
Pairs Covered by a Sequence of Sets

Peter Damaschke

Department of Computer Science and Engineering
Chalmers University, 41296 Göteborg, Sweden

ptr@chalmers.se

Abstract. Enumerating minimal new combinations of elements in a se-
quence of sets is interesting, e.g., for novelty detection in a stream of
texts. The sets are the bags of words occuring in the texts. We focus on
new pairs of elements as they are abundant. By simple data structures we
can enumerate them in quadratic time, in the size of the sets, but large
intersections with earlier sets rule out all pairs therein in linear time. The
challenge is to use this observation efficiently. We give a greedy heuristic
based on the twin graph, a succinct description of the pairs covered by
a set family, and on finding good candidate sets by random sampling.
The heuristic is motivated and supported by several related complexity
results: sample size estimates, hardness of maximal coverage of pairs,
and approximation guarantees when a few sets cover almost all pairs.

1 Introduction

1.1 Motivation and Aim

In a chronological sequence of texts about some topic, such as a news stream,
posts in social media, a timeline, etc., we may want to quickly understand what
is novel in each entry, or what caused peaks in the volume of news about a
topic. A simple approach is to determine new combinations of words. Ignoring
the order of words, grammar, etc., let us consider the data as a sequence of sets
(“bags of words”). The given bags may already be preprocessed: ignoring stop
words, stemming, identifying synonyms, etc.

Definition 1. Let B0, B1, B2, . . . , Bm−1 be a sequence of sets that we call bags.
For another bag B := Bm we call a subset X ⊆ B new at m, if X was not
already subset of an earlier bag: ∀i < m : X \Bi 6= ∅. Otherwise X ⊆ B is said
to be old at m. We call X ⊆ B minimal new at m, if X is new and also minimal
(with respect to inclusion) with this property.

For knowing all new sets it suffices to know the minimal new sets. In the case
of word sets, X can be a single new name or term, or a new pair, triple, etc., of old
words, indicating new connections. They often give a good intuitive description of
what is novel. Others can be understood only in context, or they are unrelated
and meet only by chance. But before judging the new sets semantically one
needs to find them first. Examples as below suggest that minimal new pairs are

abundant, and minimal new sets of h > 2 words are rare. This is expected since
X can be minimal new only if all its subsets appeared earlier.

Example. In a timeline of major discoveries in physics we should find an ar-
ticle about the first formulation of the law of conservation of energy. Then
{conservation, energy} is minimal new, as this combination is new, but the term
“energy” was coined earlier, and other conservation laws were formulated ear-
lier, e.g., conservation of matter. Other articles will deal with the prediction and
confirmation of electromagnetic waves. The pair {electromagentic, wave} is min-
imal new: They were totally unknown before, but physics had already dealt with
other waves (such as light waves, being unaware that they are electromagnetic,
too), and with other electromagnetic phenomena like induction.

Novelty mining and novelty detection in streams is extensively studied [2,
11, 12]. The subject is also related to minimal infrequent itemsets and mining
emerging patterns [1, 8, 7]. However, in the present work we do not apply any
language processing or machine learning to extract news or to produce online
summaries, rather we explore the complexity of a combinatorial approach that
relies on a very simple idea but gives meaningful hints to novelty. We consider
the following problem, applied to sequences of texts like short articles.

Problem. Given a sequence of bags B0, B1, B2, . . ., enumerate the minimal new
subsets X in each bag.

X is minimal new at m if and only if X is a minimal hitting set in the family
of sets {B \ Bi | i < m}, that we call hyperedges. A set family is also called a
hypergraph, and a hitting set (or transversal) intersects all hyperedges.

Define n := max |Bi|, let m be the number of hyperedges (bags), and let c
denote the number of minimal hitting sets (new sets at index m). Note that c is
known only in hindsight, nevertheless one can express time bounds in terms of
c. We may also fix a small number h and enumerate only hitting sets of size at
most h. In particular, we focus on h = 2 due to the above motivation.

Algorithms for several parameterizations of minimal transversal enumeration
are given in [4]: One can enumerate them with O(n2m2em/e) delay, hence in
O(n2m2em/ec) time, or alternatively in O(n2c3ec/em) time. Actually one can
enumerate any number j ≤ c of minimal hitting sets in O(n2j3ej/em) time.)

A time bound is also provided in [4] for the case when the elements have
complementary degree at most q � m, that is, every element appears in all but
at most q hyperedges. (However, their result addresses only the verification of
a given enumeration of the minimal transversals, not the construction.) In our
application, the assumption means that words appear in at most q bags Bi, with
q � m. This is sensible, because more frequent words are common words or stop
words that are not informative and may be ignored.

1.2 Overview of Contributions

First we fill the mentioned gap in the parameterized complexity of transversal
enumeration, but then we focus on small transversal sizes h, due to our motiva-
tion. The minimal new subsets of size h in each bag of size n in a sequence can

be enumerated in O(nh) time. The rest of the work deals with the most relevant
case h = 2, that is, new pairs. Note that we do not improve upon the O(n2)
worst-case time per bag, but we study heuristics to save time for special struc-
tures that are however likely to appear in streams of topic-wise related texts:
Large overlaps with earlier bags allow to recognize old pairs in (ideally) linear
time. Saving a factor up to n in the processing time is worthwhile. Twin graphs
give a succinct description of the pairs covered by a family of bags. We use them
within a simple greedy heuristic to cover many old pairs. The greedy approach
has known performance guarantees. We combine it with random sampling to
find good candidate bags fast enough. Several complexity results justify this ap-
proach: We derive a logarithmic upper bound on the number of elements to be
sampled in order to find bags with nearly largest overlaps with a given bag. We
show that covering the exact maximum number of pairs by a prescribed number
r of bags is W [1]-hard. We also propose to build larger bags from the given ones
and show that some ternary set operation is sufficient for that. A final technical
section is devoted to approximation guarantees for the number of covered pairs,
if a few bags cover almost all pairs. We give a combinatorial approach to prove
such results, based on special minimal set families and symmetries in convex
optimization problems. Much of the latter parts is work in progress. We point
to several open problems, highlighted as “Research question”. The practical sce-
nario might also be turned suitably into online problems. Besides the complexity
aspects it would be interesting to test the approach on extensive data sets. – Due
to lack of space, several proofs and proof details are omitted in this version.

2 Finding Minimal New Sets

2.1 Transversals for Small Complementary Degree

Theorem 1 below might result from [4] by reductions, however we present a self-
contained algorithm description. Given a hitting set H and an element s ∈ H,
we call E a private hyperedge if s ∈ E and s is the only element of H ∩ E. A
hitting set H is minimal if and only if every s ∈ H has at least one private
hyperedge. We can assume that no hyperedge is subset of another one.

Theorem 1. In hypergraphs H with complementary degree at most q we can
enumerate all minimal hitting sets in O(n3mq2eq/ec) time.

Proof. Loop through the O(nm) pairs (s, E) of any element s and any hyperedge
E 3 s and do the following from scratch. Delete all hyperedges F 3 s (they are
hit by s) and all elements in E (in order to keep E private for s). At most q
hyperedges remain, from which the elements of E are deleted. No hyperedge be-
comes empty, since no other hyperedge is a subset of E. In this “small” instance
enumerate all minimal hitting sets H. Every H ∪ {s} is a minimal hitting set
of H: It intersects all hyperedges, every element has a private hyperedge since
H was minimal, and s has the private hyperedge E. Conversely, all c minimal
hitting sets of H are obtained in this way. To avoid duplicates, first sort the ele-
ments arbitrarily, and demand the above s to be the first element in the hitting

sets, that is, delete also elements before s. Now some pairs (s, E) yield no solu-
tion since some hyperedges lose all their elements, but we recognize these cases
instantly. The “small” instances are solved by the O(n2m2em/e)-delay algorithm
for hitting set enumeration from [4]; replace m with q. Some original edges may
become identical due to deletions, which does not affect the time bound. Finally
note that every “small” instance is prepared in O(nm) time. ut

2.2 Enumerating the Minimal New Sets in a Sequence

Unlike the previous parameterizations, for the text stream applications we need
small transversal size h and time bounds that are polynomial in q and m and also
have a better dependency on n. Naive exhaustive search takes every X ⊆ Bm,
|X| ≤ h, and checks in O(hq) time whether X intersects all hyperedges Bm \Bi.
(For each element s we maintain the at most q indices with s ∈ Bi. An s ∈ X
misses at most q hyperedges, and we see whether the other elements of X hit
them.) This way we would need O(hqnh/h!) = O(hq(en/h)h) = O(nh·q·h(e/h)h)
time to find all minimal new sets of size h in Bm. However we can avoid checking
all X ⊆ Bm against all previous Bm \ Bi (i < m): We generate the candidate
sets X with increasing sizes and, due to minimality, stop as soon as all further X
would be supersets of already detected minimal new sets at m. More importantly,
we can use information about the minimal new sets at earlier i < m, as detailed
below.

Let f(X) := min{i|X ⊆ Bi}, and let f(X) be undefined if no such i exists.
Note that f(X) = i if and only if X is new at i (but not necessarily minimal).
Furthermore, X is then old at any further index j > i. In the following we assume
for simplicity that a dictionary operation costs constant time per element. We
store some sets X along with f(X) in a dictionary. In particular, whenever a
set X is minimal new at i, we store “f(X) = i”. This is no extra work, since
our aim is to enumerate all minimal new sets. So suppose that we have already
determined all minimal new sets with at most h elements at all i < m. In
particular, every single element is new as soon as it appears for the first time.
Hence we can check every single element for being new, in O(nm) time in total.
After these precautions we get for B = Bm:

Theorem 2. The minimal new subsets of size at most h in a bag of n elements
can be enumerated in O(nh · 2h/h!) time.

Proof. Suppose that we have already determined all minimal new sets with fewer
than j elements. Consider any set X ⊆ Bm of j old elements, such that no Y ⊂ X
is new at m. In order to check whether X is new at m, thus minimal new, we
proceed as follows. If a value f(X) < m is stored, then X is old. Suppose that no
f(X) value is stored. Then we must figure out whether X ⊆ Bi for some i < m.
Assume that such an index exists, and let i be the smallest one. Since no f(X)
value is in place, X is not minimal new at i, and this is possible only if some
nonempty Y ⊂ X is minimal new at i, in particular, f(Y) = i has been stored.
Thus we must only look up the 2j − 2 values f(Y) and, if f(Y) is stored, check

whether X ⊆ Bf(Y). If we find such Y , then we conclude that X is old at m,
and we can also store f(X) which equals the smallest such f(Y). Otherwise we
conclude that X is minimal new at m, and we also store f(X) := m. Altogether
we can decide in O(2j) time whether a set X of size j is minimal new. The
number of sets X to check is at most

(
n
j

)
< nj/j!. The procedure is repeated for

increasing j up to h, and j = h dominates the time bound. ut

3 A Heuristic for Minimal New Pairs

3.1 Below the Worst-Case Quadratic Time

The remainder of the paper deals with the case h = 2 only. As argued earlier,
minimal new pairs, i.e., new pairs of old elements, seem to be very good indicators
of novelty in text streams. (Also note that the case h = 1 is trivial.) Let Cj :=
Bj ∩

⋃
i<j Bi denote the set of old elements in Bj . We define the index set of an

element s ∈ Cj as {i| i < j, s ∈ Bi}. While watching the sequence we can collect
the old elements and thus obtain the sets Cj in O(

∑
j |Bj |) overall time, and

maintain the index sets in O(
∑

j |Cj |) overall time. After this trivial auxiliary
processing, the problem for each bag can be stated as follows:

Problem. In a sequence of bags B0, B1, B2, . . . enumerate the new pairs in
C := Cm = Bm ∩

⋃
j<mBj , that is, pairs that are not covered by earlier Bj ,

j < m. Besides the Bj , the index sets of all elements in C are already given. Let
n := |C|. We also refer to the Bj ∩ C as bags, without risk of confusion.

By Theorem 2 we can recognize the new pairs in C in O(n2) time in the
worst case. The interesting matter is to enumerate them faster if only a minority
of pairs in C is new: Note that, once we detect a large bag Bj ∩ C, we can
immediately exclude the pairs therein as candidates for new pairs, in O(|Bj∩C|)
time rather than O(|Bj∩C|2). Large intersections are likely in streams of related
texts, as they tend to form topics clusters with similar word content.

Driving the idea one step further, we may select a number r of bags, exclude
all pairs covered by them, and test only the uncovered pairs for being new,
each in O(1) time. However the total time for finding such bags and listing the
uncovered pairs must be o(n2), therefore we will have to use, in general, some
r < m bags. In the following we elaborate on this idea.

3.2 The Twin Graph

Suppose that we have already selected r bags. The set of pairs (not) covered by
them is completely described by the following structure.

Definition 2. With respect to a set of r bags, any two elements of C with the
same index set (i.e., elements being in exactly the same bags) are called twins.
This yields an equivalence relation on C whose t equivalence classes are called
twin classes. The twin graph is the graph whose vertices are the twin classes,
and where any two vertices with disjoint index sets are joined by an edge.

Some properties of the twin graph are obvious: It has a self-loop only at the
vertex representing elements that are in no bag (if existing). The uncovered pairs
of elements are exactly those in any two adjacent twin classes. The twin graph
has t ≤ min(n, 2r) vertices and at most 1

2 min(t2, 3r) edges, since the r indices
can be partitioned in 1

2 · 3
r ways in two disjoint index sets and the rest.

Proposition 1. The twin graph of r bags can be constructed iteratively, that is,
by inserting the bags one by one, in O(r · (min(t2, 3r) + n)) time.

Proof. Every bag may split some twin classes in two smaller ones. These split-
tings are done in O(n) time per bag, hence O(rn) time overall. Index sets are
stored as a tree in an obvious way. To obtain the edges we either check the O(t2)
pairs of twin classes for disjointness of their index sets in O(rt2) time, or we take
all O(3r) possible pairs of disjoint index sets and check their existence, which
can be done in O(r) time for each pair. ut

3.3 Greedy Partial Set Cover of Pairs

We need to determine the bags to be inserted and to update their twin graph.
We can stop as soon as inserting another bag, that covers p new pairs, requires
O(p) time, i.e., the time needed to simply test these pairs individually for being
new, as in Theorem 2. As Proposition 1 indicates that the time to update the
twin graph can grow exponentially in the number r of bags, let us fix a number
r of bags (which may however depend on n, say, some r = o(log n)), and aim at
solving the following problem.

Partial Set Cover of Pairs. Given a family of bags and a number r, identify
r bags that together cover the maximum number of pairs.

Proposition 2. Partial Set Cover of Pairs is NP-complete, and also W [1]-
complete in the parameter r.

Proof. Reduction from Independent Set. Omitted due to space limits. ut

Due to this negative observation we resort to a greedy approach: The Par-
tial Set Cover problem asks to cover a maximum number of elements by a
prescribed number r of bags. The greedy algorithm for (Partial) Set Cover
iteratively adds to the solution a bag with the largest number of yet uncov-
ered elements. The number of elements covered in r greedy steps is at least a
1− (1−1/b)r fraction of the optimum that could be covered by b bags. This was
shown in [5], generalizing an earlier result in [10, 9] for r = b. This bound is also
tight for r = b [10], and the worst-case example for r = b also works in general.

Now let P be the set of the
(
n
2

)
pairs of elements in C, and let Pj be similarly

defined for each Bj∩C. We refer to the Pj also as bags, without risk of confusion.
Since the Pj and P are made of pairs of other elements, Partial Set Cover
of Pairs is a special case of Partial Set Cover. Thus, the greedy algorithm
gives at least the same approximation guarantee.

Research question. Figure out the approximation ratio for greedy Partial
Set Cover of Pairs. We conjecture that it is significantly better than for
Partial Set Cover. However, the case of pairs appears to be intrinsically
more difficult. While the proof in [5] is merely based on the pigeonhole principle,
we must also deal with the twin graph structure. (Section 5 will give a method
to obtain some results for the case when r bags cover almost all pairs.)

4 Supplementary Results

4.1 Sampling Large Intersections

Since o(n2) time is mandatory, implementation of the greedy heuristic needs
some care. Besides updating the twin graph we have to count in the time for
finding the next bag that covers as many further pairs as possible. As long as
m is small compared to n we can afford computing all intersections Bj ∩ C in
O(mn) time. For larger m we may sample some random elements or pairs from
C, use their index sets (of size at most q, typically much smaller than m) to
count their occurences in the given bags, and take the bags with most hits.

Theorem 3. Suppose that the largest bag has (1−x)n elements, and we sample
s random elements and return the bag with the largest number of hits. Then
we fail to find a bag with at least (1 − y)n elements with probability at most
2m · exp(−(y − x)2s/16y). In particular, we get a failure probability below any
prescribed constant by choosing s = Θ(logm · y/(y − x)2).

Proof. By Chernoff bounds. Omitted due to space limits. ut

In particular, we need O((q logm)/y) time to find a bag whose size is at least
1 − y of the maximum size of a bag, where q denotes the maximum size of the
index sets. (Fix x in Theorem 3 and note that we must traverse the index set of
every sample.) While Theorem 3 was formulated for elements, it applies literally
to sampling of pairs, too, and can be used in each step of the greedy heuristic:
Some bags are already selected, and they form a twin graph with t vertices. Then
the uncovered pairs form the edge sets of O(t2) cliques and bicliques of known
sizes, thus one can easily sample random uncovered pairs from them.

4.2 Building Larger Bags

For a sequence of bags B0, B1, B2, . . . , Bm−1 consider the graph G whose vertices
are the elements, where two vertices u, v are adjacent if and only if u, v ∈ Bi for
some i. A clique edge cover in a graph is a set of cliques that cover all edges.
Hence the bags form a clique edge cover of G. However, G may contain further,
larger cliques, and using them besides the given bags within our heuristic is
beneficial, since they cover more of the old pairs. If we can quickly find and
build some of these larger cliques, we can use them later in the sequence and
make later steps more efficient. Bags with large intersections inside the current

bag Bm (that are anyway used to cover many old pairs in Bm) are likely to
have large intersections also outside Bm. We may apply the following ternary
set operation ∆ on them: ∆(X,Y, Z) := (X ∩ Y) ∪ (X ∩ Z) ∪ (Y ∩ Z). Note
that each pair of elements in ∆(X,Y, Z) is also contained in some of X,Y, Z. In
particular, if X,Y, Z are any three cliques, then ∆(X,Y, Z) is a clique, too. A
neat fact is that all maximal cliques can be generated from any clique edge cover
using only the ∆ operation. This supports the idea to apply ∆ to bags that are
anyhow considered in a step of the heuristic.

Proposition 3. Given a graph along with a clique edge cover K, we can obtain
every maximal clique solely by repeated ∆ operations applied to cliques of K.

Proof. By induction on the size. Omitted due to space limits. ut

The sizes of bags produced by ∆ can grow quickly, by a factor up to 3
2 (if

X = Y ′∪Z ′, Y = X ′∪Z ′, Z = X ′∪Y ′ for three disjoint sets X ′, Y ′, Z ′ of equal
size. On the combinatorial side it would be interesting to know what cliques size
are guaranteed to exist in a graph with few non-edges compared to

(
n
2

)
. Turán’s

theorem [13] states, informally, that a graph with few non-edges always has a
large clique. We would be interested in a generalization to unions of r cliques:

Research question. Given r, n, u, what is the guaranteed number of edges that
can be covered by r cliques, in any graph of n vertices and

(
n
2

)
−u edges? While

some ideas from the proof of Turán’s theorem generalize to a union of r cliques,
the extremal problem apparently becomes harder.

We remark that another conceivable approach for obtaining larger bags would
be to see if some r bags can be replaced with k < r new bags that cover the same
edges. This amounts to the Clique Edge Cover problem parameterized by k.
This NP-hard problem is fixed-parameter tractable in parameter k [6], however
with doubly exponential time bound, and non-existence of a polynomial kernel
[3] leaves little hope to reduce this asymptotic worst-case bound.

5 Approximations if a Few Bags Cover All Pairs

5.1 Setup and Preparations

Proposition 2 raises the question: What fraction of pairs in C can we cover within
some O(mO(1)n) time bound? Due to the context, we are interested in the case
that r bags exist that cover all pairs in C, subject to some small fraction. Note
that m may here denote the number of sampled candidate bags (having large
intersections with C) rather than the length of the entire sequence of sets.

More specifically, suppose that some r bags cover (1−δ)
(
n
2

)
pairs, where δ > 0

is a small number. Consider their twin graph (Definition 2), with t vertices. If two
adjacent twin classes have

√
δn elements each, then already δn2 pairs of elements

are uncovered, contradicting the assumption. Hence the twin graph has a vertex
cover of twin classes with fewer than

√
δn elements each. The complement of

this vertex cover is an independent set in the twin graph, thus representing a
subset C ′ of C with at least (1− t

√
δ)n elements in which all pairs are covered.

(Actually the fraction is closer to 1; the given bound is coarse only due to the
general argument.) Thus we may clean up our question as follows:

Problem. In a family of m bags, suppose that r of them cover all pairs in C ′,
for some C ′ ⊂ C of size n′ := |C ′| > (1−ε)|C|. (But note that C ′ is not specified

in the input.) What number γ
(
n′

2

)
of pairs can we at least cover within some

O(mo(r)n) time bound? We call the fraction γ the coverage.

In the following we work with the complement of the twin graph restricted
to C ′, which is a clique of some t′ ≤ t vertices whose edges are covered by r
smaller cliques (bags). We suppose that r is minimal, that is, r − 1 of the bags
would not cover all pairs. Let A be the incidence matrix of these bags: A has
a row for every bag, a column for every twin class, and entries aij = 1 if bag
i contains the twin class j, and aij = 0 otherwise. Hence every column is the
characteristic vector of an index set. A pair of twin classes is private for a bag
if that bag covers that pair but none of the other r − 1 bags does. We establish
some properties of A. Since r is minimal, no row is contained in another row,
and since the bags cover all pairs, the columns pairwise intersect. In other words:

(1) For any two rows i and i′ there exists some columns j and j′ such that
aij = ai′j′ = 1 and aij′ = ai′j = 0.

(2) For any two columns j and j′ there exists some row i with aij = aij′ = 1.

Since we are only interested in worst-case approximation ratios, we can as-
sume further restrictions: Deletion of any twin class from any bag must destroy
some private pair, since otherwise there would exist a worse instance with smaller
bags, such that the coverage can only decrease. In other words, every twin class
in a bag belongs to some private pair of that bag. More formally:

(3) For each entry aij = 1 there exists a column j′ such that aij′ = 1, and
ai′j = 0 or ai′j′ = 0 holds for each row i′ 6= i.

We remark that (3) implies (1). Another conclusion is that any two index
sets are incomparable, that is, not in subset relation:

(4) For any two columns j and j′ there exists some rows i and i′ such that
aij = ai′j′ = 1 and aij′ = ai′j = 0.

To show (4), let i′′ be some row according to (2): ai′′j = ai′′j′ = 1. There
must be some row i where aij 6= aij′ , since equal columns would represent the
same twin class. Suppose aij = 1 and aij′ = 0. Due to (3), there exists a column
j′′ such that aij′′ = 1. Since the pair represented by aij = aij′′ = 1 is private
and ai′′j = 1, it also follows ai′′j′′ = 0. Condition (2) applied to j′ and j′′ yields
the existence of another row i′ with ai′j′ = ai′j′′ = 1. Finally, since the pair
represented by aij = aij′′ = 1 is private and ai′j′′ = 1, it follows ai′j = 0.

The following consideration of symmetries will help reduce case distinctions.
Automorphisms of an optimization problem are permutations of the variables

that leave the set of constraints invariant. An orbit of the automorphism group
is a set of variables mapped onto each other by automorphisms; clearly they
form equivalence classes. For convex minimization problems it is known that the
convex combination of any two minimal solutions is a minimal solution, too.
From this it follows: If we take any minimal solution, apply all automorphisms
to the variables, and take component-wise the average of all these solutions, we
obtain a minimal solution where all variables in each orbit have equal values.

Consider an optimization problem with variables x1, . . . , xt and y, with the
objective min y, and constraints gj(x1, . . . , xt) ≤ y and hj(x1, . . . , xt) ≤ 0, where
all gj and hj are convex functions. Such a problem is convex and can be rephrased
as min maxj gj(x1, . . . , xt) under the constraints hj(x1, . . . , xt) ≤ 0.

5.2 Illustration: Some Approximation Guarantees

Now we apply these tools to determine set families that minimize certain guar-
anteed approximation ratios. Since only o(n2) time bounds matter, the smallest
r are most relevant for us. To avoid technicalities we assume large enough n
such that we can neglect lower-order terms and the effects of rounding fractional
numbers to integers. The case of r ≤ 2 bags is trivial. Let O(mω) be a time
bound for multiplying m×m matrices.

Theorem 4. If r of m < n bags cover all pairs in C, we find r such bags in
O(mω−1n) = o(m2n) time if r ≤ 4, and in O(mr−2n+ (2m)r) time if r > 4.

Proof. Let A again denote the 0, 1-incidence matrix whose rows represent bags.
First we exclude in O(mn) time the trivial case that some row has only 1s. We
call a set R of rows unsuitable if R has some all-0 column, and suitable otherwise.
Let J be the graph whose m vertices are the rows, with an edge in every suitable
pair. We compute J by switching 0s and 1s in A and multiplying this matrix
with its transpose in O((n/m)mω = O(mω−1n) time. Let R denote a set of r
rows (bags) or the corresponding r × n submatrix of A. For r = 3 we have: R
covers all pairs if and only if any pair of rows in R is suitable. For r ≥ 4 we
have: R covers all pairs if and only if R is not the union of two unsuitable sets
S, T with |S| + |T | = r and 2 ≤ |S| ≤ |T | ≤ r − 2. (Recall that the trivial case
was ruled out.) For r = 3 we need to find a triangle in J , which is well known
to work in time O(mω) = O(mω−1n), as m < n was assumed. For r = 4 we
also need to find a triangle plus any fourth vertex, or a star of three edges in J .
The latter is trivially done in O(m2) = O(mn) time. For r > 4 we determine all
unsuitable sets of at most r− 2 rows in O(mr−2n) time. The condition for each
R is then checked in O(2r) time. ut

A slight relaxation of this algorithm handles the case when r bags cover all
pairs in C ′: Then we call a pair of rows suitable when at most εn columns lack a
1, apply the arguments to C ′, and find r bags with coverage 1−Θ(ε) in the same
time. – The following proofs show the existence of bags with certain minimum
numbers of elements in C ′, implying coverage values if we would choose these
bags. Actually we select bags of that size in C rather than in the unknown
C ′ ⊂ C, which can only increase the coverage due to smaller overlaps.

Proposition 4. If three out of m bags cover all pairs in C ′, then we can find
one bag with coverage 4/9 in O(mn) time, and two bags with coverage 7/9 exist.

Proof. We remark that the pigeonhole principle would only yield coverage 1/3
and 2/3, respectively. Any three bags satisfying conditions (1)–(4) have the form
T1 ∪ T2, T1 ∪ T3, T2 ∪ T3, with twin classes T1, T2, T3. From the m given bags
we take one bag, and a pair of bags, respectively, with the largest coverage.
Let xi := |Ti|. For a lower bound on the coverage we minimize the maximum
number of pairs covered by one or two of the considered bags. The numbers of
covered pairs are convex functions of the xi, the only orbit is {x1, x2, x3}, and
the constraints xi ≥ 0 and x1+x2+x3 = n′ are linear. Now the above symmetry
consideration yields that x1 = x2 = x3 = 1

3 is the minimal solution in both cases,
and finally, simple calculations yield the ratios. ut

Two bags with coverage 7/9 could be found in O(m2n) time, but Theorem
4 achieves already more. We mention the coverage 7/9 only as a benchmark for
the next result that sacrifices some coverage for speed.

Proposition 5. If three out of m bags cover all pairs in C ′, then we can find
two bags with coverage 56/81 > 0.69 in O(mn) time.

Proof. A greedy strategy first takes a largest bag G and then adds a second bag
that covers a maximum number of further pairs. Three bags that minimally cover
all pairs have a structure as in Proposition 4, with each twin class further split in
two by G. This results in six twin classes T1, . . . , T6 such that G = T1 ∪ T2 ∪ T3,
and T1∪T2∪T4∪T5, T2∪T3∪T5∪T6, T1∪T3∪T4∪T6 are mentioned three bags.
Note that x1 +x2 +x3 ≥ 2

3n
′, and the second greedy step can take some of these

three bags (or a better one). For a lower bound on the coverage we minimize
the maximum number of pairs covered by these three choices. The numbers
of covered pairs are convex functions of the xi, the orbits are {x1, x2, x3} and
{x4, x5, x6}, and the constraints xi ≥ 0, x1+x2+x3 ≥ 2

3n
′ and x1+ · · ·+x6 = n′

are linear. Symmetry consideration yields the existence of a minimal solution
where x1 = x2 = x3 and x4 = x5 = x6. Moreover, x1 + x2 + x3 = 2

3n
′ is the

worst case, and simple calculations yield the ratios. ut
Proposition 6. If four out of m bags cover all pairs in C ′, then we can find
one bag with coverage 9/25 in O(mn) time.

Proof. By case inspections, any four bags satisfying the conditions (1)–(4) have
the form T1∪T2∪T3, T1∪T4, T2∪T4, T3∪T4, with twin classes T1, T2, T3, T4, and
then similar arguments as above apply, with orbits {x1, x2, x3} and {x4}. ut
Research question. Systematically explore the trade-off between time and
coverage for any r and number s of greedy bags. The numbers of pairs covered
by bags are sums of squares and products of the induced twin class sizes, thus
always convex. But with growing r and s the task becomes more challenging, as
we need to understand the combinatorics of the “minimal” coverings and their
binary incidence matrices that obey conditions (1)–(4). It might be possible to
combine the pigeonhole principle with our stronger method. Moreover, does the
relationship to matrix multiplication also yield lower time bounds (see [14])?

Acknowledgment

This work has been supported by the Swedish Foundation for Strategic Research
(SSF) through Grant IIS11-0089 for a data mining project entitled “Data-driven
secure business intelligence”. The author also wishes to thank the referees for
careful reading.

References

1. Boros, E., Gurvich, V., Khachiyan, L., Makino, K.: On Maximal Frequent and
Minimal Infrequent Sets in Binary Matrices. Ann. Math. Artif. Intell. 39, 211–221
(2003)

2. Ceci, M., Appice, A., Loglisci, C., Caruso, C., Fumarola, F., Valente, C., Malerba,
D.: Relational Frequent Patterns Mining for Novelty Detection from Data Streams.
In: Perner, P. (Ed.) MLDM 2009. LNCS, vol. 5632, pp. 427–439, Springer, Heidel-
berg (2009)

3. Cygan, M., Kratsch, S., Pilipczuk, M., Pilipczuk, M., Wahlström, W.: Clique Cover
and Graph Separation: New Incompressibility Results. ACM Trans. Comput. The-
ory 6 (2014), Article 6

4. Elbassioni, K.M., Hagen, M., Rauf, I.: Some Fixed-Parameter Tractable Classes of
Hypergraph Duality and Related Problems. In: Grohe, M., Niedermeier, R. (Eds.)
IWPEC 2008. LNCS, vol. 5018, pp. 91–102, Springer, Heidelberg (2008)

5. Elomaa, T., Kujala, J.: Covering Analysis of the Greedy Algorithm for Partial
Cover. In: Elomaa, T., Mannila, H., Orponen, P. (Eds.): Algorithms and Applica-
tions. Essays Dedicated to Esko Ukkonen on the Occasion of His 60th Birthday,
LNCS 6060, pp. 102–113, Springer, Heidelberg (2010)

6. Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Data Reduction and Exact
Algorithms for Clique Cover. ACM J. Exper. Algor. 13 (2008)

7. Gupta, A., Mittal, A., Bhattacharya, A.: Minimally Infrequent Itemset Mining
using Pattern-Growth Paradigm and Residual Trees. In: Haritsa, J.R., Dayal, U.,
Deshpande, P.M., Sadaphal, V.P. (Eds.) 17th Int. Conf. on Management of Data,
pp. 57–68, Allied Publishers, Bangalore (2011)

8. Haglin, D.J., Manning, A.M.: On Minimal Infrequent Itemset Mining. In:
Stahlbock, R., Crone, S.F., Lessmann, S. (Eds.) DMIN 2007, pp. 141–147, CSREA
Press 2007

9. Hochbaum, D.S.: Approximating Covering and Packing Problems: Set Cover, Ver-
tex Cover, Independent Set, and Related Problems. In: Hochbaum, D.S. (Ed.)
Approximation Algorithms for NP-hard Problems, pp. 94–143. PSW Publishing,
Boston (1997)

10. Hochbaum, D.S., Pathria, A.: Analysis of the Greedy Approach of Maximum k-
Coverage. Naval Research Quarterly 45, 615–627 (1998)

11. Karkali, M., Rousseau, F., Ntoulas, A., Vazirgiannis, M.: Efficient Online Novelty
Detection in News Streams. In: Lin, X., Manolopoulos, Y., Srivastava, D., Huang,
G. (Eds.) WISE 2013. LNCS, vol. 8180, pp. 51–71, Springer, Heidelberg (2013)

12. Karkali, M., Rousseau, F., Ntoulas, A., Vazirgiannis, M.: Using Temporal IDF for
Efficient Novelty Detection in Text Streams. CoRR abs/1401.1456 (2014)

13. Turán, P.: ”On an Extremal Problem in Graph Theory. Matematikai és Fizikai
Lapok 48, 436–452 (1941)

14. Williams, V.V., Williams, R.: Subcubic Equivalences Between Path, Matrix and
Triangle Problems. In: FOCS 2010, pp. 645–654, IEEE Computer Society (2010)

Appendix

Proof of Proposition 2

We give a reduction from the NP-complete and W [1]-complete Independent
Set problem. Let G = (V,E) be any graph. For every vertex v ∈ V we create
a set Kv. Initially, every Kv consists of only one element, and these elements
for all v ∈ V are distinct. For every edge vw ∈ E we add two fresh elements to
both Kv and Kw, note that Kv ∩Kw now contains one pair. Eventually we add
further distinct elements to all Kv such that they all get equal sizes. A set of
r bags of equal sizes covers the maximum possible number of pairs if and only
if all these bags are disjoint, that is, if the corresponding vertices of G form an
independent set. This establishes equivalence.

As an additional remark, this reduction constructs instances with a small
coverage of pairs, however we can add to every Kw some large common set of
further elements. Hence the problem remains W [1]-complete also in instances
interesting for us, where r bags cover a large fraction of all pairs.

Proof of Theorem 3

An undesired event is that a larger bag gives a smaller count. First consider any
two bags Bi ∩ C and Bj ∩ C, and define x and y by |(Bi \ Bj) ∩ C| = xn and
|(Bj \ Bi) ∩ C| = yn, where x < y. We sample s random elements from C with
repetition. Hence the expected number of hits of both set differences is together
(x + y)s. By a Chernoff bound, the probability to hit the set differences fewer
than (1− a)(x+ y)s times is at most exp(−a2(x+ y)s/2).

We consider the event that the smaller set difference is hit more often than the
larger one, first on the condition that we hit them together exactly (1−a)(x+y)s
times. This conditional event happens if and only if we hit the larger set difference
at most (1−a)(x+y)s/2 = (1−(y−x)/2y)(1−a)ys times while the expectation
is (1 − a)ys. Using a Chernoff bound again, the probability for that is at most
exp(−(y − x)2(x+ y)(1− a)s/8y2). If we hit the set differences more often, the
same calculation applies with the same x, y, a and increased s, hence the upper
probability bound remains valid. Thus, by the law of total probability, the bound
remains valid also conditional on hitting the set differences at least (1−a)(x+y)s
times. By the union bound, the probability that the larger bag yields the smaller
count is at most exp(−a2(x+y)s/2)+exp(−(y−x)2(x+y)(1−a)s/8y2). Choosing
a = (y − x)/2y and hence 1− a = (y + x)/2y, this becomes

exp(−2y(x+ y)(y − x)2s/16y3) + exp(−(x+ y)2(y − x)2s/16y3)

which is finally bounded by 2 exp(−(x+ y)2(y−x)2s/16y3). This can be further
limited by the simpler 2 exp(−(y−x)2s/16y). By comparing the largest bag to all
others and applying the union bound we obtain the claimed failure probability.

Proof of Proposition 3

We rephrase the assertion as follows: Every clique K in the graph is subset of a
clique that can be obtained from K by repeated ∆ operations. In this form we
can prove it by induction on i = |K|. Induction base i = 2 is obviously true,
since K is a clique edge cover. Assume that the assertion holds for all sizes from
2 to i, and consider a clique K of size i+ 1. Fix any vertices u, v ∈ K and define
Ku := K \ {u} and Kv := K \ {v}. The induction step is now established by
observing K = ∆(Ku,Kv, {u, v}).

Details Omitted in Section 5.2

We consider the matrices whose rows and columns represent bags and twin
classes, respectively, that satisfy conditions (1)–(4). We do not distinguish be-
tween a row (or column) and the set of its 1 entries.

The matrix must contain the submatrix1 1
1 0
0 1

where the 1s in row 1 form a private pair. Rows 2 and 3 exist since no column

contains another one. The submatrix extends to:1 1 0
1 0 1
0 1 ?

Namely, since row 1 does not contain row 2, there must be another 1 in row

2, and we can choose it such that the 1s in row 2 form a private pair. Therefore
we get a 0 in row 1.

If r = 3 then the question mark must be 1, since columns 2 and 3 must
intersect. 1 1 0

1 0 1
0 1 1

Another column cannot exist, as it would be contained in some of these.
The fractions of covered pairs are convex1 functions: (x1 + x2)2 for one bag,

(x1 +x2)2 + (x2 +x3)2−x22 = x21 +x22 +x23 + 2x1x2 + 2x2x3 for two bags, and all
symmetric cases. Since the maximum is minimized if x1 = x2 = x3 = 1/3, each
bag has 2/3 of the elements. Thus, one bag has coverage (2/3)2 = 4/9, and two
bags that intersect in one twin class have coverage 2(2/3)2 − (1/3)2 = 7/9.

The fraction of pairs covered by two greedy bags has the same structure (sum
of two squares minus a smaller square) and is therefore a convex function, too,

1 Convexity of functions can be checked with the help of their Hesse matrices.

and the numerical value becomes 2(2/3)2 − (4/9)2 = (72 − 16)/81 = 56/81, as
the intersection now contains 4/9 of the elements.

We turn to r = 4. If all columns of the matrix have only two 1s, the only
matrices whose columns also pairwise intersect (up to permutations of rows and
columns, of course) are

1 1 1
1 0 0
0 1 0
0 0 1

and the previous matrix with an all-0 row attached. But in both cases

some rows contain others. Similarly, an all-1 column would contain all others.
Hence some column with exactly three 1s must exist. Suppose we have two such
columns, like column 1 and 2 in this matrix:

1 1 1 0
1 1 0 1
1 0 ? ?
0 1 ? ?

Columns 3 and 4 are enforced by the condition that neither of row 1 and 2

can contain the other one. Next, since neither of columns 3 and 4 is contained
in column 1 or 2 intersect, all wildcards are necessarily 1:

1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1

But now, none of the pairs of 1s in any row is private, which enforces more

columns, but any further column would be contained in some of the displayed
columns. This contradiction shows that exactly one column has exactly three 1s,
hence the only remaining possibility is:

1 0 0 1
0 1 0 1
0 0 1 1
1 1 1 0

Let x := x1 = x2 = x3, thus x4 = 1 − 3x. Note that the bags have sizes 3x

(row 4) and x+(1−3x) = 1−2x (else). The largest bag has max{3x, 1−2x} of the
elements, which is minimized for x = 1/5, hence the coverage is (3/5)2 = 9/25.
The pigeonhole principle would only yield 1/4.

