
The Union of Minimal Hitting Sets:

Parameterized Combinatorial Bounds

and Counting∗

Peter Damaschke and Leonid Molokov
Department of Computer Science and Engineering

Chalmers University, 41296 Göteborg, Sweden

[ptr,molokov]@chalmers.se

Abstract

A k-hitting set in a hypergraph is a set of at most k vertices that
intersects all hyperedges. We study the union of all inclusion-minimal k-
hitting sets in hypergraphs of rank r (where the rank is the maximum size
of hyperedges). We show that this union is relevant for certain combinato-
rial inference problems and give worst-case bounds on its size, depending
on r and k. For r = 2 our result is tight, and for each r ≥ 3 we have an
asymptotically optimal bound and make progress regarding the constant
factor. The exact worst-case size for r ≥ 3 remains an open problem. We
also propose an algorithm for counting all k-hitting sets in hypergraphs of
rank r. Its asymptotic runtime matches the best one known for the much
more special problem of finding one k-hitting set. The results are used for
efficient counting of k-hitting sets that contain any particular vertex.

Keywords: algorithms, parameterization, combinatorial inference, counting,
hypergraph transversals

∗The paper without Section 3 is an improved version of results presented by the first author
in [10].

1

1 Introduction

A hypergraph G consists of n vertices and a family of h subsets of vertices called
hyperedges. The rank r of G is the maximum number of vertices in a hyperedge.
A hitting set is a set of vertices that intersects all hyperedges. A k-hitting set
is a hitting set with at most k vertices. We sometimes use the term exact-k-
hitting set if it has exactly k vertices. A hitting set is minimal if no proper
subset of it is a hitting set as well. Carefully distinguish this from a minimum
(cardinality) hitting set. We always use k∗ for the size of a minimum hitting
set in G. Hypergraphs of rank 2 are graphs, and hitting sets are called vertex
covers there. The degree of a vertex is the number of hyperedges it belongs to.
We will use these notations throughout the paper.

The Hitting Set problem is to find some k-hitting set when G, k are given.
In the Hitting Set Enumeration problem, also known as Transversal
Hypergraph construction, we have to list all minimal hitting sets of G. Even
for limited r and k, there can exist very many minimal k-hitting sets most of
which differ by a few vertices. A plain list of all transversals is therefore rather
useless. In certain combinatorial inference applications (as outlined below),
the main interest is which vertices appear in minimal k-hitting sets at all, and
in how many. This leads to other related problems that we consider in this
paper: Hitting Set Counting asks how many (exact) k-hitting sets exist in
G. Finally we define the problem Counting Hitting Sets with a Specified
Vertex (CHSwSV): Given G and k, compute for every vertex v of G the
number of k-hitting sets that contain v.

Our interest stems from some general and fundamental inference problem
appearing in, e.g., diagnostics (cf. the references in [14]): We are given a set V
of possible causes, a set E of effects, a relation R ⊂ V ×E, and a set O ⊂ E of
observed effects. A cause or effect is either present or absent. Relation (v, e) ∈ R
means that v may cause e. We suppose no interference, i.e., causes generate
effects independently. The task is to infer the set C ⊂ V of present causes.
Since each e ∈ O must be explained by some cause, this is just an instance
of the Hitting Set problem. (The hypergraph to be considered depends on
whether a present cause v generates some or all effects e with (v, e) ∈ R; it
is easy to figure out the details). Parameter k is some a priori bound on the
number of present causes: |C| ≤ k.

Following the terminology of [16], the minimal k-hitting sets form the specific
boundary of the version space of consistent hypotheses in this inference problem.
It is essential to keep all consistent hypotheses rather than only one minimal
solution which might not explain the data correctly. Additional informative
experiments can then discriminate between the hypotheses and finally point to
a unique or most likely solution. (Cf. the general discussions of these issues in
[5, 9].) The primary interest is evidence for the presence or absence of every
single cause v ∈ V . A natural approach, especially if no solution is preferred
a priori, is to count for each v the hypotheses in the version space with and

2

without v. This yields posterior probabilities for the presence of causes. The
approach can be generalized to more complicated priors (by weighting), as well
as joint presence of several causes, etc.

Often, most effects e are characteristic for only few possible causes each.
That is, most hyperedges have size at most r, for some small fixed integer r.
In practical problem instances we may first ignore larger hyperedges: While
this can make the version space larger, the hitting set problems become com-
putationally tractable in hypergraphs of fixed small rank (see below). The
temporarily ignored hyperedges can be reinserted afterwards, and the version
space narrowed down in an ad hoc fashion for the concrete instance. Also, large
hyperedges impose less powerful constraints on the family of hitting sets.

An application example is the reconstruction of protein mixtures using pep-
tide mass fingerprinting and a database of mass spectra. The connection to
hitting set and similar problems was also noticed in bioinformatics literature
[2, 18]. Here the “causes” are proteins to detect, and the “effects” are peptides
(or only their masses) observed in a digested mixture. A mixture is known to
contain at most a certain number of proteins (think of 30-50), and large peptide
masses appear in a handful candidate proteins only.

A computational problem with input size n and another input parameter
k is fixed-parameter tractable (FPT) if it can be solved in O(T (k)p(n)) time,
where T is any function (often exponential) and p some polynomial. For intro-
ductions we refer to [11, 19]. Hitting Set is unlikely to be in FPT for general
hypergraphs, but is easily seen to be in FPT for hypergraphs of any fixed rank
r, and so behave the corresponding enumeration and counting problems.

We presume some familiarity with the techniques of FPT algorithms, but
we briefly outline some facts needed later. Any FPT problem can be reduced
in polynomial time to kernel, that is, an instance of size depending only on
parameter k but not on n. FPT algorithms are often branching algorithms (ap-
plied to a kernel), where an instance is recursively split into several instances,
where parameter k is reduced by k1, . . . , ks in s different branches. Then the
“parameterized” part of the time complexity is the solution to the recurrence
T (k) =

∑s
i=1 T (k − ki), namely T (k) = xk, where x is the positive root of the

characteristic equation xk =
∑s

i=1 xk−ki . Base x is called the branching num-
ber. If several branching rules are applied, then the largest branching number
determines the worst-case time bound.

Our contributions and related work: The main subject of this paper is the
union of all minimal k-hitting sets, denoted U(k), in a given hypergraph. We
highlight some properties of U(k) that we will prove, and some conclusions:

(1) All v /∈ U(k) appear in exactly the same number of k-hitting sets.

(2) Any u ∈ U(k) appears in more (typically much more) k-hitting sets than
any v /∈ U(k).

3

(3) U(k) has, roughly, at most kr vertices, regardless of n. We conjecture
that the worst-case upper bound is even better by a considerable factor
depending on r. (More precise technical statements are given later.)

(4) U(k) can be computed in bkpoly(n) time, where poly is some fixed poly-
nomial, and b is smaller than r and tends to r − 1.

(5) In the light of our cause-effect inference problem, (2) means that vertices
(causes) in U(k) have by far the highest probabilities for being present.

(6) Statements (1), (3), and (4) together imply that, for any fixed rank, U(k)
serves as a polynomial-size kernel for hitting set counting problems like
CHSwSV, in the same way as kernels for FPT optimization problems.

The paper is organized as follows. In Section 2 we establish the main prop-
erties of U(k). Section 3 presents a relatively simple algorithm for Hitting Set
Counting and CHSwSV that works in bkpoly(n) time, where poly is some fixed
polynomial, and b is smaller than r and tends to r − 1. This generalizes the
known result for Hitting Set [20] and also shows the advantage of a counting
kernel. As for the size of U(k), we proved earlier [9] that |U(k)| < (r− 1)kr + k
and gave simple examples of hypergraphs where |U(k)| = Θ(kr), with a tiny fac-
tor 1/rr. An intriguing question is: How large can the constant factor in Θ(kr)
factor actually be, in the worst case? This problem remains open (except for
r = 2 where the optimal factor is 1

4 [9]), but we make further progress: In Section
4 we “stratify” the result for r = 2, in that we also take the relation between k
and k∗ into account: We prove the tight bound |U(k)| ≤ (k−k∗ +2)k∗. In Sec-
tion 5 we improve our earlier lower and upper bounds for general r. Using some
hypergraph decomposition we show |U(k)| ≤ (1 + o(1))h if h = Θ(kr), where h
is here the number of hyperedges in an equivalent reduced hypergraph having
the same family of minimal k-hitting sets as the given hypergraph. Due to an
earlier result (also in [9]) stating that h ≤ kr, it follows |U(k)| ≤ (1 + o(1))kr

if h = Θ(kr) (and if h = o(kr) then |U(k)| is smaller anyhow). Note that any
further improvements on h would further reduce the |U(k)| bound immediately.
We also derive stronger bounds for ranks 3 and 4. Section 6 concludes the paper
and points out directions for further research.

Finally we review some related work. Hitting Set is NP-complete and
even unlikely to be FPT with parameter k∗ [4]. However, for any fixed rank r,
Hitting Set Enumeration and hence Hitting Set Counting is in FPT [9].
Enumerating and counting small vertex covers is also addressed in [12, 5, 17].
Improved algorithmic and analysis techniques for Hitting Set in hypergraphs
of rank r, also in the weighted case, were given in [13, 14], however they cannot
be translated into counting algorithms, as several of the reduction rules do not
apply here. Exact exponential counting algorithms for combinatorial objects
also appeared in other literature (e.g., [8]), however not so much in the FPT

4

framework. A complexity-theoretic framework for parameterized counting was
given in [15]. Only recently, similar ideas for parameterized counting (of, e.g.,
hitting sets) by kernelization have been developed independently in [22], but our
bounds beat the corresponding results. New exponential but non-parameterized
counting algorithms for hitting sets and related objects (2SAT and 3SAT for-
mulae) are given in [23]. Kernels of size O(kr−1) are obtained in [1] for Hitting
Set, but not for the counting problem.

To our best knowledge, previous work on |U(k)| has considered the special
case r = 2 and k = k∗ only: An upper bound for the union of minimum vertex
covers, in relation to the size of a minimum vertex cover and maximum matching,
is given in [3]. (Note that results in [3] are formulated in terms of stable sets, i.e.,
complements of vertex covers.) In the same paper, NP-hardness of computing
U(k∗) was proved. Hardness already for r = 2 adds further motivation to the
question of the parameterized complexity of computing U(k). The bound on
|U(k∗)| for r = 2 has been further improved in [7] (among many other results).

2 A Kernel for Counting Small Hitting Sets

In this section we establish the announced principal properties of U(k), the
union of all minimal k-hitting sets in a hypergraph.

A vertex v in a hitting set D is called redundant in D, if D \ {v} is still a
hitting set, otherwise v is irredundant. Note that v ∈ D is irredundant if and
only if v is the sole vertex of D in some hyperedge, and that a hitting set is
minimal if and only if it has no redundant vertices.

Lemma 1 In any k-hitting set D, all vertices of D \ U(k) are redundant.

Proof. D contains some minimal hitting set D′, and D′ ⊆ U(k). 2

Recall that we are interested in the the number of k-hitting sets containing
any fixed vertex. For every j with k∗ ≤ j ≤ k, let s(j) be the number of different
exact-j-hitting sets D ⊆ U(k). For any vertex v ∈ U(k) let sv(j) be the number
of different exact-j-hitting sets D ⊆ U(k) such that v ∈ D.

Lemma 2 The number of different k-hitting sets containing vertex v equals∑k
j=k∗ sv(j)

∑k−j
i=0

(
n−|U(k)|

i

)
if v ∈ U(k), and∑k

j=k∗ s(j)
∑k−1−j

i=0

(
n−1−|U(k)|

i

)
if v /∈ U(k).

Proof. Every k-hitting set extends some minimal k-hitting set D ⊆ U(k)
by further vertices, unless it is minimal itself. Since |D| ≥ k∗, any k-hitting
set shares at least k∗ vertices with U(k). In order to count all k-hitting sets
containing some vertex v we just have to consider the different hitting sets
D ⊆ U(k) of each cardinality j, and add all possible combinations of at most
k − j vertices outside U(k). If v ∈ U(k) then these D must contain v. If

5

v /∈ U(k), we have to take all D ⊆ U(k) of size j, but outside U(k) one free
vertex less remains. 2

Theorem 3 All vertices v /∈ U(k) belong to exactly the same number of dif-
ferent k-hitting sets, and this number is properly smaller than the number of
different k-hitting sets containing any fixed u ∈ U(k).

Proof. The first assertion follows from Lemma 2, as the expression for
v /∈ U(k) is independent of v. We may prove the second assertion by comparison
of terms in Lemma 2 too, however, an exchange argument using Lemma 1 gives
more structural insight:

Fix any u ∈ U(k) and v /∈ U(k). Consider any k-hitting set D 3 v. If also
u ∈ D, let D′ = D. If u /∈ D, let D′ = (D \ {v}) ∪ {u}. Since v is redundant in
D by Lemma 1, D′ is a k-hitting set also in the latter case. It is easy to check
that all D′ 3 u coming from the different D 3 v are different.

It remains to show that k-hitting sets C 3 u exist which are not among the
sets D′ defined above. In fact, whenever v /∈ C and u is irredundant in C, none
of the D′ equals C. Such C exist, by the following argument. Since u ∈ U(k),
some minimal k-hitting set C ⊆ U(k) contains u. Note that v /∈ C and u is
irredundant in C. 2

In the proof above it should be noticed that, if |C| = j < k, we can extend
C by arbitrary combinations of k − j vertices outside U(k) ∪ {v}, to get many
different k-hitting sets with u, distinct from all sets D′. Moreover, u can already
belong to many different minimal k-hitting sets. That is, vertices in U(k) are
in general contained in much more k-hitting sets than vertices outside U(k).

We turn to the questions of the size and computation of U(k). Recall that
we use h to denote the number of hyperedges. Theorem 7 in [9] can be rephrased
as follows:

Theorem 4 For any hypergraph G of rank r, and integer k, there exists a
hypergraph G′ of rank r such that the vertex set of G′ is contained in that of G,
G′ has exactly the same minimal k-hitting sets as G, and all vertex degrees in
G′ are at most kr−1. We can compute G′ from G in O(kr−1h) time. 2

It follows immediately:

Corollary 5 For any hypergraph G of rank r, and integer k, it holds: If G has
a k-hitting set then there exists a hypergraph G′ of rank r such that the vertex set
of G′ is contained in that of G, G′ has exactly the same minimal k-hitting sets
as G, but G′ contains at most kr hyperedges which cover at most (r − 1)kr + k
vertices. Hence |U(k)| ≤ (r− 1)kr + k holds in G′, and therefore also in G. We
can compute G′ from G in O(kr−1h) time. 2

6

In Section 4 we will improve this “old” upper bound for |U(k)| by almost
a factor r − 1. Next we show that U(k) can be computed by fewer than nh
applications of any FPT algorithm for Hitting Set. For example, some k-
hitting can be found in O(n + (r − 1 + 1

r−1)k) time [20]. Based on this result
we obtain:

Theorem 6 U(k) in a given hypergraph G can be computed in O(kr−1h +
k2r(r − 1 + 1

r−1)k) time.

Proof. The idea is simply to check for every vertex v whether the hy-
pergraph without v has a (k − 1)-hitting set. Due to Corollary 5, it suffices
to do that for the O(kr) vertices v in the reduced hypergraph G′ obtained in
an O(kr−1h) time preprocessing. A trap is that we have to detect redundant
vertices.

In more detail, for any vertex v and hyperedge e 3 v, let G′(v, e) be the
hypergraph obtained as follows. Remove from G′ the hyperedges that contain
v, and from the remaining hyperedges delete all vertices contained in e. (That
is, replace each f with f \ e, and keep duplicate hyperedges.)

Now we formulate the algorithm. For every vertex v, check whether G′(v, e)
for some e 3 v has a (k − 1)-hitting set. If so, then take a minimal such set H
and add v, which yields a minimal k-hitting set of G containing v. If the test
fails for all e 3 v, clearly v cannot belong to any minimal k-hitting set.

To prove correctness of the first part we claim that, if H is a minimal (k−1)-
hitting set in G′(v, e), then H∪{v} is indeed a minimal k-hitting set in G′. This
follows from three observations: (a) H ∪ {v} is obviously a k-hitting set. (b)
Every vertex w ∈ H is irredundant in H ∪ {v}, because: w is irredundant in
H, hence w is in some hyperedge f \ e of G′(v, e) that is free of other vertices
from H. Since e ∩H = ∅, the whole f is free of other vertices from H. Finally,
f does not contain v either (otherwise, f \ e would not occur in G(v, e)). (c) v
is irredundant in H ∪ {v} as well, because e ∩H = ∅.

To prove correctness of the second part, assume for contradiction that v is
in some minimal k-hitting set H ∪ {v}. Since v is irredundant, there must be
some hyperedge e 3 v with e ∩H = ∅. But then H is clearly a (k − 1)-hitting
set in G′(v, e).

G′ has O(kr) hyperedges, hence O(k2r) pairs v, e are tested. Note that the
number O(kr) of vertices in G′ is dominated by (r − 1)k, as we consider r as
a constant (although arbitrary) and k as the parameter. Now the time bound
follows easily. 2

Finally, the following algorithm Count solves CHSwSV, using (as “oracles”)
two algorithms that compute U(k) and count the exact-j-hitting sets in a hy-
pergraph. In Section 3 we will derive a time bound for Count, and hence for
CHSwSV.

7

Count
Input: a hypergraph, an integer k.
Method:
(1) Delete all vertices outside U(k) from all hyperedges.
(2) Count the exact-j-hitting sets in U(k) for all k∗ ≤ j ≤ k in order to compute
the s(j).
(3) Do the following separately, i.e., from scratch, for each v ∈ U(k).
(3.1) Delete the hyperedges that contain v, keeping the other vertices therein.
(3.2) Count the exact-(j− 1)-hitting sets for all k∗ ≤ j ≤ k in order to compute
the sv(j).
(3.3) Apply the suitable formula from Lemma 2.
(4) For v /∈ U(k), apply the suitable formula from Lemma 2 once.

Correctness is easy to establish, by the definition of U(k) and Lemma 2. We
stress again that the size |U(k)| determines how many different values must be
actually calculated.

3 Counting Small Hitting Sets Efficiently

A vertex u is said to dominate vertex v if all hyperedges containing u do also
contain v. In algorithms for Hitting Set, dominated vertices v can be removed.
In Hitting Set Counting however, this vertex domination rule does not
apply, since we would lose the hitting sets containing v. Already for this reason
we cannot simply extend the known algorithms to the counting problem, rather,
we have to modify the rules themselves or introduce new rules.

In our approach, we first generalize the problem formulation of Hitting Set
Counting. At first glance this formulation looks technical, but it will allow
a simple yet powerful reduction rule. We consider hypergraphs with vertices
labeled with multiplicities. A vertex v with multiplicity m = m(v) represents
m ordinary vertices that are undistinguishable, i.e., belong to exactly the same
hyperedges. (Otherwise we call two vertices distinguishable.)

Accordingly, the size of a hyperedge H is now
∑

v∈H m(v), and the rank is
still the maximum size of hyperedges. Now a hitting set is defined as a vector
t of nonnegative integers t(v) (for each vertex v), with the following properties:
t(v) ≤ m(v) for all v, and every edge contains a vertex v with t(v) > 0. The
size of a hitting set t is

∑
v t(v). The multiplicity of a hitting set t is defined

as
∏

v

(
m(v)
t(v)

)
. The problem is to count, with multiplicities, all hitting sets of

a given size k. Note that this is just the Hitting Set Counting problem
rephrased.

Merging rule: If several vertices v1, . . . , vs belong to exactly the same hyper-
edges, replace them with one new vertex v such that m(v) := m(v1)+· · ·+m(vs).

8

Whenever all possible mergings are done, then any two vertices are distin-
guishable. It follows that vertex domination defines a partial order relation on
the vertices which is strict, i.e., no equivalent vertices exist.

We say that vertex v belongs to hitting set t if t(v) ≥ 1. Our branching
rules will decide for certain nodes v whether v shall belong to t or not, but,
in the positive case, the exact t(v) > 0 is fixed later, and v is only marked.
Vertices v with t(v) = 0 are simply removed from the hypergraph. After each
application of the merging rule, the new vertex v is marked if some of the vi

was marked. For every newly marked vertex v, we immediately remove all
hyperedges containing v (but not the vertices therein!). We do not mention
these obvious steps anymore in our branching rules.

We call a branching rule exact if every solution (hitting set) appears in ex-
actly one of the branches. Having only exact rules ensures that we can simply
sum up the numbers of solutions represented by the leaves of the final search
tree. Every leaf represents a hypergraph where solutions can be counted in
polynomial time, either because the hypergraph is “simple”, or because all re-
maining vertices v are marked. In the latter case, we have to take between 1
and m(v) copies of each vertex v, and a simple auxiliary algorithm counts the
exact-k-hitting sets:

Lemma 7 The number of different ways to choose, from buckets of b1, b2, b3, . . .
elements, a total of k elements, taking at least one element from each bucket,
can be computed in O(k3) time (i.e., arithmetic operations).

Proof. Clearly, there can be at most k buckets, or the result is 0. Count
the number of ways of choosing exactly i elements from the first j buckets,
for i, j ≤ k. In the step from j − 1 to j we only have to multiply the results
for j − 1 buckets with suitable binomial coefficients

(
bj

l

)
, 1 ≤ l ≤ bj , and sum

up the results. Details of the dynamic programming and time analysis are
straightforward. 2

Now we state our branching rules.

Sequential rule: Take one hyperedge and index its vertices by v1, . . . , vs. Branch
as follows. Decide on the vertex vj with the smallest index j that shall belong
to the hitting set, and remove all vi with i < j.

Small-hyperedge rule: Take one hyperedge with s ≤ r−1 vertices and apply the
sequential rule to it.

It is easy to see that the sequential rule, and hence the small-hyperedge rule,
is an exact branching rule. Trivially, the small-hyperedge rule has branching
number r − 1 in the worst case. We first apply the merging rule and small-
hyperedge rule as long as possible. Thus we can always assume in the following

9

that all hyperedges have exactly r vertices, and any two vertices are distinguish-
able.

After these precautions we are ready to adapt, basically, the Hitting Set
algorithm from [20] to Hitting Set Counting.

Theorem 8 Hitting Set Counting in hypergraphs of rank r, given as a list
of h hyperedges, can be solved in O(kr−1h + rkr+1(r − 1 + 1

r−1)k) time.

Proof. In every branching step of the algorithm, consider some hyperedge
H. We denote the vertices of H by v1, . . . , vr so that v1 is not dominated by
any other vj ∈ H with j > 1. Since any two vertices are distinguishable, such
v1 exists: It suffices to choose v1 as any vertex in H with maximum degree. The
other vertices in H are ordered arbitrarily.

A hyperedges with fewer that r vertices is called a small hyperedge. Bor-
rowing a notation from [13, 14], let T i(k) be the number of leaves of the
search tree if the parameter value (number of vertices yet to choose) is k,
and at least i small hyperedges exist. We apply the sequential rule to H.
Thus, for every j ≥ 2, the jth branch where vj is chosen produces a small
hyperedge H ′, as v1 is removed from some hyperedge that contains v1 but
not vj . This gives T 0(k) ≤ T 0(k − 1) + (r − 1)T 1(k − 1). Then we ap-
ply the sequential rule (small-hyperedge rule) again to H ′. Thus we also get
T 1(k) ≤ T 0(k − 1) + (r − 2)T 1(k − 1). This system of recurrences was already
analyzed in [20], the branching number is:

r − 1 +
2√

(r − 1)2 + 4 + r − 1
< r − 1 +

2√
(r − 1)2 + r − 1

= r − 1 +
1

r − 1
.

Next we discuss the polynomial factor. Cardinalities of all hyperedges and
degrees of all vertices are determined once in the beginning in O(rh) time. All
removal operations of vertices and edges, and updates of hyperedge sizes and
vertex degrees, need together O(rh) time on every path of the search tree.

The equivalence classes of undistinguishable vertices for the merging rule are
determined in O(rh) time: For this purpose we rebuild the hypergraph incre-
mentally, inserting hyperedges one-by-one. In the initial empty hypergraph, all
vertices are equivalent. When a new edge H is reinserted, it splits only equiv-
alence classes that intersect H. Thus, we only have to put vertices of H into
new equivalence classes. Using an array of vertices where names of equivalence
classes are stored, this takes O(r) time per hyperedge.

We need to do merging only immediately before a branching rule is applied.
At any such moment we compute the equivalence classes from scratch in O(rh)
time. Since every branching step reduces the parameter, the merging steps take
in total O(krh) time, on every path of the search tree. Prior to every application
of the sequential rule to a hyperedge H we identify some vertex v1 ∈ H with
maximum degree (see above) in O(r) time. In every leaf of the search tree
we compute the number of hitting sets in the remaining hypergraph (with all

10

vertices marked) from the vertex multiplicities in O(k3) time, using Lemma 7.
This time is dominated by O(krh).

In total, the polynomial factor is O(krh), which first gives a time bound
O(krh(r − 1 + 1

r−1)k). Finally, we use this result but avoid multiplying h with
the exponential term, by kernelization. From the given hypergraph G we first
compute in O(kr−1h time the hypergraph G′ specified in Corollary 3. G′ in-
cludes U(k), has O(kr) hyperedges and the same minimal k-hitting sets as G.
It easily follows that the exact-k-hitting sets of G are obtained from the exact-
j-hitting sets of G′ (for any j ≤ k) by adding arbitrary combinations of k − j
vertices outside G′. Thus, for j = 1, . . . , k we count the exact-j-hyperedges in
G′ in O(jrkr(r − 1 + 1

r−1)j) time, multiply the counts by binomial coefficients
and sum up the results. Summation of all time bounds yields the asserted
complexity. 2

It might be helpful to repeat the overall structure of the branching procedure,
without details. Initially it is called for the given G and l := k, and finally the
results returned by all leaves are added.

(1) If there are still hyperedges:
(1.1) If l = 0 then return 0 (no solution exists).
(1.2) Find and merge all undistinguishable vertices.
(1.3) If a small hyperedge exists, then take it as H, else take the first hyperedge
in the list as H.
(1.4) Apply the sequential rule to H. Branch.
(1.5) In every branch, remove all hyperedges containing the newly chosen vertex,
and let l := l − 1.
(2) If no hyperedges are left, return the number of k-hitting sets computed as
in Lemma 7.

Together with Theorem 6 this also yields a time bound for algorithm Count
in Section 2. Remember that we need to run a counting algorithm k times for
only |U(k)|+1 distinct vertices v, and the binomial coefficients in Lemma 2 can
be precomputed. Thus we have:

Corollary 9 CHSwSV is solvable in
O(kr−1h + (k2r + r|U(k)|kr+2)(r − 1 + 1

r−1)k) time. 2

4 The Union of Minimal Vertex Covers of
Bounded Size

For a subset X of vertices in a graph, N(X) denotes the set of all vertices with
a neighbor in X. If X is independent then N(X)∩X = ∅. The following simple
lemma holds for any minimal (not necessarily minimum!) vertex cover.

11

Lemma 10 Let C be a fixed minimal vertex cover. Let D be any other minimal
vertex cover, and I := C \ D. Then D = (C \ I) ∪ N(I). Consequently, D is
uniquely determined by I.

Proof. For any edge e = uv incident to some u ∈ I, vertex cover D must
contain v. It follows (C \I)∪N(I) ⊆ D. But since the left-hand side is a vertex
cover and D is a minimal vertex cover, the inclusion is actually a set equation.
2

It follows |U(k)| ≤ (k + 1)k∗: Take some vertex cover C with k∗ vertices,
and observe that |N(v)| ≤ k for each v ∈ C that appears in some I = C \ D,
where D is a minimal vertex cover with |D| ≤ k. Below we will improve this
size bound, but already now we can nicely limit the complexity of computing
U(k). The currently best time bound for finding a minimum vertex cover is
taken from [6].

Corollary 11 U(k) in a graph with m edges can be computed in time O(km +
k41.2738k) or O(k∗m2k∗).

Proof. The first bound comes from the method in Theorem 6. For the
second bound we use a simple consequence of Lemma 10: There exist at most
2k∗ mimimal vertex covers. By trying all sets I ⊆ C we can determine them in
polynomial time each, and then form their union. 2

Depending on the relation of k∗ and k, either of the two algorithms can
be the faster one. Similarly, we can use Lemma 10 for enumeration: In [9] we
computed a repetition-free concise description (suitably defined) of all minimal
k-vertex covers in O∗(1.74k) time. (A more “dirty” description that tolerates
redundant vertex covers is obtained much easier in O(1.62k) time.) But we can
do better if 2k∗ < 1.74k, that is, if k > 1.25k∗: Compute some minimum vertex
cover C, and test for all independent sets I ⊆ C whether (C \ I) ∪ N(I) is a
minimal k-vertex cover. (For every I, the time for this test is polynomial in k,
as it suffices to consider vertices of degree at most k.) However, for k < 1.25k∗

the concise enumeration is still more efficient.
The rest of this section deals with the size |U(k)|. The following result

absorbs Theorem 3 from [9] as a special case.

Theorem 12 |U(k)| ≤ (k − k∗ + 2)k∗ in graphs, and this bound is tight.

Proof. To establish the lower bound, consider the disjoint union of k∗ stars,
each with a central vertex connected to x + 1 leaves, where x = k − k∗. The
centers build a minimum vertex cover, any k∗ − 1 centers together with the
k−k∗ +1 leaves of the remaining star build a minimal vertex cover, hence U(k)
is the whole graph, which has (x + 2)k∗ = (k − k∗ + 2)k∗ vertices.

12

We are going to prove the upper bound. Let C be some fixed vertex cover
of size k∗. By Lemma 10, any other minimal vertex cover D (of any size) has
the form D = (C \ I) ∪ N(I). Since I = C \ D is in the complement of a
vertex cover, I is an independent set, hence I ∩ N(I) = ∅. Conversely, each
independent set I ⊆ C yields a vertex cover D = (C \ I) ∪N(I). Since C has
minimum size, |N(I) \ C| ≥ |I| holds for every independent set I ⊆ C. For
making |D| ≤ k = k∗ + x true, it must be |N(I) \ C| ≤ |I|+ x.

Due to these necessary conditions, we call an independent set I ⊆ C a re-
placement set if |N(I)\C| ≤ |I|+x and (C\I)∪N(I) is actually a minimal vertex
cover, in particular, no vertex from C \ I can be removed without uncovering
some edge. Now it suffices to prove the following

Claim: The union of the N(I) \ C of all replacement sets I has at most
(x + 1)k∗ vertices.

Let I1, I2, I3, . . . , Il be a non-extendible sequence of replacement sets such
that It+1 6⊆

⋃t
j=1 Ij for each t, 0 < t < l. Here, non-extendible means that

no further replacement set fulfilling the condition can be added. It suffices
to prove the Claim for replacement sets in this sequence, as the N(I) \ C for
further replacement sets I cannot contribute more vertices to the union. Define
∆t :=

⋃t
j=1 N(Ij) \ C. We shall prove that |∆t| ≤ |

⋃t
j=1 Ij | + xt. Since our

sequence can consist of at most k∗ replacement sets, this would imply the Claim
and finish the proof.

We apply induction on t. Induction base t = 1 is true by the definition of
replacement sets. Suppose that our induction hypothesis holds for some t. The
induction step has to show |∆t ∪ (N(It+1) \C)| ≤ |(

⋃t
j=1 Ij) ∪ It+1|+ x(t + 1).

Since I ′ := (
⋃t

j=1 Ij) ∩ It+1 is contained in a replacement set, I ′ is an in-
dependent set, thus |N(I ′) \ C| ≥ |I ′|. Furthermore, note that for any vertex
sets A,B ⊆ C in a graph the trivial relation N(A∩B) \C ⊆ N(A)∩N(B) \C
holds. In particular, N(I ′) \C ⊆ ∆t ∩N(It+1) \C. For the cardinalities we get∣∣∣∣∣∣(

t⋃
j=1

Ij) ∩ It+1

∣∣∣∣∣∣ = |I ′| ≤ |N(I ′) \ C| ≤ |∆t ∩N(It+1) \ C|.

Since |∆t| ≤ |
⋃t

j=1 Ij |+xt by the induction hypothesis for t, and |N(It+1)\C| ≤
|It+1|+ x (replacement set), the induction hypothesis for t + 1 follows:

|∆t ∪ (N(It+1) \ C)| = |∆t|+ |N(It+1) \ C| − |∆t ∩ (N(It+1) \ C)|

≤ |
t⋃

j=1

Ij |+ xt + |It+1|+ x−

∣∣∣∣∣∣(
t⋃

j=1

Ij) ∩ It+1

∣∣∣∣∣∣ =

∣∣∣∣∣∣(
t⋃

j=1

Ij) ∪ It+1

∣∣∣∣∣∣ + x(t + 1).

2

13

5 The Union of Minimal Hitting Sets of Bounded
Size in Hypergraphs of Bounded Rank

In this purely combinatorial section we will much improve the constant factor
r− 1 from Corollary 3, for any fixed r: Our final result is |U(k)| ≤ (1+ o(1))kr,
where o(1) is meant to tend to 0 as k grows. Our proof is independent of
earlier results, as we will actually show |U(k)| ≤ (1 + o(1))h if h = Θ(kr). Any
smaller bound, say h ≤ akr (a < 1 constant), on the number of hyperedges in
an “equivalent reduced” hypergraph G′ would therefore immediately improve
|U(k)| further. However, we easily see that h ≤ kr in Corollary 3 is a tight
bound: Take r disjoint sets of k vertices and choose one vertex from each set, in
all possible ways. This hypergraph has obviously kr hyperedges. On the other
hand, it has only kr vertices, each of degree kr−1. There might be a chance for
smaller bounds on h provided that |U(k)| = Θ(kr), but this question must be
left for further research. The worst example for |U(k)| we could come up with
is:

Proposition 13 There exist hypergraphs where |U(k)| ≈ (r−1)r−1

r!rr−1 kr ≈ 1
er!k

r.

Proof. Take a set C of roughly r−1
r k vertices and create 1

r k hyperedges for
every D ⊂ C with |D| = r − 1, by adding 1

r k different single vertices to D. In
fact, each vertex of this hypergraph of rank r is in some minimal k-hitting set.
2

Note that almost all vertices in these examples in Proposition 13 have degree
1, and hence |U(k)| ≈ h. For proving that |U(k)| ≤ (1 + o(1))h if h = Θ(kr),
we need a few technical preparations. The proof of the following lemma is
straightforward.

Lemma 14 Let H be a minimal hitting set in a hypergraph G. Consider a
partitioning of the family of hyperedges of G into s subfamilies. There exist sets
Hi such that H = H1 ∪ . . . ∪ Hs, and Hi is a minimal hitting set of the ith
subfamily, for i = 1, . . . , s. 2

We will use the decomposition lemma as follows to bound |U(k)|. By defini-
tion, U(k) is the union of minimal k-hitting sets. By Lemma 14, each of them is
a union of minimal k-hitting sets of subhypergraphs. Hence, it suffices to bound
the |U(k)| there and to add the results. Since Lemma 14 holds for arbitrary
decompositions, we can be flexible and decompose the given hypergraph so that
the |U(k)| in the subhypergraphs are small enough and easy to bound. Below
we apply the principle in a particular way, using the next lemma, but further
research may find more clever decompositions leading to improved results.

Lemma 15 In any hypergraph with h hyperedges one can color the vertices
black and white so that at most h vertices belong to unicolored hyperedges.

14

Proof. We color the vertices independently black and white with proba-
bility 1/2. For any hyperedge let X be the random variable with X = t if
the hyperedge is unicolored, and X = 0 else. For |X| = t we clearly have
E[X] = t/2t−1 ≤ 1. Thus, by linearity of expectation, the expected number of
vertices in all unicolored hyperedges is at most h, hence there exists a particular
coloring with the desired property. 2

Now we have the necessary tools to prove the announced result, where the
o(1) term refers to the asymptotics for growing k. Notice that this bound clearly
improves on our previous one [9] by a factor r − 1.

Theorem 16 In hypergraphs of rank r with h = Θ(kr) hyperedges, it holds that
|U(k)| ≤ (1 + o(1))h. Consequently, |U(k)| ≤ (1 + o(1))kr in any hypergraph
with rank r.

Proof. Given a hypergraph G and an integer k, let d be some integer
threshold that we specify later. We call a vertex of degree smaller than d a d-
thin vertex, otherwise it is d-fat. From G we construct a diminished hypergraph
G′ as follows. Using Lemma 16, we color the d-thin vertices in G black and white
so that at most h of the d-thin vertices belong to unicolored hyperedges. Then
we delete the black d-thin vertices to obtain G′. Finally we remove emptied
hyperedges and identical copies of hyperedges.

We call a hyperedge good if it has lost at least one d-thin vertex from G
but also retained at least one in G′. Otherwise the hyperedge is called bad.
We apply Lemma 14 to the decomposition of G into good and bad hyperedges.
Even simpler, we do not attempt to estimate the union of minimal k-hitting sets
of the bad hyperedges. We only notice that at most h of the d-thin vertices of
G belong to bad hyperedges (by construction), and at most rh/d vertices in the
whole G are d-fat (since G has h hyperedges and rank r). It remains to bound
the number of d-thin vertices that belong to minimal k-hitting sets of the good
hyperedges.

Let G0 and G′
0 be the hypergraph of all good hyperedges before and after

diminishing, respectively. Thus G′
0 has rank r − 1. Consider any minimal k-

hitting set H of G0. We construct some minimal hitting set H ′ of G′
0 as follows.

We start from H ′ := H. Every d-thin vertex v ∈ H that has been deleted
may leave fewer than d hyperedges of G′

0 without any vertex from H ′. We
replace every such v with other d-thin vertices, adding at most one from each
“abandoned” hyperedge to H ′. Such d-thin vertices exist, since G′

0 consists
entirely of good hyperedges. Currently H ′ has fewer than dk vertices. However,
adding new vertices can have made other vertices of H ′ redundant, so that H ′ is
not minimal. Next, we successively remove redundant vertices arbitrarily, until
H ′ is a minimal dk-hitting set of G′

0. From |U(k)| = O(kr) it follows that all
such H ′ are contained in a fixed set of size O((dk)r−1).

In order to bound |U(k)| in G0 we also need to count the vertices v in all
difference sets H \H ′. Every such v was removed from H ′ since either (1) v did

15

not belong to G′
0 or (2) v became redundant. In both cases we can assign to

v some d-thin vertex w ∈ H ′ such that some hyperedge of G0 contains both v
and w. This is easily seen: In case (1), v was not redundant in H, since H was
a minimal hitting set of G0. That means, after the deletion step at least one
hyperedge incident with v was without vertices of H ′. We had to insert another
d-thin w from this hyperedge in H ′, and at least one such w had to stay in the
final H ′. In case (2) we argue similarly. Since v ∈ H was not redundant in H,
it became redundant only later when some d-thin vertices w had been added to
H ′, in some hyperedge that was previously hit by v only. At least one such w
had to stay in the final H ′, otherwise H ′ would no longer hit this hyperedge.

Since the vertices w are d-thin and belong to sets H ′, they are all contained
in a fixed set of size O((dk)r−1) as shown above. Furthermore, fewer than rd
vertices v can be assigned to each w, as they have to be in some hyperedge with
w. It follows that all H \H ′ are contained in a fixed set of size O(rd(dk)r−1).

Summing up the bounds we get |U(k)| ≤ h + rh/d + O(rdrkr)/k in G. For
h = Θ(kr) this yields |U(k)| ≤ (1+r/d+O(rdr)/k)h. Setting the free parameter
d depending on k such that d →∞ but d grows slower than k1/r, we can make
the last two terms o(1) simultaneously. This gives |U(k)| ≤ (1 + o(1))h as k
grows.

The explicit bound |U(k)| ≤ (1 + o(1))kr follows from this relation and
Corollary 3: Consider a reduced hypergraph having h ≤ kr hyperedges and the
same U(k). If h > 1

r kr = Θ(kr), we apply the previous result. If h is smaller,
we just apply the trivial relation |U(k)| ≤ rh. 2

Let us define f(r) to be the smallest factor with |U(k)| ≤ f(r)kr + o(kr).
Trivially we have f(1) = 1, and in [9] we got f(2) = 1

4 . Theorem 16 says
f(r) ≤ 1 for each r. In the remainder of this section we prove better upper
bounds for r = 3 and r = 4, by using Lemma 14 in a different way.

Let H be a fixed minimum hitting set in a hypergraph G of rank r. Unlike
case r = 2, we call I ⊆ H a replacement set if there exists a minimal hitting set
H ′ with I = H \H ′ and |H ′| ≤ k. Let I be any fixed replacement set. We define
a hypergraph G(I) whose hyperedges are the sets e \ I, for all hyperedges e in
G with ∅ 6= e ∩H ⊆ I. Vertices in a hypergraph are, without loss of generality,
the vertices contained in its hyperedges.

We decompose G(I) into several hypergraphs GJ as follows. GJ with rank
r− j (j = |J |) consists of those hyperedges e \J of G(I) with e∩H = J . (Since
GJ is the same for each I ⊇ J , we can omit subscript I.)

Lemma 17 For any fixed I, any minimal hitting set H ′ with H \ H ′ = I
contains vertices only from H and from minimal hitting sets of the GJ , J ⊆ I,
0 < |J | < r.

Proof. If H ′ with H \H ′ = I is a minimal hitting set in G, then H ′ is the
union of H \ I and some minimal hitting set of G(I). Since every hyperedge of
G(I) belongs to some GJ , Lemma 14 yields the assertion. 2

16

Theorem 18 |U(k)| ≤ 1
4k∗(k2 + (k∗)2) + o(k3) in hypergraphs of rank 3.

Proof. Let H be any minimum hitting set H, thus k∗ = |H|. For each v ∈ H
let Iv be some maximum replacement set with v ∈ Iv, and xv = |Iv|. (We can
assume that Iv exists, since a vertex of H in no replacement set belongs to every
minimal hitting set, and putting these vertices aside we get a reduced instance
with smaller k and k∗.) We define x = maxv xv. For each v we distinguish
xv − 1 two-vertex sets J with v ∈ J ⊆ Iv. By Lemma 17, all vertices of U(k)
are in H or in minimal hitting sets of the GJ , 1 ≤ |J | ≤ 2.

The GJ with |J | = 1 contribute together at most 1
4

∑
v∈H(k−k∗+xv)2+o(k3)

vertices to U(k). This is true because the GJ have rank 2, at most k − k∗ + xv

vertices outside H are in every minimal hitting set of GJ , J = {v}, and f(2) = 1
4 .

The GJ with |J | = 2 have rank 1. Thus, every vertex in GJ , |J | = 2, J ⊆ I
(any replacement set) must be in every hitting set that extends H \ I, limiting
the total number of vertices in all these GJ , J ⊆ I, to k − k∗ + |I|.

We apply this observation in two ways: All GJ of distinguished sets J ,
|J | = 2, contribute together at most k∗(k − k∗ + x) ≤ k∗k vertices to U(k).
Each of the remaining GJ with |J | = 2, these are fewer than 1

2 ((k∗)2−
∑

v∈H xv)
pairs, contributes at most k − k∗ + x vertices to U(k). Altogether we obtain

|U(k)| ≤ 1
4

∑
v∈H

(k − k∗ + xv)2 +
1
2
((k∗)2 −

∑
v∈H

xv)(k − k∗ + x) + o(k3).

After rewriting (k∗)2 =
∑

v∈H k∗, algebraic manipulation easily yields

|U(k)| ≤ 1
4
k∗(k2 − (k∗)2 + 2k∗x)) +

1
4

∑
v∈H

xv(xv − 2x) + o(k3).

Since the middle term is negative, and x ≤ k∗, we get the claimed result. 2

We believe that this is not yet optimal. Note especially that the optimal
bound for r = 2 due to Theorem 12 is linear in k − k∗ for any fixed k∗. An
intriguing question is whether a similar bound with factor k − k∗ in the main
term holds also for r = 3 (whereas the result in Theorem 18 is always cubic).
This question is interesting for limits k close to k∗.

Corollary 19 Let f(r) be the smallest factor with |U(k)| ≤ f(r)kr + o(kr).
Then f(3) ≤ 1

2 and f(4) ≤ 19
24 .

Proof. Consider r = 3. For any fixed k, our bound from Theorem 18 is
maximized when k∗ = k, and then it becomes 1

2k3 + o(k3), hence f(3) ≤ 1
2 .

Next, Lemma 17 implies

|U(k)| ≤ k +
r−1∑
j=1

(
k

j

)
f(r − j)kr−j ≤ k +

r−1∑
j=1

f(r − j)
j!

kr.

17

Neglect of the lower-order term k gives the recursion f(r) ≤
∑r−1

j=1
f(r−j)

j! . For
r = 4 it gives the mentioned upper bound. (Unfortunately, the recursive formula
grows exponentially in r. Already for r = 5 the result exceeds 1.) 2

6 Conclusions

The union U(k) of minimal k-hitting sets in a hypergraph is useful in com-
binatorial inference, if sets of non-interfering causes shall be concluded from
observed binary data. In a certain sense, U(k) contains the most likely hy-
potheses. We have |U(k)| = O(kr) in hypergraphs of any constant rank r, but
the factor depending on r is open. We have significantly improved our pre-
vious upper bounds [9], using some intricate hypergraph decompositions. We
believe that the techniques introduced here are more powerful than what the
current results exhibit, so that further research should be able to narrow the
gap between 1

er!k
r and (1 + o(1))kr. In particular, bounds on the number of

hyperedges in equivalent reduced hypergraphs would immediately improve the
bounds on |U(k)| further. Possible ideas for improvements are to delete certain
hyperedges without changing U(k), or to use refined decompositions.

U(k) is also a problem kernel for several hitting set counting and enumeration
problems. It may be possible to make the kernel even smaller than U(k), if the
“influence” of certain vertices on the counts can be figured out in polynomial
time.

We presented a relatively simple Hitting Set Counting algorithm with
branching number below r − 1 + 1

r−1 . With much more elaborated branching
rules and combinatorics we have recently brought the branching number even
closer to r−1 and got worthwhile improvements for ranks r ≥ 6, but this would
go beyond the scope of this paper. The currently fastest counting algorithm for
r = 2, with branching number about 1.38, uses tree decomposition [17], and it
seems that iterative compression can lift this result to higher r, but from some
r on our approach becomes superior. It would be interesting to combine the
various techniques to get even better branching numbers for small ranks r.

Inferring hitting sets is a special case of logical abduction, when all clauses
in the theory consist of positive literals only. A complexity classification of
abduction problems was given in [21] (cf. the paper for further background),
including hardness results for most of the other special cases. This motivates
parameterization by the model size, and similar methods as here may be fruitful.

Acknowledgments

This work has been initiated and partially supported by the Combinatorial
Search Algorithms in Bioinformatics group at the University of Bielefeld, led
by Ferdinando Cicalese, through his Sofja Kovalevskaja Award 2004 from the

18

Alexander von Humboldt Foundation. Partial support also came from the
Swedish Research Council (Vetenskapsr̊adet), grant no. 2007-6437, “Combina-
torial inference algorithms – parameterization and clustering”. Technical com-
ments of the anonymous referees helped to streamline the presentation.

References

[1] F.N. Abu-Khzam. Kernelization algorithms for d-hitting set problems, 10th
Int. Workshop on Algorithms and Data Structures WADS 2007, LNCS
4619, 434-445

[2] P. Alves, R.J. Arnold, M.V. Novotny, P. Radivojac, J.P. Reilly, H. Tang.
Advancement in protein inference from shotgun proteomics using peptide
detectability, 12th Pacific Symposium on Biocomputing 2007, 409-422

[3] E. Boros, M.C. Golumbic, V.E. Levit. On the number of vertices belonging
to all maximum stable sets of a graph, Discrete Applied Mathematics 124
(2002), 17-25

[4] J. Chen, X. Huang, I.A. Kanj, G. Xia. Strong computational lower bounds
via parameterized complexity, Journal of Computer and System Sciences
72 (2006), 1346-1367

[5] J. Chen, I.A. Kanj, J. Meng, G. Xia, F. Zhang. On the effective enumer-
ability of NP problems, 2nd Int. Workshop on Parameterized and Exact
Computation IWPEC 2006, LNCS 4169, 215-226

[6] J. Chen, I.A. Kanj, G. Xia. Simplicity is beauty: Improved upper bounds
for vertex cover, Technical Report, 2008

[7] M. Chlebik, J. Chlebikova. Crown reductions for the minimum weighted
vertex cover problem, Discrete Applied Mathematics 156 (2008), 292-312

[8] V. Dahllöf, P. Jonsson and M. Wahlström. Counting models for 2SAT and
3SAT formulae, Theoretical Computer Science 332 (2005), 265-291

[9] P. Damaschke. Parameterized enumeration, transversals, and imperfect
phylogeny reconstruction, Theoretical Computer Science 351 (2006), 337-
350, special issue of selected papers from IWPEC 2004

[10] P. Damaschke. The union of minimal hitting sets: Parameterized combi-
natorial bounds and counting, 24th Symposium on Theoretical Aspects of
Computer Science STACS 2007, LNCS 4393, 332-343

[11] R.G. Downey, M.R. Fellows. Parameterized Complexity, Springer, 1999

19

[12] H. Fernau. On parameterized enumeration, 8th Int. Computing and Com-
binatorics Conference COCOON 2002, LNCS 2387, 564-573

[13] H. Fernau. A top-down approach to search-trees: Improved algorithmics
for 3-hitting set, ECCC Report 073 (2004)

[14] H. Fernau. Parameterized algorithms for hitting set: The weighted case,
6th Italian Conference on Algorithms and Complexity CIAC 2006, LNCS
3998, 332-343

[15] J. Flum, M. Grohe. The parameterized complexity of counting problems,
SIAM Journal on Computing 33 (2004), 892-922

[16] T. Mitchell. Machine Learning, McGraw-Hill 1997

[17] D. Mölle, S. Richter, P. Rossmanith. Enumerate and expand: Improved
algorithms for connected vertex cover and tree cover, Theory of Computing
Systems 43 (2008), 234-253

[18] A.I. Nesvizhskii, R. Aebersold. Interpretation of shotgun proteomic data:
The protein inference problem, Molecular and Cellular Proteomics 4 (2005),
1419-1440

[19] R. Niedermeier. Invitation to Fixed-Parameter Algorithms, Oxford Lecture
Series in Mathematics and Its Applications, Oxford University Press 2006

[20] R. Niedermeier, P. Rossmanith. An efficient fixed-parameter algorithm for
3-hitting set, Journal of Discrete Algorithms 1 (2003), 89-102

[21] G. Nordh, B. Zanuttini. Propositional abduction is almost always hard,
19th Int. Joint Conference on Artificial Intelligence IJCAI 2005, 534-539

[22] M. Thurley. Tractability and intractability of parameterized counting prob-
lems, Master’s thesis, Institute for Computer Science, Humboldt-Univ.
Berlin 2006, also in: Master-/Diploma Theses Series of ECCC

[23] M. Wahlström. Algorithms, measures, and upper bounds for satisfiability
and related problems, PhD Thesis 1079, Linköping Studies in Science and
Technology (2007)

20

