S. Chu, D. Hart, M.J. Pazzani. An online algorithm for
segmenting time series, In: Proceedings of the 1st IEEE International
Conference on Data Mining ICDM 2001, pp. 289–296

[22] K.C. Kiwiel. On Floyd and Rivest’s SELECT algorithm, Theoretical
Computer Science 347 (2005), 214–238

[23] J. Kleinberg, E. Tardos. Algorithm Design, Pearson/Addison-Wesley
2006

[24] R. Kohavi, M. Sahami. Error-based and entropy-based discretization of
continuous features, In: Proceedings of the 2nd ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining KDD 1996,
pp. 114–119

21



[25] J. Kujala, T. Elomaa. Improved algorithms for univariate discretization
of continuous features, In: Proceedings of the 11th European Conference
on Principles and Practice of Knowledge Discovery in Databases PKDD
2007, pp. 188–199
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