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Abstract. The classical group testing problem asks to determine at
most d defective elements in a set of n elements, by queries to subsets
that return Yes if the subset contains some defective, and No if the
subset is free of defectives. By the entropy lower bound, log2

∑d

i=0

(
n
i

)
tests, which is essentially d log2 n, are needed at least. We devise group
testing strategies that combine two features: They achieve this optimal
query bound asymptotically, with a factor 1 + o(1) as n grows, and they
work in a fixed number of stages of parallel queries. Our strategies are
randomized and have a controlled failure probability, i.e., constant but
arbitrarily small. We consider different settings (known or unknown d,
probably correct or verified outcome), and we aim at the smallest possible
number of stages. In particular, 2 stages are sufficient if d grows slowly
enough with n, and 4 stages are sufficient if d = o(n).

Keywords: algorithmic learning theory, randomized algorithm, parallel queries,
bioinformatics, group testing

1 Introduction

Suppose that a set of n elements contains an unknown subset of defective ele-
ments (“defectives” for brevity). A group test takes any subset, called a pool, and
returns a binary answer: The pool is positive if it contains at least one defective,
and otherwise negative. The group testing problem is the problem of identifying
the defectives using a minimum number of group tests, also called queries. An
upper bound d on the number of defectives may be known in advance, or the
number d of defectives may be unknown. However, we assume that d� n.

Group testing is a classical combinatorial search problem [10] and an im-
portant example of the “exact learning by queries” model. It has applications
in biological and chemical testing and diagnosis [10, 11, 18], communication net-
works [4, 9, 13], and streaming algorithms [5], to mention only a few domains.

A group testing strategy works in stages, where the pools for every stage
are prepared prior to the stage, and then queried in parallel. The pools for the
next stage, however, may depend on all previous answers. A strategy with one
query per stage is called adaptive. In most group testing applications, highly



parallel strategies working in a few stages are preferable because, on the one
hand, the tests are time-consuming, and on the other hand, many pools can be
tested simultaneously.

As a notational remark, we omit ceiling brackets in expressions, in order to
avoid bulky notation. Logarithms are always base 2.

Due to the entropy lower bound, also known as the information-theoretic
lower bound, at least log2

∑d
i=0

(
n
i

)
≈ d log(n/d) queries are needed even by

adaptive strategies. If defectives are rare, this expression simplifies to d log n,
subject to negligible terms. If d is known in advance, essentially d log n queries
are also sufficient, and if d is unknown, still 1.5d log n queries are sufficient [24].
There exist strategies using O(d log n) queries that need only two stages when
d is known [8, 12, 3]. The query number in [3] tends to 1.44d log n as d grows. A
query number of the form O(d log n) cannot be achieved by any deterministic
strategy in only one stage, as a consequence of known lower bounds for so called
d̄-separable pooling designs [2], which are exactly the sets of pools that can
distinguish between any sets of at most d defectives. As opposed to this, there is
a randomized one-stage strategy that succeeds with any prescribed probability,
using asymptotically 1.45d log n queries [3]. For the case of unknown d we proved
in [6] that no deterministic strategy can manage with O(d log n) queries in any
constant number of stages, but randomized strategies can, in only two stages.

For applications where defectives are rare but tests are expensive, it would
be worthwhile to have strategies where the test number is as close as possible
to the entropy lower bound, not only within some constant factor. The principal
contribution of the present paper is to show that, in fact, there exist randomized
strategies that combine the two desirable features of query-optimality (at least in
an asymptotic sense) and minimal adaptivity: The constant factor in the leading
term d log n of the query complexity tends to 1 as n grows, and the strategies
work in a constant number of stages.

Although these results are not particularly hard to obtain, to our best knowl-
edge this is the first paper presenting group testing strategies with this combina-
tion of desirable properties, and the way of combining known ingredients seems
to be novel. The strategies also look simple enough for real use. Only elementary
methods are needed to construct and analyze them.

We highlight the main results briefly, while the technical statements and also
variations of the results are deferred to the following sections. If d grows slower
than any power function of n, we achieve query-optimality already in 2 stages.
Due to a recent negative result [22], this is not possible if d grows like d = nδ

for some constant exponent δ < 1. But in this case we manage with 3 stages.
Finally, if d = o(n) we still get an asymptotically optimal query number in 4
stages. More precisely, we consider any fixed defective rate r = d/n and show
that our strategy approaches the entropy lower bound if r → 0. This asymptotic
behaviour matches known upper bounds for sequential group testing strategies,
therefore one may appreciate that a constant number of stages suffices. It remains
open whether even 3 stages would be enough.



An earlier negative result [6] implies that our strategies cannot be deran-
domized, but apparently they can be turned into deterministic strategies for the
statistical model of group testing where elements are defective independently
and with some fixed probability.

Due to space limitations, some parts of the proofs are only sketched, but
in principle we include complete proofs. Some technicalities are omitted. For
instance, when we use random subsets in a strategy, we do not always clearly
distinguish between their expected and actual sizes, which however does not
affect the asymptotic analysis for large n.

2 Minimal Adaptive Group Testing Close to the Entropy
Lower Bound

The following observation is folklore; for completeness we give the proof.

Lemma 1. If only one defective is present, it can be found by log n+ 1 queries
in one stage.

Proof. We introduce dummy elements if n is not a power of 2; this can at most
double the number of elements. Then we index the elements as bit vectors of
length log n+ 1. For each i we query a pool consisting of all elements that have
entry 1 at the ith position. Obviously, the answers localize one defective provided
that there is exactly one. ut

Remark: This pooling design cannot check whether d = 1. A very minor issue is
that we cannot see whether the element indexed by the zero vector is defective,
if all pools were negative. Obviously we can catch up this case by one additional
query (in the same stage) to this element. Much more importantly, if d > 1, it
is possible that the strategy cannot safely identify any defective.

We also apply Theorem 10 from [3] that we rewrite as follows:

Lemma 2. With prescribed probability 1−ε1 one can correctly identify at most d
defectives using O(d(log n+log(1/ε1))) queries in one stage. The hidden constant
factor is at most 1.9 and converges to 1.45 as d grows. ut

Theorem 1. Using d log n+O(d log d) +O(d log(1/ε)) queries in two stages we
can, with probability 1− ε, correctly identify all defectives, provided that at most
d defectives are present. The hidden constant factors in the lower-order terms
are below 3.8, and tend to 2.9 as d grows.

Proof. The overall scheme is very simple: In stage 1 we separate the defectives
with probability 1− ε, that is, we divide the elements into disjoint subsets each
containing exactly one defective (plus one subset without defectives). In stage 2
we apply Lemma 1 to every such subset. It remains to discuss stage 1 in detail.

For some q to be specified below, we assign every element one of q labels, each
with probability 1/q. Elements with the same label form one cell. Like pools, a



cell is said to be positive if it contains a defective, and otherwise negative. Then
we apply Lemma 2 to the set of cells rather than individual elements: We can,
with prescribed probability 1 − ε1, correctly identify the (at most d) positive
cells using O(d(log q+ log(1/ε1))) queries in one stage. The positive cells are our
disjoint sets to be used in stage 2.

The probability that any two defectives collide, i.e., get into the same cell, is
at most

(
d
2

)
/q < d2/2q. In order to keep this probability below some ε2 we choose

q = d2/2ε2, thus log q = 2 log d + log(1/ε2)− 1. The strategy gives an incorrect
result with probability at most ε := ε1 + ε2. Now, minimizing the query bound is
equivalent to minimizing log(1/ε1) + log(1/ε2) under the constraint ε = ε1 + ε2.
A standard calculation yields ε1 = ε2 = ε/2, and obvious further manipulations
give the final query bound. The constants follow from Lemma 2. ut

Remarks:
(1) For every fixed d, this bound converges to the entropy lower bound as n
grows. This asymptotic optimality holds even for d growing slowly with n (e.g.,
polylogarithmic). It remains open how many randomized queries would be ac-
tually needed in one stage. To our best knowledge, the current upper bound is
the mentioned 1.45d log n from [3]. Is it possible to identify d defectives, with
fixed probability 1− ε, by essentially d log n queries in only one stage? Or can a
non-trivial lower bound a(ε)d log n for some a(ε) > 1 be proved?

(2) The known deterministic two-stage strategies using O(d log n) queries, how-
ever with a constant strictly larger than 1, determine O(d) candidate positives in
stage 1, and need only O(d) queries in stage 2 to test them [8, 12, 3]. Amazingly,
in our randomized strategy the situation is exactly the opposite: The complex-
ity of stage 1 does not depend on n, and the main work is done in stage 2. An
interesting question is whether there exists a query-optimal two-stage strategy
where the workload is balanced.

(3) The strategy in Theorem 1, with q = Θ(d2), is designed for any constant
failure probability. By choosing q as a larger polynomial in d, or even as a
slow function of n, we can make the failure probability vanish asymptotically,
without destroying the asymptotic query-optimality. Depending on the choice of
q, different patterns of asymptotic behaviour can be achieved.

With one additional stage we can improve the query bound:

Theorem 2. Using d log(n/d) +O(d
√

log d log log d) queries in three stages we
can, with probability 1− ε, correctly identify all defectives, provided that at most
d defectives are present.

Proof. We give a high-level description of the strategy: Partition the elements
randomly into d bags1 of size n/d. Due to well-known load balancing results
(see [20]), with high probability all bags contain fewer than log d defectives. We
call a bag sparse/dense if it has fewer/more than

√
log d defectives. In stage 1

1 We call them “bags” because their role is different from the “cells” used earlier.



we distinguish between sparse and dense bags using L(n/d) queries in each bag,
where L is any sublogarithmic function. It suffices to query random pools of size
around n/(d

√
log d) and decide sparse or dense based on the fraction of positive

answers. We skip the details, since the only crucial point is that the pool number
increases with n/d, thus we can make the error probability arbitrarily small. The
rest is to apply the strategy from Theorem 1 in parallel to each bag. In the, up
to d, sparse bags we may use q = Θ((

√
log d)3), thus O(d

√
log d log log d) queries

are needed in all sparse bags. In the, up to d/
√

log d, dense bags we may use
q = Θ((log d)3), thus O((d/

√
log d) log d log log d) queries are needed also in all

dense bags. Here, exponent 3 in q is chosen to keep the failure probability in each
bag O(1/d). In the final stage we search for the separated defectives individually,
among at most n/d elements. ut

The advantage of Theorem 2 is that this complexity approaches the entropy
lower bound for larger d, such as d = nδ, δ < 1. Interestingly, it is known that
two stages are not enough for that, due to a lower bound of (log e)2d log(n/d)
if d grows like d = nδ [22]. (Actually, this result was derived for the statistical
model of group testing with independent random defectives, but asymptotically
the models are equivalent.)

Our next issue is that the outcome in Theorem 1 is correct with some pre-
scribed probability, but in every specific case the searcher cannot be sure that
the returned set of defectives is correct. Trivially, any group testing result can
be verified in another stage with d+ 1 queries. But can we accomplish a correct
and verified outcome without the extra stage? When determining the positive
cells in stage 1 we may get some false positives as well. However, the subroutine
from [3] never yields false negatives, and the false positive cells will be detected
in stage 2. The real difficulty is that the separation can fail, too. More than one
defective can get into one cell, and then the simple search as in Lemma 1 does
not work; remember the remark after Lemma 1. However, with a slight increase
of the test number we can also verify the outcome, as we will see below. First
we need another search method for single defectives, known from [25]:

Lemma 3. Using log n+ 0.5 log log n+ o(log log n) queries in one stage, we can
achieve the following: If only one defective is present, we identify it and confirm
that it is the only one. If more defectives are present, we recognize this fact (but
we do not necessarily identify some of the defectives in this case). Moreover, this
query number is optimal for this purpose. ut

In order to make the paper more self-contained we briefly outline the strategy:
The design consists of t pools, where each of the n elements is in exactly t/2
pools. Choose t even (or round t/2), and make t large enough so that

(
t
t/2

)
= n.

Along the lines of Theorem 1 it follows immediately:

Theorem 3. Using d(log n+0.5 log log n+o(log log n))+O(d log d)+O(d log(1/ε))
queries in two stages we can, with probability 1 − ε, identify all defectives and
verify that we found them all, provided that at most d defectives are present. ut



Note that the extra terms are o(log n), hence this result still matches asymp-
totically the entropy lower bound. Nevertheless it is interesting to ask if the
log log n term is avoidable. For two stages we must leave this as an open ques-
tion. In three stages we can get rid of the log log n term, by applying Lemma 1
and an obvious verification step.

In the following we give a side result related to that. It further extends the
optimality statement from Lemma 3, in that it shows that one cannot even
narrow down the candidates for the defective to a small set, in one stage with
fewer queries. Group testing strategies that apply some pooling design in stage
1 and then test the candidates individually in stage 2 are well established as
“trivial strategies” (which is perhaps a misleading name). They are of particular
practical interest because no pools at all depend on test results and must be
created on-the-fly: Stage 1 is prepared in advance, and only trivial testing is
done in stage 2.

Theorem 4. Suppose that actually only one defective is present (but the searcher
is not sure about the number of defectives). With fewer than log n+0.5 log log n−
Θ(log c(n)) queries in one stage it is impossible to narrow down the candidate
set for the defective to size c(n). Here, c is any function with c(n) = o(log n).

Proof. Consider any design of t pools, arbitrarily indexed 1, . . . , t. We define the
indicator of an element to be the t-bit vector x where the ith position xi is 1 if
the element belongs to the ith pool, and xi = 0 else. Imagine that an adversary
declares one element defective, chosen randomly with probability 1/n. For a t-bit
vector x, let p(x) denote the probability that the defective has indicator x. In
other words, p(x) · n elements have indicator x.

For two t-bit vectors x and y, symbol y ≤ x means that y is bitwise smaller
than x, that is, yi = 1 implies xi = 1. If the defective has indicator x then exactly
those elements with indicators y ≤ x are candidates for being defective: Note
that all pools i with xi = 1 answered positively, and elements with indicators
y ≤ x occur in positive pools only, thus the searcher cannot surely recognize
them as negative.

We conclude that the (conditional) expected number of candidates is now
n
∑
y≤x p(y) for any fixed indicator x of the defective, hence the expected number

of candidates is n
∑
y≤x p(x)p(y), where the sum is now taken over all such pairs

(y, x). In order to get a lower bound for this expression, we choose the distribu-
tion p(x) so as to minimize n

∑
y≤x p(x)p(y) under the constraint

∑
x p(x) = 1.

In fact, this optimization problem is not hard to solve. Define the support
of a distribution to be the set of all x with p(x) > 0. First we claim that, in
some optimal solution, the support is an antichain (set of pairwise incomparable
vectors) in the set of t-bit vectors partially ordered by ≤. If the support A is
not an antichain, take some minimal vector y ∈ A that is smaller than some
other vectors in A, and move p(y) arbitrarily to these larger members of A.
It is easy to see that this cannot increase our double sum (since no further
“comparable pairs” are created). Hence we can repeat this manipulation until A
is an antichain. But then our double sum simplifies to n

∑
x∈A p(x)2. A sum of



squares of numbers with fixed sum is minimized if all these numbers are equal.
With a := |A| we get na(1/a)2 = n/a expected candidates. In order to keep
this number below c, we need a ≥ n/c. Due to Sperner’s Theorem [26, 21], the
largest antichain in the partial order of t-bit vectors has size a =

(
t
t/2

)
. Thus,

the known lower bound log a+ 0.5 log log a for t yields the asserted lower bound
in argument n.

To conclude, when the defective is chosen at random, then any deterministic
strategy with fewer queries returns a candidate set whose expected size is not
bounded by c. Hence there exists an element v such that, if v is the defective,
more than c candidates actually remain. With Yao’s technique (see, e.g., Section
2.2.2 in [23]), the same lower bound follows for randomized designs. ut

The results so far were formulated for the case of a known d, or more real-
istically, a known upper bound d. With an additional stage using a procedure
from [6] we get rid of this restrictive assumption. For this we need a slight adap-
tation of a result from [6] saying that O(log n) nonadaptive random queries are
sufficient to find, with any fixed success probability, an upper bound O(d) for d.
The basic idea is to test random pools of exponentially growing size, and then
the cut-off point between negative and positive pools gives an estimate of d. We
remark that Ω(log n) queries are also necessary, at least for some restricted but
very natural type of random pools, as shown in [7].

Theorem 5. For an arbitrarily small fixed g > 0 and for any fixed constant
success probability 1 − ε, using (d + g) log n + O(d log d) queries in three stages
we can correctly identify all d defectives even without prior knowledge of d.

Proof. In stage 1 is we use g log n pools to output an upper bound O(d) for d,
where the hidden constant in O(d) depends only on g and on a prescribed failure
probability (of underestimating d) [6]. Stage 2 and 3 consist of the strategy from
Theorem 1, with the only modification that the number q of cells is chosen based
on the upper bound for d returned by stage 1. Since this upper bound is O(d),
only the constant factor in the O(d log d) term is affected. ut

Note that also this result gets arbitrarily close to the entropy lower bound as
n grows. Moreover, factor 1+g/d of the dominating term d log n can be bounded
arbitrarily close to 1, uniformly for all d (by choosing g small enough), and for
every fixed g it converges to 1 for growing d. An open question is whether we
can accomplish the same characteristics as in Theorem 5 already in two stages.
If d happens to be o(log n/ log log n) (but the magnitude of d is still unknown in
advance), we can actually manage this task in two stages, by applying the strat-
egy from Theorem 1 or 3 with some q = o((log n/ log log n)2). But we conjecture
that this is no longer possible for larger d.

3 Linear versus Sublinear Growth of the Defectives

The previous results hold for cases when d grows slower than n. However, in
many practical settings one would rather expect a constant rate of defectives



r := d/n. In the following we also address this case. We assume r to be known in
advance, otherwise we can first estimate r by O(log n) randomized nonadaptive
group tests [6]. While the hidden constant depends on the accuracy of estimating
r, the query number becomes negligible as n grows, since log n/(d log(n/d)) =
log n/(nr log(1/r)) tends to 0.

This section consists of two parts. As a benchmark we first discuss adaptive,
i.e., sequential testing. Then we show that 4 stages are enough to achieve a
similar test complexity.

We call the model of group testing with a specified number d of defectives
(which is either a known or a maximum number) the combinatorial model. In
the statistical model of group testing, elements are defective independently and
with some fixed probability r. When we have a strategy S for the statistical
model and an input with d defectives, we may shuffle the elements and then
apply strategy S for r = d/n. Since pools being significantly larger than 1/r are
almost certainly positive and give little information, we can restrict pools to sizes
O(1/r) regardless of n. Thus, for large n the statistical model with probability
r can be adopted instead of the combinatorial model with exactly d defectives.
In the remainder of the section we assume the statistical model.

The entropy lower bound is now r log(1/r) + (1 − r) log(1/(1 − r)) queries
per element, or equivalently,

log(1/r) + (1− r) log(1/(1− r))/r

queries per defective. This follows easily from the additivity of entropy. For small
r this simplifies to log(1/r) + log e queries per defective. It might be interesting
to notice that this lower bound also holds for any randomized strategy that
identifies d defectives in the combinatorial model, although an exact d means
some more prior knowledge for the searcher. This follows from a more general
fact (not referring especially to the group testing problem):

Proposition 1. Let H be a set of h hypotheses, and suppose that a searcher
can ask binary queries. Then no randomized strategy can guarantee to identify
the correct hypothesis using an expected number of less than log h queries.

Proof. Suppose that an adversary selects every hypothesis with probability 1/h
as the true one. Then any deterministic strategy needs an expected number
of at least log h queries, because every strategy can be viewed as a Huffman
code with the expected query number as the average path length, and then
the claim is easily seen from Huffman’s algorithm [16] applied to the equal-
probability case. From this, Yao’s lower bound technique yields the assertion as
follows. Any randomized strategy R can be seen as a probability distribution
on the deterministic strategies. Hence the expected query number of R on the
randomized input is at least log h. It follows the existence of a specific hypothesis
where R needs at least log h expected queries. ut

In our case, this lower bound is log
(
n
d

)
and amounts to the same bound

as before (with −o(1) terms neglected), by routine calculations using Stirling’s



formula. Recall that we aim at strategies with an expected query number as
close as possible to the lower bound. In a special type of sequential strategies,
elements are arranged as a sequence, in any fixed linear order, and then they
search for the leftmost defective by querying only pools that are prefixes of this
sequence. This restriction leads to a well-studied problem from quality control
[14, 15, 1]. Known results from there can be rephrased as follows.

Proposition 2. The group testing problem with fixed rate r of defectives can
be solved sequentially with log(1/r) + O(1) = (1 + o(1)) log(1/r) queries per
defective, where o(1) vanishes for r → 0. ut

The o(1) term cannot be avoided, even in sequential strategies. Therefore it
is interesting that this asymptotic behaviour, perhaps with an o(1) term going
slower to 0, can be achieved already in a small constant number of stages. For this
result we can, in the following, focus attention on “small” r, which also allows
us to neglect some technicalities like rounding. We stress that the announced
result does not follow from the techniques of Section 2: Observe that we needed
d log(n/d) + dM(d) queries, for some unbounded monotone function M . These
are log(1/r) +M(d) queries per defective, that is, the additive term would grow
infinitely with the input size even if r is fixed. In fact, we will need some more
stages to avoid that.

Finally, as a preparation we reconsider one of the strategies in [3] and present
a version that it guaranteed to find all defectives in two stages. Note that query
numbers stated below are meant to be expected numbers.

Lemma 4. In two stages using 1.9 log(1/r)+1 queries per defective, where r :=
d/n, we can identify all d defectives.

Proof. Query nonadaptively a sufficient number of random pools of size 1/r,
and discard the elements in negative pools. (The information in positive pools is
not used further.) Every non-defective shall be kept with probability at most er,
where e denotes Euler’s number. If k denotes the number of negative pools, it is
sufficient to have (1 − 1/(rn))k = er. For large n this can be transformed into
e−k/rn = er, hence k/rn = ln(1/r)− 1, which means ln(1/r)− 1 negative pools
per defective. Since a pool of size 1/r is negative with probability approximately
1/e, this stage needs e(ln(1/r) − 1) = 1.9 log(1/r) − e queries per defective. In
a second stage, the (1 + e)rn remaining candidates are tested individually, thus
the total number of queries per defective is 1.9 log(1/r) + 1. ut

Now we are ready for the main result. Basically it says that we can approach
the entropy lower bound in 4 stages when d = o(n).

Theorem 6. Group testing with defective rate r can be solved in four stages
using (1 + o(1)) log(1/r) queries per defective, where o(1) vanishes for r → 0.

Proof. We split the elements in disjoint cells of x/r elements, where x is a
free parameter. We choose x depending on r such that, limr→0 x = 0 but



limr→0 x log(1/r) =∞, which also implies limr→0 x/r =∞. The expected num-
ber of defectives in a cell is x. Below we will use well-known inequalities like
1− x < e−x < 1− x+ x2/2 and ex < 1 + x+ x2 (for small x).

Remember that we are going to prove an asymptotic bound. Since r → 0
but the cell size grows, the number of defectives in a cell follows, in the limit, a
Poisson distribution with expectation x. (We omit a detailed technical discussion
with error bounds.) In particular, we can assume that a cell has 0, 1, and more
than 1 defective with probability e−x, xe−x, and 1 − (1 + x)e−x, respectively.
We call these cells type 0, 1, and 2, respectively.

In stage 1 we simply query each cell, thus we recognize the type-0 cells, using
1/x queries per defective. In stage 2 we apply Lemma 3 to tell apart the type-1
and type-2 cells, and to find the unique defective in the type-1 cells. This needs

log(x/r) + (0.5 + o(1)) log log(x/r)

queries in each type-1 or type-2 cell, and identifies an e−x fraction of the defec-
tives. Here, o(1) denotes a term that vanishes for x/r → ∞. For every type-1
cell there exist on average

(1− (1 + x)e−x)/(xe−x) = (ex − 1− x)/x

type-2 cells, that is, (ex − 1)/x < 1 + x type-1 and type-2 cells per type-1 cell.
Hence we have used fewer than

(1 + x) log(x/r) + (0.5 + o(1)) log log(x/r)) + 1/x

queries per recognized defective, in stage 1 and 2. For x→ 0 and x/r →∞ this
simplifies to

(1 + o(1)) log(x/r) + 1/x < (1 + o(1)) log(1/r) + 1/x,

since log log grows slower than log.
In stage 3 and 4 we merge all type-2 cells and find the remaining defectives

using Lemma 4. They make up an 1 − e−x fraction of all defectives, and the
total size of type-2 cells is 1− (1 +x)e−x times the original number of elements.
Hence the defective rate is

r′ = r(1− e−x)/(1− (1 + x)e−x).

Due to Lemma 4 we need 1.9 log(1/r′)+1 queries per defective from type-2 cells,
which are

(1− e−x)(1.9 log(1/r′) + 1) < 1.9x log(1/r′) + x

queries per defective. Furthermore we have

1/r′ = (1− (1 + x)e−x)/(1− e−x) · (1/r).

This expression is smaller than

(1− (1 + x)(1− x))/(1− (1− x+ x2/2)) · (1/r) = x/(1− x/2) · (1/r).



Note that for x→ 0, the upper bound expression for 1/r′ tends to x/r. Thus we
have used

1.9x log(x/r) + x < 1.9x log(1/r) + x

queries per defective in stage 3 and 4.
The total number of queries per defective from all stages is still described by

(1 + o(1)) log(1/r) + 1/x.

Since limr→0 x log(1/r) = ∞, clearly (1/x)/ log(1/r) tends to 0, thus the 1/x
term is redundant. ut
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