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Abstract

Within a study of scheduling problems with gaps, Chrobak et al. (CIAC 2015) have

shown how to find γ points on the line that hit a maximum number of intervals, in a

given family of n intervals, in O(γn2) time. The problem is equivalent to finding γ cliques

in an interval graph that cover a maximum number of distinct vertices. We give refined

algorithms that run faster if the interval graph of the family is sparse.

Keywords: scheduling with gaps, hitting set, interval graph, sparse graph, dynamic

programming

1 Introduction

1.1 Problem Setting

This paper is concerned with the following problem.

Partial Interval Hitting Set

We are given n closed intervals Ij = [rj , dj ] (j = 1, . . . , n) on the real line, and a positive

integer γ. We want to determine a set H of γ points that together hit a maximum number

of intervals Ij . Here, a point q is said to hit an interval I if and only if q ∈ I.

In [3] this problem is considered as the continuous version of a certain scheduling problem:

scheduling short (unit-time) jobs with release times rj and deadlines dj , where the goal is

to maximize the throughput, that is, the number of jobs actually done, while keeping the

number of gaps between busy periods limited to γ − 1. Limiting the number of gaps can be

motivated, for instance, by the costs for switching the machines on and off. Another nice

application of Partial Interval Hitting Set is storing various goods (food, chemicals,

etc.) at prescribed temperatures. Suppose that the jth good needs a temperature within

the interval Ij , and γ cooling rooms are available whose temperatures can be freely chosen.

The aim is to store as many goods as possible in these rooms (assuming that the rooms have

enough capacity, and no other restrictions apply which rule out the storage of certain goods

in the same room).

Definition 1. The intersection graph of a family of n intervals is its interval graph. It has

n vertices representing the given intervals, and two vertices are adjacent if and only if the

corresponding intervals intersect. Let m denote the number of edges of this interval graph.
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The intervals hit by any fixed point form a complete subgraph of the interval graph

(that is, any two vertices of the subgraph are adjacent). The converse is also true, by the

Helly property of intervals: For the vertex set C of any complete subgraph of the interval

graph, there exists a point that hits all intervals in C. Throughout this paper, a clique C

is a maximal complete subgraph, that is, C is not a subset of another complete subgraph.

(Usually all complete subgraphs are named cliques, but for us it will be more convenient to

reserve this term for the maximal ones. However, note that |C| is not necessarily maximum.)

Our problem is equivalent to covering a maximum number of vertices of an interval graph by

γ of its cliques.

For Partial Interval Hitting Set we can assume that no vertex (interval) is isolated,

in the sense that it intersects no other interval of the family. Isolated intervals are a trivial

matter: Since one point can hit only one isolated interval, for an optimal solution with γ

points we need to consider them only when all other intervals are already hit by some of the

points. Without isolated intervals, O(m+ n) simplifies to O(m).

1.2 Related Work

Hitting set problems for general set families and their dual problems, called covering problems,

are among the fundamental NP-hard problems, and they are also well studied from different

angles like approximability [4, 7] and parameterized complexity, see [12].

Problem versions where the solution size is prescribed and the aim is to hit or cover as

many elements as possible have been considered for special cases, e.g., for the vertex cover

problem [11]. General approximation guarantees for greedy partial set cover are given in [6].

In another setting, the fraction of objects to hit or to cover is part of the input, and the goal

is to minimize the solution size, e.g., in [5].

For geometrically restricted families like intervals, problems are typically solvable in poly-

nomial time, yet the interesting matter is to get small time bounds. The partial interval set

cover problem studied in [5] can be solved in quadratic time by dynamic programming, how-

ever, remarkably, this may be too slow for huge data, therefore faster approximation schemes

are developed even for this polynomial-time solvable problem, in the same paper. (Similarly,

polynomial-time solvable problems allow faster exact algorithms if some input parameter is

small; one example is string editing if the edit distance is small [13].)

The problem of covering all vertices of a graph by a minimum number of cliques is solvable

in O(n) time even on circular-arc graphs [10], a class which includes interval graphs. However,

the problem of covering a maximum number of vertices by a fixed number of cliques behaves

differently, and time bounds do not simply carry over.

As mentioned above, our problem can also be rephrased as finding a union of γ cliques with

a maximum number of vertices. In the complement graph, cliques become independent sets,

hence the problem translates into the maximum γ-colorable subgraph problem. Algorithms

for this problem are known for comparability graphs and their complements (a class that

includes interval graphs), however their time bounds are at least quadratic in n; see [8]

and the references to earlier work. For another generalization of interval graphs, the class

of chordal graphs, the maximum γ-colorable subgraph problem is solvable in polynomial

time for fixed γ, and in interval graphs it is polynomial also when γ is part of the intput

[14]. A linear-time algorithm for interval graphs was found later [2]. However, this is the

“complement” to our problem. Both problems are NP-complete for split graphs, hence for
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chordal graphs and their complements [14]. To the best of our knowledge, our refined time

bounds for sparse interval graphs have not been discovered by other related work either.

Finally, Partial Interval Hitting Set can be solved in O(γn2) time; this is one of

many results in [3].

1.3 Our Contributions

We first present an algorithm that solves Partial Interval Hitting Set in O(γm) time.

We assume that the interval endpoints are sorted, otherwise an O(n log n) term must be added

for sorting. Since m can be Θ(n2), of course, this does not improve upon the known O(γn2)

worst-case bound in [3], however it is a major improvement for sparse interval graphs. Our

method is just standard dynamic programming techniques, but we organize the computations

differently from [3] where a simple dynamic programming in the order of right endpoints

is done. That is, we give a different algorithm. Its time bound is obtained by counting

arguments.

We argue that sparse interval graphs are typical in applications like scheduling: If the

stream of arriving jobs has a steady-state behaviour, with respect to central parameters like

average job length and average workload, then obviously m grows only linear in n in the long

run. Very sparse interval graphs as instances, with short intervals spread out over a long

line segment, can have the additional feature that γ largest cliques in total do not overlap

much, especially if some intervals form clusters while all others have few intersections. (A

large number of jobs may simultaneously appear at specific peak times.)

Let s(γ) denote the sum of the sizes of the γ largest cliques. (Note that shared intervals

are here counted multiple times.) In the special case that the γ largest cliques are disjoint,

they form an optimal solution that hits s(γ) intervals, that is, a trivial greedy rule succeeds.

Starting from this observation we study the less restrictive case where these cliques may

share a small number of common vertices. More precisely, we ask for a solution where

γ points hit s(γ) − λ intervals, where λ is some small parameter. By a modification of

our dynamic programming scheme we compute an optimal solution to Partial Interval

Hitting Set in O(m+γλn) time. By a more sophisticated dynamic programming scheme we

can solve the same problem in O(m+γ2λ2 log n) time, by restricting the candidate points for

solutions to a set whose size does not depend on n. Either algorithm can be faster, depending

on the parameter values. Such results may be seen as analogues of parameterization and

kernelization results in the polynomial-time “world” rather than for NP-hard problems.

2 Preliminaries

For two points p < q on the real line we say that p is to the left of q.

Some assumptions on the given intervals can be made without loss of generality: All 2n

endpoints rj and dj are distinct, and the endpoints are sorted (otherwise we can sort them

using O(n log n) extra time). The rj are indexed such that r1 < . . . < rn. Moreover, it

suffices to restrict solutions H to subsets of {r1, . . . , rn}. (The argument is simple: In any

solution, any point which is not an rj can be moved to the left until the left endpoint of

some interval is met.) Moreover, only points rb that hit a clique, i.e., a maximal complete

subgraph, need to be considered for an optimal solution. (Otherwise, some other point rb′

hits further intervals in addition to those hit by rb, and we can replace rb with rb′ in H.)
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Definition 2. Let I(b) denote the set of all intervals hit by rb.

In particular, every clique is some of the I(b). (But the converse does not hold. Note

that I(b) is a clique if and only if the next interval endpoint to the right of rb is some right

endpoint dj . We will not need this property, we only mention it for the sake for completeness.)

Sometimes we loosely identify a point rb and its set I(b) if this causes no confusion. For formal

reasons we also insert a dummy point r0 < r1. As usual, let ω denote the number of vertices

of a largest clique.

Lemma 3. We have m = O(ωn) and
∑n

b=1 |I(b)| = O(m). Moreover, in O(m) time we can

prepare all sets I(b), in such a way that the intervals in every I(b) are sorted by their left

endpoints.

Similar observations were known before, even for chordal graphs [9]. We omit the straight-

forward proof. The first part can be shown by counting arguments, and the O(m)-time

algorithm only loops through the sorted sequence of the rb.

Definition 4. Consider any solution H to Partial Interval Hitting Set, where the

points have been inserted one by one in a specific order (for instance, from left to right, but

it could be any order). Upon insertion of rb ∈ H we say that an interval in I(b) is a new

interval, if it was not already hit by some earlier point of H in the specified order.

3 Time Complexity Proportional to the Edge Number

Theorem 5. Given a family of n intervals whose interval graph has m edges, we can deter-

mine γ points that together hit a maximum number of intervals, in O(γm) time.

Proof. First we preprocess the given interval family according to Lemma 3 in O(m) time.

Remember that the intervals in every I(b) are sorted by their left endpoints.

We define h(g, a) to be the largest number of intervals that can be hit by g ≤ γ points,

each of which is less than or equal to ra. In particular, using the dummy point r0 we define

h(g, 0) := 0 for all g. Trivially, h(0, a) = 0 holds for all a. Note that O(γn) pairs (g, a) exist,

which is in O(γm).

For any fixed b∗, suppose that all h(g∗, a), a < b∗, are already computed. Below we

discuss how we compute all values h(g∗, b∗).

Consider any optimal solution H and any point rb ∈ H. Let g be the number of points in

H to the left of rb, let k be the number of new intervals in I(b), let rc be the left endpoint of

the first new interval in I(b), and let a := c− 1. (In other words, the first new interval is the

kth last in the sorted set I(b).) Then the g + 1 points in H up to rb together hit h(g, a) + k

intervals. In fact, the contribution from the first g points is h(g, a), since otherwise we could

replace them with g points to the left of ra that hit more intervals, moreover we could still

add the k new intervals from I(b), and the rest of H to the right, contradicting the optimality

of H.

This shows that h(g + 1, b) equals the maximum of h(g + 1, b− 1) and of all |I(b)| sums

h(g, a) + k that we can build as above. The term h(g + 1, b − 1) accounts for the case that

by using rb we cannot hit more intervals than by using only points to the left of rb. The

summations and comparisons are done for all g < γ. Now the time bound O(γm) follows

from the bound
∑n

b=1 |I(b)| = O(m) in Lemma 3.
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An optimal solution is recovered from the h(g, b) values by backtracing, as outlined below.

Clearly, h(g, b) is a monotone function in both arguments. We start at h(γ, n) which is the

number of intervals hit by an optimal solution. In a generic step we are at some entry h(g, b).

We decrease b (do iteratively b := b− 1) until we find an argument b where h(g, b) decreases

for the first time, that is, h(g, b− 1) < h(g, b). Then this b is the index of the leftmost point

rb where a solution with g points, still hitting the same number of intervals, can end. Thus

we also know that rb was the gth point in our optimal solution. We check which of the left

endpoints of intervals in I(b) gave the maximum sum h(g, a) + k. Say, it was rc, ties are

broken arbitrarily. We set b := c− 1 and g := g − 1 and continue. Since we only reconsider

some old calculations and only decrease the argument b in between, still the time does not

exceed O(γm+ n) = O(γm).

4 If the Largest Cliques are Almost Disjoint

The motivation of the previous result was that in typical cases the interval graphs may be

sparse, that is, the interval family is “long” but every point hits only a limited number of

intervals. Recall the correspondence between points and cliques. If the γ largest cliques

happen to be disjoint sets of intervals, then the γ corresponding points form an optimal

solution, that is, a greedy algorithm taking the largest cliques succeeds. (Care is needed if

certain cliques have equal sizes, but we withhold the details, as we will derive a more general

result below.)

This greedy policy fails in general, if the largest cliques overlap. Perhaps the simplest

counterexample is a graph with a clique of 4 vertices a, b, c, d and 2 further vertices e, f , with

e being adjacent to a, b, and f being adjacent to c, d. This is easily seen to be an interval

graph. Let γ = 2. Taking the 4-clique first, we can cover only 5 vertices, whereas the 2

disjoint 3-cliques cover all 6 vertices.

In the following, remember that “cliques” only refers to maximal complete subgraphs.

Definition 6. Let ωi denote the size of the ith largest clique, and let s(γ) :=
∑γ

i=1 ωi.

A solution that hits s(γ)− λ intervals is said to have loss λ.

If γ largest cliques are disjoint, then the corresponding γ points can hit s(γ) intervals.

An obvious question is how difficult it is to compute a solution that hits s(γ) − λ intervals,

with a small loss λ. Note that λ = 0 is the special case discussed above. So our question is

how simple the problem remains if the largest cliques overlap only a little. Sparse interval

families are likely to have this property which is less restrictive than the disjoint case.

Lemma 7. Any solution H with loss λ has the following property: Every point rb in H hits

at least |I(b)| − λ new intervals.

Proof. Assume that some point rb in H hits fewer than |I(b)| − λ new intervals. Then this

causes a loss exceeding λ (even in the best case when the γ points in H are those of the γ

largest cliques), a contradiction.

Theorem 8. Given a family of n intervals and a maximum loss λ, we can determine γ points

that together hit at least s(γ) − λ intervals (or report that no solution with loss at most λ

exists), in O(m+ γλn) time.
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Proof. First we preprocess the given interval family according to Lemma 3 in O(m) time. We

use the dynamic programming scheme from Theorem 5 and the same notations. The only

difference is that, due to Lemma 7, it suffices to consider the last λ intervals in every sorted

set I(b). Thus, if our final solution with h(γ, n) intervals has a loss exceeding λ, we know

that λ was chosen too small. Clearly, the time is O(γλn).

For λ not being given in advance, we can find the optimal number s(γ) − λ of intervals

by doing unbounded binary search for λ in O(log λ) steps, and solving the existence problem

each time as in Theorem 8, which costs an extra O(log λ) factor. (For unbounded search we

refer to the classical paper [1], however the O(log λ) bound is obvious.)

By defining the density of the interval graph as δ := m/n we can compare the factors

of n. The algorithm in Theorem 8 is faster than the general algorithm in Theorem 5 if the

loss is λ < δ. In the following we will devise another algorithm which has a time bound of

O(m+γ2λ2 log n). Note that the second term is only logarithmic in n and otherwise depends

only on γ and λ. In other words, the factor of n is asymptotically just δ, compared to δ+ γλ

in Theorem 8. Hence the new algorithm becomes faster if the number of points is γ > δ/λ.

It is also faster than the algorithm in Theorem 5. Even if λ is not part of the input and

the time bound gets an extra O(log λ) factor, the new algorithm is faster than the one in

Theorem 5 for γ > log λ.

5 Dynamic Programming with Restricted Candidate Set

Lemma 9. Any solution H with loss λ has the following properties:

(i) H contains every point rb with |I(b)| > ωγ + λ.

(ii) H contains only points rb with |I(b)| ≥ ωγ − λ.

Proof. Remember that the size of H is fixed as γ.

For (i), assume that some point rb as specified is not in H. Then some point that is

in H instead of rb hits at most ωγ intervals. Thus H hits at most s(γ) − |I(b)| + ωγ <

s(γ)− (ωγ + λ) + ωγ = s(γ)− λ intervals, hence the loss exceeds λ, a contradiction.

For (ii), assume that some point rb with |I(b)| < ωγ −λ is in H. Then some of the points

rc that hit the γ largest cliques I(c), with sizes at least ωγ , is not in H (and rb is there

instead). Thus H hits at most s(γ)−ωγ + |I(b)| < s(γ)−ωγ + (ωγ − λ) = s(γ)− λ intervals,

hence the loss exceeds λ, again a contradiction.

Definition 10. We call the cliques specified in Lemma 9 (i) and (ii) the major and minor

cliques, respectively.

Due to (ii), cliques smaller than ωγ − λ can be ignored henceforth.

Theorem 11. Given a family of n intervals and a maximum loss λ, we can determine γ

points that together hit at least s(γ)−λ intervals (or report that no solution with loss at most

λ exists), in O(m+ γ2λ2 log n) time.

Proof. According to (i) we put all major cliques (more precisely, their corresponding points

rb) in the solution. Due to (i) and (ii), the minor cliques have sizes |I(b)| in the range from

ωγ −λ to ωγ +λ. Due to their minimum size and Lemma 7, each of the further points added

to the solution must hit at least τ := ωγ − 2λ new intervals.
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The limited range of interval numbers suggests to use other parameters for the dynamic

programming function. From now on let g denote the number of minor cliques selected so

far, in addition to the major cliques that we are forced to use. As seen above, every selected

minor clique hits some number τ+k of new intervals, with k ≥ 0. Let h denote the sum of all

these excess numbers k above the threshold τ . Note that k ≤ 3λ = O(λ) for each of these k,

by Lemma 7. Finally, we define t(g, h) as the smallest index b such that there exists a partial

solution with values g, h, where rb is the rightmost point corresponding to a selected minor

clique. If no such solution exists, then we formally set t(g, h) := n + 1, or take any dummy

value larger than n. Clearly, we have h ≤ γ3λ = O(γλ), hence only O(γ2λ) pairs (g, h) exist.

In order to determine the O(γ2λ) indices t(g, h) efficiently among the n possible ones, we

need a special-purpose data structure. We take the sorted sets I(b) from Lemma 3 and create

certain triples (k, c, b) as described in the following. We keep only the minor cliques I(b) and

mark the intervals that are hit by the major cliques. In every minor clique I(b) we reverse

the order, such that intervals are sorted in right-to-left order of their left endpoints. We skip

the first τ − 1 unmarked intervals and then assign indices k = 0, 1, 2, 3, . . . to the following

unmarked intervals. Note that τ + k equals the number of new intervals that rb would hit

if the last minor clique selected before were at some ra just before the left endpoint of the

unmarked interval with index k. Finally we create the triple (k, c, b) for the interval in I(b)

that received index k and has the left endpoint rc. Note that the total number of triples is

O(m) by Lemma 3, in general it can be much smaller. Next, for every fixed k, we sort all

triples (k, c, b) by ascending b. Since the indices b are sorted, this only requires a re-shuffling

in O(m) time.

Finally we discard dominated triples: We say that (k, c, b) dominates (k, c′, b′) if c ≥ c′

but b ≤ b′. Instead of adding rb′ to a solution and hitting exactly τ + k new intervals, we

can use rb: This point still hits at least τ + k new intervals (as the last minor clique selected

before was at some point ra with a ≤ c′ ≤ c), and since b ≤ b′, all new intervals hit by further

points to the right remain new intervals in the modified solution, too. In order to erase all

dominated triples in O(m) time, we take each k, loop through the list of triples (k, c, b) by

ascending b, maintain the maximum c observed so far, and retain a triple only if c gets strictly

larger.

For any fixed g, suppose that all t(g, h) are already computed, and that all t(g + 1, h′)

are initialized by n + 1. Consider any such known value t(g, h) = a. For each k we need to

determine the smallest b such that we can hit τ + k new intervals by appending point rb to a

solution whose last minor clique is at ra. To this end, we need the triple (k, c, b) with a < c and

minimum b. Since no triple is dominated by others, this is equivalent to determining the triple

(k, c, b) with minimum c > a. Since the retained values of c are monotone decreasing (for any

fixed k), we can find c by binary search in O(log n) time. Then we update t(g+ 1, h+k) := b

if the returned b is smaller than the current value of t(g + 1, h + k). It is clear that we

eventually get the correct indices t(g + 1, h′) for all h′.

Let J be the number of major cliques, and L the number of intervals hit by them. A

solution has loss at most λ if and only if L+ (γ−G)τ +h ≥ s(γ)−λ. Hence, a solution with

loss at most λ exists if and only if t(γ, h) ≤ n holds for some h satisfying this inequality. Since

there exist only O(γ2λ) pairs (g, h), and each one is combined with O(λ) values of k, the

dynamic programming phase costs O(γ2λ2 log n) time. As was detailed above, preprocessing

takes O(m) time.
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For λ not being given in advance, the same remark as in Theorem 8 applies.

6 Bounded Clique Size

As usual, let ω(= ω1) denote the size of a maximum clique in our interval graph. From

Lemma 3 we see that m = O(ωn) holds in interval graphs. Together with Theorem 5 this

implies:

Corollary 12. Given a family of n intervals whose interval graph has the maximum clique

size ω, we can determine γ points that together hit a maximum number of intervals, in O(γωn)

time.

More interesting is another observation:

Theorem 13. Given a family of n intervals, we can determine γ points that together hit a

maximum number of intervals, in O(m+ γ2ω2 log n) time.

Proof. The dynamic programming algorithm inside Theorem 11 is only based on the fact

that one point can add k = O(λ) new intervals. Trivially we also have k = O(ω). Thus we

can proceed similarly, with h as the absolute number of intervals hit so far, and replace λ

with ω in the time bound for dynamic programming.

7 Conclusions

We proposed algorithms for hitting a maximum number of intervals by γ points, that run

faster than the worst-case time bound O(γn2) from [3] suggests, when the interval family has

few overlaps. Different dynamic programming versions are tailored to different “shapes” of

the given interval family. The refined bounds might also be used for the discrete scheduling

problem, of maximizing throughput with a budget for gaps, which is considered in [3].

Some questions for further research are: Can we get rid of the O(log n) factor in Theorem

11, and of the O(log λ) factors when the maximum loss is not part the input (Theorem 8 and

11)? Can the algorithms be generalized to larger standard graph classes such as circular-arc

graphs and (strongly) chordal graphs?
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