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Abstract

A vector with at most k nonzeros is called k-sparse. We show that enumerating the
support vectors of k-sparse solutions to a system Ax = b of r-sparse linear equations (i.e.,
where the rows of A are r-sparse) is fixed-parameter tractable (FPT) in the combined
parameter r, k. We give different branching algorithms based on the close relationship to
the hitting set problem in fixed-rank hypergraphs. For r = 2 the problem is simple. For
0, 1-matrices A we can also compute an O(rkr) kernel. For systems of linear inequalities
we get an FPT result in the combined parameter d, k, where d is the total number of
minimal solutions. This is achieved by interpeting the problem as a case of group testing
in the complex model. The problems stem from the reconstruction of chemical mixtures
by observable reaction products.

Keywords: sparse vector, linear system, hitting set, parameterized algorithm, enumeration,
problem kernel, group testing

1 Introduction

Let A be an m× n matrix with entries aij ≥ 0 (1 ≤ i ≤ m, 1 ≤ j ≤ n), and let b be a vector
of length m with entries bi ≥ 0. A vector with at most k nonzero entries is k-sparse. Given
a number k, usually much smaller than n, we want to determine the k-sparse nonnegative
solutions x of Ax = b, where the rows of A are r-sparse. We pose the same problem for systems
of linear inequalities, where both relations ≤ and ≥ may appear mixed in the different rows.

This is certainly a fundamental problem, appearing in machine learning and related areas
like inference or reconstruction problems in computational biology, see [13] for an example.
A particular application we have in mind is the quantification of proteins in an unknown
mixture. (For some background information on protein inference see [8, 16].) There the
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columns of A correspond to candidate proteins, and the rows correspond to peptides, i.e.,
products of enzymatic digestion, or just masses of peptides. Entry aij is the number of
occurrences of peptide i in protein j. The aij are, of course, nonnegative integers, moreover
they are mostly 0, and the nonzeros are typically just 1. The real-valued vector b indicates
the measured amounts of peptides, obtained by mass spectroscopy. We want to infer which
proteins are in the mixture, and their amounts.

A is a matrix of simulated digestion results with several hundreds of thousands of rows
and colums. However, some other input parameters are small, which suggests the question of
parameterized complexity: After separation procedures some small number k of proteins are
present, and a peptide typically appears in a small number r of candidate proteins, thus the
rows of A are r-sparse. Due to these facts, only some hundreds of entries of b are nonzero. Of
course, we can ignore rows i with bi = 0, and we immediately know xj = 0 if some i exists
with bi = 0 but aij > 0. After deletion of these trivial rows and columns there remains a
submatrix of manageable size. We still denote the resulting system Ax = b, where b is now
strictly positive. Simulations with protein data suggest that many rows are only 2-sparse. By
solving Ax = b we work under the idealized assumption that b has been accurately measured.
Under experimental conditions with much noise it is more realistic to consider inequalities, in
the simplest case just with a reliable lower und upper bound for each bi (so that every peptide
gives rise to two inequalities).

Formal notation and results. Let R be any set of rows, and let C be any set of columns of
matrix A. We denote by b[R] and x[C] the vector b and x restricted to its entries corresponding
to R and C, respectively. A[R] and A[C] denotes the submatrix of A restricted to R and C,
respectively, and A[R,C] denotes the submatrix of A being the intersection of A[R] and A[C].
Sometimes we identify row and column sets with the sets of their indices, without risk of
confusion. For any vector y, as usual, yi is the entry at index i. The support of a vector is
the set of indices with nonzero entries. A column set C 6= ∅ is called feasible if the system
A[C] · x[C] = b has some solution where all entries of x[C] are positive. A column set C is
minimal feasible if C is feasible but no C ′ ⊂ C is. The definition applies similarly to a system
of linear inequalities.

A problem with input size n and some other parameter k is fixed-parameter tractable
(FPT) if it is solvable in f(k) · p(n) time, where f is any computable function but p is a
polynomial. When the polynomial factor is not in the focus, the time bound is often expressed
as O∗(f(k)).

Finding a sparsest solution to a linear system is NP-hard in general [11, 15]. In Section
2 we show that enumerating all minimal feasible sets of at most k columns, for systems of
linear equations with r-sparse rows, is an FPT problem in the combined parameter r, k. We
give two different branching strategies, where the first strategy is superior for small k close
to r, and the second one is clearly better when r is constant and k the “actual” parameter.
For r = 2 the problem is polynomial, even very simple, and this observation may be used
in heuristics that speed up the branching in cases where we have r > 2 but many 2-sparse
rows appear in the matrix. Moreover, we refine the second branching strategy and combine
it with a nontrivial algorithm for the closely related hitting set enumeration problem, which
results in an improved base in the FPT time bound. Since this needs longer preparations, the
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result is presented separately, in Section 3. Moving from algorithms to kernels, we compute
in Section 4 an O(rkr) size full kernel, that is, a set of columns that includes all minimal
feasible sets, by adaptation of an earlier result for hitting sets. In Section 5 we show that
the same problem for systems of linear inequalities is in FPT in the combined parameter d, k,
where d is the number of minimal feasible sets. This result is an application of a strategy for
the more abstract group testing problem in the complex model (also known as searching for
defective hyperedges; we shall give the necessary definitions later). Section 6 concludes the
paper with some discussion. The algorithms combine linear algebra observations with FPT
techniques. We also remark that d may be exponential in k. However, systems with random
matrices often have unique sparse solutions, as is known in the compressed sensing literature
(see references below). For our problem this gives hope for small d in real data sets. Even if
a system has many solutions, one is not forced to list them all.

Related literature. As already indicated, our problem is close to hitting set enumeration
in hypergraphs. This problem asks to enumerate the hitting sets of size at most k, that is,
vertex sets that intersect all hyperedges, in a hypergraph of rank r, where the rank is the
maximum size of the hyperedges. (The precise connection between the two problems will be
explained in Section 2.) Hitting set enumeration is in FPT in the combined parameter r, k.
More precisely, it can be solved in O∗(rk) time, based on the observation that some of the (at
most) r vertices of any hyperedge must be put in the solution, and this can be done at most
k times. Quite some work has been devoted to improved time bounds, see [9, 10]. While our
branching approach is superficially similar to that for hitting set enumeration, it is not an
immediate generalization.

Despite some connections to hypergraphs and graphs we hope to bring here some fresh
contribution to the “not about graphs” direction of parameterized algorithms research that
seems to be somewhat neglected.

For certain classes of matrices, such as those used in compressive sensing/sampling [2],
sparsest solutions are unique and can be computed surprisingly simply, by a linear program
that minimizes the sum of entries of x [1, 7, 14, 19]. However, in our case the matrices A are
part of the input and cannot be chosen, thus we cannot assume special structural properties
of A, and instead we have to consider the worst case. In general, the sparsest solution is not
unique, as the vector b may be in the convex hulls of various small sets of columns of A. (Still
we may first test for a given matrix A whether the linear program already yields some sparse
solution.)

2 Row-Sparse Linear Systems of Equations

In this section we address the problem of enumerating all minimal feasible sets of at most
k columns, thus also determining all k-sparse nonnegative solutions x, to a system Ax = b

where every row of A is r-sparse.
Geometrically the first (folklore) lemma says that a vector being in the convex hull of

other vectors is already in the convex hull of a linearly independent subset of them.

Lemma 1 Let C denote any set of columns in A. If C is minimal feasible then C is linearly
independent.
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Proof. Since C is minimal feasible, b is a linear combination of the columns in C with positive
coefficients, say b = x0c0 + . . . + xncn, with xi > 0 for all i. Assume that some c ∈ C in turn
equals a linear combination of other columns in C, say c0 = y1c1 + . . . + yncn. We can rewrite
b as b = (1− t)x0c0 + (x1 + tx0y1)c1 + . . . + (xn + tx0yn)cn, for any 0 ≤ t ≤ 1. Starting with
t = 0 we increase t as long as for every coefficient xi + tx0yi this expression for b remains
nonnegative. If we reach t = 1 we get rid of c0 in b. If the coefficient of some other column ci,
i > 0, becomes 0 earlier, we get rid of this ci. Either case contradicts the minimality of C. �

Proposition 2 Every feasible set of columns is the union of some minimal feasible sets.

Proof. Consider any feasible set C. If C itself is minimal, there is nothing to prove. Otherwise
let D ⊂ C be minimal feasible. Clearly, there exist positive solutions to A[C] · x[C] = b and
A[D] · y[D] = b. With a slight abuse of notation, let y[C] be the vector obtained from
y[D] by filling all entries in C \ D with zeros. Note that still A[C] · y[C] = b. Since the
two matrix-vector products above are equal to b, all numbers are nonnegative, and D ⊂ C,
there must exist some index i ∈ D where yi > xi. Let t be the largest number such that
x[C] − t · y[C] is still nonnegative. Due to the previous observation we have t < 1, hence
A[C] · (x[C]− t ·y[C]) = (1− t)b, and multiplication with 1/(1− t) yields a nonegative solution
z to Az = b whose support C ′ fulfills C ′ ⊂ C, C ′ 6⊃ D (since zi = 0), and C \ C ′ ⊆ D (since
zj > 0 for all j ∈ C \D). In words: All columns that we removed from the C belong to some
minimal feasible set. We repeat this procedure with C ′ in the role of C, and so on. By an
inductive argument, eventually every column of C is in some minimal feasible set. �

Proposition 2 and Lemma 1 imply that the minimal feasible sets have the role of vertices
of the (convex) space of nonnegative solutions to Ax = b. For each minimal feasible set C, the
solution vector x with support C is unique (since the columns of C are linearly independent),
and trivially, any convex linear combination of any nonegative solutions is a nonnegative
solution, too. In this sense we have characterized all nonnegative solutions once we know the
minimal feasible sets. This motivates the problem of enumerating these sets.

A tempting idea of a branching algorithm for the task is the following. Recall that all
bi are positive without loss of generality. Pick a row i and decide exactly which of the xj ,
aij > 0, shall be positive. At least one of them must be positive, and since the rows are
r-sparse, we get an O(r) branching number. When all rows are treated, check whether the
columns j of all positive xj are linearly independent (cf. Lemma 1), and if so, compute the
unique nonnegative solution, or find that there is none. It is important to notice the catch:
In rows i where some xj , aij > 0, are already deemed positive, there is an option not to select
further positive variables, and then this branch does not reduce the parameter k. It may
happen that the above branching rule has to stop, but the obtained set C of columns is not
yet feasible. We may still follow the approach, but at this point we have to identify a “small”
set of candidates to be added to C. The following lemma is the key.

Lemma 3 Let C be a set of linearly independent columns such that A[C] · x[C] = b lacks
a nonnegative solution. Then there exists a set R of at most |C| + 1 rows such that also
A[R,C]·x[C] = b[R] lacks a nonnegative solution. Moreover, we can find such R in polynomial
time.
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Proof. Since the columns in C are linearly independent, there is a set R′ of |C| rows such
that A[R′, C] has full rank, and R′ can be computed in polynomial time, e.g., by Gauss
elimination. Note that A[R′, C]·x[C] = b[R′] has at most one solution, which can be computed
in polynomial time. If x[C] does not exist, or if x[C] exists but has some negative entry, we
set R := R′. Suppose that x[C] does exist and is nonnegative. Due to the assumption on C,
this x[C] does not solve A[C] · x[C] = b. Hence there is a row index i with A[i, C] · x[C] 6= bi,
and we can trivially find such i. Finally set R := R′ ∪ {i}. Since already the solution to
A[R′, C] · x[C] = b[R′] was unique, A[R,C] · x[C] = b[R] has no alternative solution either. �

Now we get the first main result of this section.

Theorem 4 For systems Ax = b where all rows of A are r-sparse, we can enumerate all
minimal feasible sets of size at most k in O∗(rkk!) time. In particular, this problem is in
FPT, in the combined parameter r, k.

Proof. Starting from a family with one member C = ∅ we generate a family of sets C of
linearly independent columns. This is done as follows. We pick any C from this family. For
C 6= ∅ we check in polynomial time, by linear programming, whether A[C] · x[C] = b has a
nonnegative solution. If so, we remove C from the family and put it aside. (We know that C

contains some feasible set, hence we also know that extending C by further columns cannot
generate new minimal feasible sets.) If not, or if C = ∅, it is clear that C does not include
any feasible subset. Then we find a small family E of columns, with the property that every
feasible set containing C as a subset must also contain some of the columns from E. (This
step will be detailed below.) Then we check linear independence of every such set C ∪ {j},
j ∈ E, and we replace C in our family with all C ∪ {j} that pass this test.

Since we are only interested in minimal feasible sets of size at most k, we also throw away
sets that exceed the size limit. It is easy to see that we cannot miss any solution: By Lemma
1, only linearly independent column sets need to be considered, and their subsets are linearly
independent as well. We keep all column sets that are candidates for being extendible to a
minimal feasible set.

In order to find a set E as specified above, we apply Lemma 3. With c := |C|, we determine
a set R of at most c + 1 rows such that A[R,C] · x[C] = b[R] lacks a nonnegative solution.
Since the rows of A are r-sparse, A[R] has nonzeros in a set E of at most (c + 1)r columns.
We extend C with any one column from E, that is, we generate at most (c + 1)r new column
sets. Note that at least some column of E must be inserted in C to make A[R,C] ·x[C] = b[R]
solvable, which is a necessary condition for feasibility.

On every path of the search tree generating our sets C, their cardinalities c grow from 0
to at most k−1. Since the outdegrees of search tree nodes are at most (c+1)r, the number of
leaves of the search tree is bounded by (r)(2r)(3r) · . . . · (kr) = rkk! This bounds the number
of column sets C we have put aside, and all minimal feasible sets of size at most k are among
them. It remains to check the minimality of every candidate C. Recall that C is linearly
independent, hence it comes with a unique solution to A[C] · x[C] = b. Thus C is minimal if
and only if x[C] has only positive entries. �

So far we have silently assumed a model of computation with precise real numbers. To
turn the algorithm into a practical method, note that a vector b being in the convex hull of
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some set C of columns is, after a small perturbation, still close to a point in the convex hull.
Instead of looking for an exact solution to A[C] · x[C] = b we append all unit vectors to the
matrix and compute, still by a linear program, a solution that minimizes the coefficients of
these extra vectors, and we accept solutions within some tolerance. Similarly we relax the
equality tests by some tolerance. This way we can still recover minimal feasible sets after small
perturbations of b. Solutions are changed only if, roughly speaking, the noise is comparable
to the distance to the next candidate solutions.

The k! term in the time bound is somewhat unsatisfactory. Before we give an alternative
branching strategy avoiding that, we introduce the following notion.

Definition 5 We define the hypergraph H associated with the system Ax = b to be the
hypergraph whose vertices and hyperedges are the columns and rows of A, respectively, and
vertex j belongs to edge i iff aij 6= 0.

Observe that every minimal feasible set of columns of A contains some minimal hitting
set of H (but is not necessarily equal to some minimal hitting set of H). Therefore we may
first enumerate the minimal hitting sets C of H, which can be trivially done with branching
number r, and then start the procedure of Theorem 4 from these sets C rather than from the
empty set. The associated hypergraph is not only useful in this heuristic. We also use it in
the following theorem.

Theorem 6 For systems Ax = b where all rows of A are r-sparse, we can enumerate all
minimal feasible sets of size at most k in O∗(r2k) time.

Proof. We generate a family of records, where every record consists of a set C of columns and
a system of linear equations Qx = s, such that the rows of Q are linearly independent, and Q

has nonzeros in Q[C] only. Note that, consequently, Q has at most |C| rows. We start from a
family with one record where C and the row set of Q are empty; then the above condition is
vacuously true. The family evolves as follows. We pick any record (C, Qx = s). If C 6= ∅, we
check in polynomial time, by linear programming, whether (A[C] · x[C] = b, Q[C] · x[C] = s)
has a nonnegative solution. If so, we remove C from the family and put it aside. (As before,
we know that C contains some feasible set and needs no further extension.) If not, or if C = ∅,
clearly C does not include any feasible subset that also satisfies the extra system Qx = s.
Then we find a small family E of columns and a new linear equation, with the property that
every feasible set of the compound system (Ax = b, Qx = s) containing C as a subset must
also contain some of the columns from E or must have a solution that fulfills the new equation.
(This step will be detailed below.) Then we extend our record in all possible ways, that is, we
either replace C with some C ∪ {j}, j ∈ E, or we keep C but insert the new linear equation.
Again we abandon records where C is not linearly independent or exceeds the size limit k,
and again, the “exhaustive” branching ensures that we cannot miss any solution.

Specifically, in order to do the branching we fix some row i of A that has some nonzero
outside C. (Such a row exists, as we can w.l.o.g. assume that no column of A is the zero
vector, and we can trivially stop if C is already the full set of columns.) Let E be the set
of columns j /∈ C where aij > 0 in this fixed row i. If we decide to append none of the
j ∈ E to C, the equation in row i must be fulfilled already by nonzero variables in C, formally
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A[i, C] · x[C] = bi. We append this equation to the extra system Qx = s, provided that it is
linearly independent of those already being in Qx = s. In the opposite case it follows xj = 0
for all j ∈ E (since the equation is already enforced, and everything is nonnegative). Then
we fix another row i and repeat the procedure until we either find an i and E for branching,
or all variables outside C are fixed to 0, and thus C is a dead end. Since the rows of A are
r-sparse, obviously the branching number is at most r + 1, where the worst case is that the
selected row i has all its r nonzeros outside C.

The minimality of every candidate C is checked as before. For the time analysis we use an
auxiliary parameter that is initially 2k. We deduct 1 from this parameter, for every column
inserted in C and for every equation inserted in Qx = s. Since Q has at most |C| ≤ k rows,
in fact we deduct never more than 2k. We also remark that the extra equations have been
introduced only for the sake of a simple analysis. Of course, it is equivalent to fix the variables
xj , j ∈ E to 0 in the affected branches.

This gives only a time bound of O∗((r + 1)2k), but we can easily improve the algorithm
to achieve O∗(r2k) as follows. Instead of starting from scratch, we first take the hypergraph
associated with Ax = b and enumerate all minimal hitting sets C of size at most k. Every
feasible set must contain some of them, and the branching number is trivially r. For all these
C, the extra system Qx = s is still empty. After that we continue as above. Since now every
row has at most r − 1 nonzeros outside C, the branching number is r. �

Obviously O∗(r2k) beats O∗(rkk!) when k grows, in relation to r. Still the former branch-
ing strategy could be faster for k close to r, as one can see from Stirling’s formula. A direct
comparison in theory is difficult, as the hidden polynomial factors depend on implementa-
tion details. Moreover, additional heuristics may be applied that sometimes allow cheaper
branchings also in Theorem 4. We discuss some observation below.

We may look for pairs of rows i, i′ where bi > bi′ but aij ≤ ai′j for all j ∈ C. Then we add
a column j with aij > ai′j , clearly some of them must be put in C. Note that these are at
most r columns. When all these conditions for pairs of rows are fulfilled, we similarly look for
branchings based on triples of rows, etc. If we are lucky, we can grow our sets C by moderate
branchings. Another improvement comes from the special case r = 2 which is interesting in
itself.

Theorem 7 For systems Ax = b where all rows of A are 2-sparse, we get an implicit enu-
meration of all minimal feasible sets in polynomial time.

Proof. Every 1-sparse row is a linear equation with only one variable, and its unique solution
value is obtained instantly. Hence we can remove all 1-sparse rows from A, as well as all
columns where these rows have their nonzero entries. That is, these columns must appear in
every minimal feasible set. Now we have exactly two positive entries in each row.

We construct a graph with every column being a vertex, and every row being an edge
that joins the vertices representing the columns of the two nonzeros. Solving Ax = b is now
equivalent to a graph problem: Given a graph where the edges e are labeled with real numbers
be and the vertex-edge pairs (v, e), v ∈ e, are weighted with real numbers aev, the task is to
label the vertices with real numbers xv ≥ 0, such that aeuxu + aevxv = be holds on every edge
e = uv.
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But this graph problem is rather simple, too, as we discuss now. First assume that the
graph is connected. Then any label xv determines, by propagation, the xu labels of all vertices
u. Hence it suffices to try every vertex v and set its label zero, and check whether the unique
solution forced by that choice is nonnegative. This yields all minimal feasible sets, unless the
test fails for every v. In the latter case, the entire vertex set is the only candidate feasible
solution. If so, by Lemma 1, the columns are linearly independent, hence we can determine
the unique solution by Gauss elimination and check for nonnegativity.

Finally, if the graph is not connected, the reasoning applies to every connected component
independently, and all combinations of minimal feasible sets of the components are exactly
the minimal feasible sets in the whole instance. In this way we can implicitly describe all
solutions in polynomial time, although their number is, of course, not polynomial in general.
�

We remark that a closer look at the graph problem also reveals the structure of the solution
space: In any connected component of the graph containing an odd cycle, the values of the
corresponding variables are uniquely determined, and the solution space of any bipartite com-
ponent is at most one-dimensional. This follows easily from the aforementioned propagation
of values.

When matrix A is r-sparse for some r > 2, we can still begin and apply the method
in Theorem 7 to the 2-sparse rows, temporarily ignoring the other rows, to find all possible
solutions on the affected entries of x. Then we may branch on these solutions, remove the
settled rows and columns, and apply the method iteratively to the remaining systems, as
long as new 2-sparse rows are obtained. From the aforementioned structure of the solution
space of 2-sparse systems one can derive that the branching number in this phase is only 2, or
better. (The worst case is graphs consisting of isolated edges.) Since this is only an additional
heuristic and no theoretical bounds are provided, we skip the details.

3 An Improved Branching Algorithm

The aim of this section is to further reduce the base in Theorem 6 by more sophisticated
branching, but still without extensive case inspections. First we review a search tree algorithm
that has been proposed in [17] for computing a minimum hitting set with at most k vertices in
hypergraphs of any fixed rank r, and later adapted in [5] for counting and implicit enumeration
of all these minimal hitting sets. Later we have to modify the algorithm somewhat, to meet
the special needs of our problem to enumerate the minimal feasible sets. We will refer to the
algorithm as HS-Order.

Some terminology first: The degree deg(v) of a vertex v is the number of hyperedges
v belongs to. We call vertices equivalent if they belong to exactly the same hyperedges.
Equivalent vertices can be instantly merged into one multiple vertex, because they can replace
each other in a hitting set. If no equivalent vertices exist, then deg(u) ≥ deg(v) implies the
existence of some hyperedge that contains u but not v. This is trivial if deg(u) > deg(v), and
in case deg(u) = deg(v) note that u and v are not in exactly the same hyperedges, hence the
claim follows as well. A hyperedge with strictly fewer than r vertices (where any multiple
vertex counts like a normal vertex) is called small, otherwise it is called large. Now we phrase
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HS-Order as a sequence of rules, applied as long as possible in this priority order:
(1) If equivalent vertices exist, merge them accordingly into multiple vertices.
(2) If some small hyperedge H with at least two vertices exists, then order the vertices in H

as v1, v2, v3, . . . such that deg(v1) is the highest degree in H. In a branching step, decide on
the smallest j such that vj is added to the solution. (This creates one branch for every j.)
Delete all vertices vi, i < j, and remove all hyperedges containing vj .
(3) If some large hyperedge H exists, proceed as in (2).
The search tree construction stops when only isolated multiple vertices, i.e., pairwise disjoint
hyperedges, remain.

HS-Order was already analyzed in the aforementioned papers. The key observation leading
to a branching number significantly better than r is that, in (2) and (3), all branches but one
diminish another hyperedge, thus ensure the existence of some small hyperedge. This happens
since, for every j > 1, in particular v1 is deleted, and some hyperedge contains v1 but not vj .
The time complexity is described by the coupled recurrences T (k) = (r−1)B(k−1)+T (k−1)
and B(k) = (r − 2)B(k − 1) + T (k − 1). Here, T (k) is the leaf number of a search tree when
the parameter value is k, and B(k) is defined similarly, but under the additional assumption
that some small hyperedge exists.

Lemma 8 ([17]) The coupled recurrence given by T (k) = (r − 1)B(k − 1) + T (k − 1) and
B(k) = (r − 2)B(k − 1) + T (k − 1) has the solution T (k) = O((r − 1 + 1/(r − 1))k). �

For reasons that we discuss later, we can guarantee a small hyperedge only in all branches
with two exceptions, therefore we work with a weaker recurrence:

Lemma 9 The coupled recurrence given by T (k) = (r − 2)B(k − 1) + 2T (k − 1) and B(k) =
(r − 3)B(k − 1) + 2T (k − 1) has the solution T (k) = O((r − 1 + 2/(r − 1))k).

Proof. With T (k) = xk and B(k) = yk we rewrite the recurrence as xk = (r−2)yk−1 +2xk−1

and yk = (r − 3)yk−1 + 2xk−1. Assuming that x > r − 3, iterated substitution of the second
equation into itself yields

yk < (r − 3)k + 2(r − 3)k−1

((
x

r − 3

)k−1

+
(

x

r − 3

)k−2

+
(

x

r − 3

)k−3

+ . . .

)

< (r − 3)k + 2(r − 3)k−1

(
(x/(r − 3))k

x/(r − 3)− 1

)
= (r − 3)k + 2xk/(x− r + 3).

Since we are proving an upper bound, we can increase y such that yk = (r−3)k+2xk/(x−r+3).
Since k is arbitrary, replace k with k−1 and get yk−1 = (r−3)k−1+2xk−1/(x−r+3). Substitute
this into xk = (r − 2)yk−1 + 2xk−1 and obtain

xk = (r − 2)(r − 3)k−1 + 2(r − 2)xk−1/(x− r + 3) + 2xk−1.

Divide by xk−1 and omit the terms that go to 0 as k grows. It remains

x = 2(r − 2)/(x− r + 3) + 2,

hence
x2 − (r − 3)x = 2(r − 2) + 2x− 2(r − 3),
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and finally x2 − (r − 1)x− 2 = 0, with the solution

x = (r − 1)/2 +
√

(r − 1)2/4 + 2 = r − 1 +
√

(r − 1)2/4 + 2− (r − 1)/2

= r − 1 +
(r − 1)2/4 + 2− (r − 1)2/4√

(r − 1)2/4 + 2 + (r − 1)/2
< r − 1 + 2/(r − 1).

�

Next we introduce an “interactive” (or “online”) version of the hitting set problem that
might appear artificial at first glance, but it will fit well in our actual algebraic problem.
Suppose that we are asked to select vertices for the hitting set or discard vertices, one by
one (as it actually happens in a branching algorithm). Hyperedges hit by a selected vertex
are removed, and equivalent vertices are merged. Furthermore, not all hyperedges are known
from the beginning, but new hyperedges may be revealed to us after every decision. These
new hyperedges may even pop up depending on our choices. However, any new hyperedge
must fulfill a crucial condition: It must respect equivalence, that is, not distinguish vertices
that are equivalent. In other words, either all vertices forming a multiple vertex, or none of
them, must belong to any new hyperedge. Similarly, some hyperedges may disappear after a
decision, even if they are not hit by a selected vertex. Our task in this game is still to hit all
hyperedges (that did not disappear spontaneously), using at most k vertices in total.

Algorithm HS-Order can still be applied. If no hyperedges disappear, it has the same
complexity bound as in [17]. The reason is simple: The original complexity analysis is solely
based on the branching numbers of the rules actually applied to selected hyperedges, and new
hyperedges never split a multiple vertex. Thus it is immaterial whether there exist further,
yet unknown hyperedges behind the scenes; they are treated at a later time anyway. The
issue of disappearing hyperedges is more tricky. The complexity bound from [17]relies on the
fact that the existence of a small hyperedge is guaranteed in all branches but one, when the
branching rule is applied. In our “online” version it may happen in the worst case that all
small hyperedges disappear, and then we only get the trivial branching number r. We will
have to control the existence of small hyperedges when we apply HS-Order to feasible set
enumeration.

After these preparations we now devise our improved algorithm.

Theorem 10 For systems Ax = b where all rows of A are r-sparse, we can compute a succinct
enumeration of all minimal feasible sets of size at most k in O∗((r − 1 + 2/(r − 1))2k) time.

Proof. As earlier, we start our search tree construction with the associated hypergraph. With
a slight abuse of notation, the terms vertex and column and variable, as well as hyperedge
and row and equation, are used interchangeably without risk of confusion.

We apply HS-Order to generate subsets C of potential solutions, each accompanied by
an extra system of linear equations Qx = b. At the same time we also modify the residual
hypergraph according to the following rules.

When a hyperedge H is hit for the first time, that is, some vertex v of H is put in C, we
add a symbolic vertex u, called an annulator, to the rest of H. (Its role will become clear
below.) Formally, we replace H with a new hyperedge (H \ {v}) ∪ {u}. Similarly, for any
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further vertex v of H that respresents a column and is put in C, we replace H with H \ {v}.
Only when the annulator of a hyperedge H is put in C, we remove H altogether. Moreover,
in this case we also delete all remaining vertices in H.

Note that the new hyperedges respect equivalence: Since every annulator is a new vertex,
and the rest of the affected hyperedge is merely copied, we never distinguish vertices that are
rendered equivalent.

We also do a few more things after every branching, that are discussed now.
(i) We check every new C whether it is minimal feasible, and if so, we abort the corresponding
path of the search tree. (Note that this cannot raise the time bound.)
(ii) We update the system Qx = s: Whenever the last decision was to take the annulator of
some hyperedge, say, of row i, we set all variables xj := 0, where j /∈ C and aij > 0. Thus we
stipulate the new equation A[i, C] · x[C] = bi.
(iii) We delete all rows i where the compound vector (A[i, C], bi) depends linearly on the rows
of the current system Qx = s. (In particular, this situation implies that A[i, C] · x[C] = bi is
already enforced by Qx = s). Again we set xj := 0 for all j with j /∈ C and aij > 0 in this
case.

Deletion of the rows specified in (iii) ensures that the equations of the extra system Qx = b

always remain linearly independent when the system is extended in step (ii) by a new equation.
Trivially they remain linearly independent also when C is extended by new columns.

Now we argue that certain branches in rule (2) and (3) of HS-Order leave us with some
small hyperedge. First observe that, if H has already an annulator, we never declare it v1:
The annulator has degree 1. If some “regular” vertex of H has a larger degree, then some
of them becomes v1, and if all vertices of H have degree 1, they have been already merged
according to rule (1) of HS-Order, such that rule (2) or (3) is not further applied to H. Hence,
in all branches j > 2, vertex v1 is deleted from some hyperedge Hj containing v1 but not vj ,
therefore Hj becomes small. (Note that it is not possible that Hj obtains an annulator at this
moment, since an annulator is caused only by selecting some vertex of Hj for C for the first
time, but not by vertex deletion.)

Now step (iii) might cause, in the worst case, the loss of Hj , even the loss of all small
hyperedges, after the branching step. However, a new vector (A[i, C], bi) can become linearly
dependent of Qx = s only when a new equation has been appended to Qx = s, and this
can happen only if the annulator of H has been chosen, see (ii). Hence we obtain a small
hyperedge in all branches but at most two, and the recursion in Lemma 9 applies.

Our hitting set here has size limit 2k rather than k, for essentially the same reason as
before: We use the initial parameter value 2k and deduct 1 for every vertex put in the hitting
set, that is, for every column inserted in C and for every annulator chosen in a branching step.
Due to (ii), every choice of an annulator in a branching step inserts an equation in Qx = s,
and due to (iii), every new row entering this system is linearly independent of the others.
Again, since |C| ≤ k, and Q exclusively contains variables from C with nonzero coefficients,
it follows that Q has at most k rows, hence we deduct at most 2k from the parameter. This
completes the analysis.

Every leaf of the search tree generated so far represents an instance where the vertices
outside the current C form disjoint multiple vertices. That is, the variables outside C are
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divided in pairwise disjoint groups, such that the variables of each group appear (with nonzero
coefficients) in only one equation, say, in row i. We represent the multiple vertex of row i by
one variable yi which equals the linear combination of the original variables xj with the given
coefficients aij > 0. In a last branching phase we decide for every such i whether we take the
annulator of row i, hence yi := 0, or put the variable yi in C. Trivially the branching number
is only 2. Note that the measures in (i)–(iii) are applied also in this phase, such that still
everything happens within the 2k bound. �

We suspect that our analysis is still too conservative. Recall that, when a hyperedge
disappears due to the choice of its annulator, we also delete its vertices, which should in
general leave a number of small hyperedges, but our analysis does not make use of that. It is
hard to see when the worst case (all small hyperedges disappear) really occurs, although one
gets the feeling that it should be rare. A more ambitious goal is an algorithm with complexity
O∗((cr)k) for some constant c. It is not even clear whether feasible set enumeration is really
harder than hitting set enumeration, since the quantitative constraints might be helpful, rather
than adding complexity. We have only argued that algorithms for hitting set enumeration
cannot be straightforwardly extended to feasible set enumeration, but this does not exclude
totally different approaches.

4 A Problem Kernel for Binary Matrices

In [4] we introduced the notion of a full kernel of an FPT enumeration problem, which is
a set that contains all minimal solutions. For the minimal hitting sets of size at most k in
hypergraphs with hyperedges of size r there is an (r−1)kr +k size full kernel, and there exist
hypergraphs with full kernel size Ω(kr) [4]. In order to establish similar bounds for the present
problem we have to adapt the proofs in [4], i.e., the next theorem is not just a consequence
of the old result. The following result holds when all entries in A are 0 or 1.

Theorem 11 For systems Ax = b with 0-1-matrices A where all rows are r-sparse, all min-
imal feasible sets of at most k columns are contained in a set of (r − 1)kr + k columns. The
bound O(kr) is tight, up to some factor depending on r but not on k.

Proof. First we need some notation: The hyperedges are those of the associated hypergraph
defined above. With respect to a solution vector x, we call a vertex positive if the corresponding
variable xj is positive. The sum s(C) of a set C of vertices is defined by s(C) :=

∑
j∈C xj .

As an inductive hypothesis we suppose that every set C of r − i vertices (i.e., columns)
is contained in at most ki hyperedges, or there is no feasible set at all. To establish the
induction base i = 0, note that a set of r vertices can be in only one hyperedge, due to
r-sparsity. (Otherwise the system Ax = b has identical rows, and all copies but one can be
deleted.)

For the induction step, with a fixed i, assume that some set C of r − i vertices belongs
to ki + 1 or more hyperedges. By the inductive hypothesis, every set C ∪ {v} is in at most
ki−1 hyperedges. It follows that k vertices outside C would not be enough to hit all R \ C,
for the hyperedges R ⊃ C. In a k-sparse nonnegative solution we cannot have s(C) < s(R)
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for every hyperedge R ⊃ C, since then we need a positive vertex in every R \ C, but these
would be more than k positive vertices, due to the previous observation. Furthermore, in
a nonnegative solution, s(C) > s(R) is not possible either, for any R ⊃ C. Thus, in every
k-sparse nonnegative solution, s(C) must be equal to the (given) smallest s(R), R ⊃ C. This
establishes a new equation for a new hyperedge C, whereas all hyperedges R ⊃ C can be
replaced with R \ C, where the required sums are adjusted in the obvious way. In summary,
if some set C of r − i vertices belongs to ki + 1 or more hyperedges, we get a system with
the same k-sparse nonnegative solutions, where C is no longer a subset of other hyperedges,
and the total size of all hyperedges, i.e., the number of 1 entries in A, has strictly decreased.
Hence this transformation can be done only finitely many times, and eventually the inductive
hypothesis holds for i, in the transformed system.

For i = r− 1 the inductive hypothesis says that every vertex is contained in at most kr−1

hyperedges. Since every feasible solution is also a hitting set, and at most k positive vertices
are permitted, at most kr hyperedges remain, or no feasible set can exist. Now the size bound
follows obviously.

To prove tightness, we construct a linear system with Ω(kr) columns, for any fixed r, such
that every column appears in some minimal feasible set. It suffices to consider k divisible
by r. We take a complete d-ary tree of depth r where all non-leaf vertices have outdegree
d := k/r. Every vertex in the tree, except the root, becomes a variable. For every leaf v, let
P (v) denote the path from the root to v, let S′(v) be the set of all siblings of vertices on P (v),
and S(v) = S′(v) ∪ {v}. Note that S(v) does not include the root. For every leaf v we set up
an r-sparse equation containing all variables on P (v) with coefficients 1; all other coefficients
are 0. The right-hand side is 1. Observe that S(v) contains exactly one vertex of P (u), for
every leaf u. It follows that every set S(v) (more precisely, the set of corresponding columns)
is a feasible set, in particular, it gives rise to a 0-1 solution vector, where exactly the variables
in S(v) have value 1. Every S(v) is also minimal feasible, because S(v) \ {w} for any vertex
w ∈ S(v) is disjoint to some path P (v), hence some equation cannot be satisfied. Every S(v)
has size rd = k, and the tree has dr = (1/rr)kr leaves, hence Ω(kr) vertices. Obviously, every
vertex is also member of some S(v). �

Note that the upper-bound proof also describes an efficient method to obtain a full kernel
of the claimed size, and that only subsets C of the given hyperedges need to be examined;
these are at most 2r per hyperedge. But the proof does not apply to matrices A with arbitrary
positive coefficients, because then the step where new equations on smaller hyperedges are
enforced does not work.

We also remark that we improved in [5] the full kernel size bound for hitting set enumer-
ation to (1 + o(1))kr, using more sophisticated counting arguments. A natural question is
whether these techniques can be applied also to r-sparse linear systems. For the problem of
finding just some hitting set of size k in a hypergraph of rank r, no kernel with kr−ε hyper-
edges can exist, under common complexity-theoretic assumptions [6]. One could ask whether
a similar lower-bound result holds for finding some sparse solution of a linear system.
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5 Sparse Nonnegative Solutions of Systems of Linear Inequal-

ities via the Complex Model of Group Testing

Our FPT result for systems of linear equations do not immediately generalize to inequalities.
In this section we give a completely different approach for systems of linear inequalities. Recall
the notion of a minimal feasible column set, and the basic fact that, given the support of x,
some solution x can be computed by linear programming. Hence we have a test that tells us,
for any given set C of columns, whether C contains some minimal feasible set. The goal is
to find all minimal feasible sets. This is a problem known elsewhere, as the complex model
of group testing or searching for defective edges: In a set, an unknown family of subsets are
defective, and a group test (for brevity: test) on a subset C answers positively if C contains
(entirely) some defective set, otherwise it answers negatively. Accordingly, a tested set C is
also called a positive or negative pool. The term “defective” is common in group testing and
comes from applications in, e.g., fault diagnosis. Instead of defective set we speak of a complex
in this section.

It follows from [3] that all complexes can be found using kd log2 n + kk/2dk + o(dk) tests,
where n is the number of elements, k the maximum size of a complex, and d the number of
complexes. No previous knowledge of d is assumed. However, it is assumed that all complexes
have at most a prescribed number k of elements. In our application the problem is slightly
more general: For a given k we wish to enumerate all complexes of size at most k, but there
may exist larger complexes as well, and clearly they can affect the test results. Therefore
the algorithm from [3] does not carry over to our problem, moreover, the algorithm and its
analysis are intricate. Below we give an algorithm that has a somewhat worse dependency
on parameters k and d, but it also works in our case and is conceptually simpler. We start
with an adaptation of the Triesch-Johann procedure [18, 12] used in [3]. In the following,
a k-complex is either a complex with at most k elements, or a k-element subset of a larger
complex.

Lemma 12 Some k-complex can be found by k log2 n tests.

Proof. First consider the problem of finding a complex, rather than a k-complex. We index
the elements arbitrarily by v1, . . . , vn. By binary search using log2 n tests we determine the
largest j such that {vj , . . . , vn} is a positive pool. Note that j = n if {vn} is still a positive pool,
and then this is also a complex. In the following consider j < n. Clearly {vj , . . . , vn} contains a
complex while {vj+1, . . . , vn} does not. Hence all complexes in {vj , . . . , vn} necessarily contain
vj , and such a complex does exist. In order to find a complex of this form, we fix vj , that
is, we henceforth add vj to every pool, and we search for a complex in {vj+1, . . . , vn} relative
to that. (In other words, we search for a positive pool such that removal of any element vl,
l > j, yields a negative pool. We know already that removal of vj yields a negative pool.)

Iterating this reasoning, we successively fix elements, each by at most log2 n tests, that
together form a subset of a complex. After each round we test the current subset C. If C is
a negative pool, we continue the search on the suffix after the last inserted element. If C is a
positive pool, we have finished a complex.

When searching for a k-complex we proceed in the same way, we just stop after k rounds
if the complex is not yet completed. �
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Now we are using this routine in our enumeration algorithm.

Theorem 13 Given an integer k we can determine all complexes of size at most k using
kd log2 n+min(kkdk+1, dkd) tests, if d complexes exist. No previous knowledge of d is assumed.

Proof. Let V denote the set of all elements. We maintain a family C of k-complexes and
their union U . Initially, C and U are empty.

In each round of the algorithm we probe all sets S that have the following properties: (1)
S ⊆ U , (2) |S| ≤ k, (3) S contains none of the C ∈ C as a subset. To probe S means to
test S ∪ (V \ U). If this pool is positive, it contains a complex which is not already in C nor
extends any k-complex from C, due to (3). Thus, by applying Lemma 12 we find either another
complex (of size at most k) or another k-complex C ′. In the latter case we have C ′ ⊂ C ′′

for some complex C ′′ not already “covered” by C, as said before. This fact is important, as
it implies that every round deals with some new complex, hence the routine of Lemma 12 is
called at most d times. If all probes give a negative answer, then every complex C of size at
most k appears already in C: If not, then S := C ∩U fulfills (1)–(3), hence S would be probed
and answer positively, a contradiction.

All calls of Lemma 12 need at most kd log2 n tests. Since |C| ≤ k for all C ∈ C, we
always have |U | ≤ kd. Due to (1) and (2) we probe fewer than (kd)k sets S in every round,
furthermore each S is probed at most d times. This yields the first bound kd log2 n + kkdk+1.

An extension of this strategy gives the second part of the bound. In case d ≤ k we can
bound the number of probes in a round by kd, which is smaller than (kd)k: Property (3)
requires that some element from each C ∈ C be excluded from S. In the worst case we have
kd different choices, and then we take S as U minus the excluded elements. Now S can be
larger than k, however, property (2) above was only used to bound the number of probes.

Thus, we finally proceed as follows: In the first k rounds we apply the probing strategy
that excludes a hitting set of C, and then we switch to the former strategy that guesses the
intersection of a new complex with U . �

Corollary 14 For systems of linear inequalities with d minimal feasible sets, the problem of
enumerating all minimal feasible sets of size at most k is in FPT, in the combined parameter
d, k. �

A concern is that the parameter d could be too large to be practical. But the famous results
about unique sparsest solutions for some natural classes of random matrices [1, 7, 14, 19] give
hope that one would actually encounter small d in real data. This question needs experimental
research.

To summarize, we used complex group testing where the tests correspond to linear pro-
grams. Other than that, our current algorithm does not further use the mere fact that we
are working on linear systems. Whereas this modularity of our algorithm might be appeal-
ing, some clever use of polyhedral combinatorics instead of group testing might lead to more
efficient algorithms.
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6 Conclusions

It would be interesting to prove even better FPT time bounds and a kernel size bound for
non-binary matrices, and to extend the polynomial result for 2-sparse equations. Specific
research questions were already discussed in the technical sections. One could also think of
other meaningful problem versions that bridge between strict equations, arbitrary inequalities,
and the Boolean case (hitting set problem). Furthermore, we have not considered the question
of output-sensitive algorithms for sparse solution of linear systems. Finally, implementation
of the methods, taking the numerical issues into account, and experiments on protein mixture
data would give important insights.
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