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Abstract

Group testing is the problem to identify up to d defectives out of n elements, by
testing subsets for the presence of defectives. Let t(n, d, s) be the optimal number of tests
needed by an s-stage strategy in the strict group testing model where the searcher must
also verify that at most d defectives are present. We start building a combinatorial theory
of strict group testing. We compute many exact t(n, d, s) values, thereby extending known
results for s = 1 to multistage strategies. These are interesting since asymptotically nearly
optimal group testing is possible already in s = 2 stages. Besides other combinatorial tools
we generalize d-disjunct matrices to any candidate hypergraphs, and we reveal connections
to the set basis problem and communication complexity. As a proof of concept we apply
our tools to determine almost all test numbers for n ≤ 10 and some further t(n, 2, 2)
values. We also show t(n, 2, 2) ≤ 2.44 log2 n+ o(log2 n).

Keywords: group testing, hypergraph, set basis, graph coloring, d-disjunct matrix

1 Introduction

In the group testing problem, a set of n elements is given, each being either defective (positive)
or non-defective (negative). Let P denote the unknown set of positive elements. A group test
takes any subset Q of elements, called a pool. The test (or pool) is positive if Q ∩ P 6= ∅,
and negative otherwise. In the latter case all elements in Q are recognized as negative.
The goal of a searcher is to identify P using a minimum number of tests. A group testing
strategy may be organized in s stages, where the tests applied in a stage may depend on the
outcomes of all tests in previous stages, and all tests within a stage are executed in parallel. In
adaptive strategies s is not limited, hence tests can be done sequentially. Case s = 1 is called
nonadaptive. Small s are desired in applications where the tests take much time. The term
pooling design refers to a set of pools, especially within one stage. A pooling design can be
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written as a binary matrix whose rows and columns are the pools and elements, respectively.
A matrix entry is 1 if the element is in the pool, and 0 else.

We consider the following scenario. The searcher expects |P | ≤ d for some previously
known bound d, and |P | > d is unlikely but not impossible. She wants to identify P if
|P | ≤ d, and just report “|P | > d” otherwise. This setting is called strict group testing, in
contrast to hypergeometric group testing where |P | ≤ d is “promised”. It was argued in, e.g.,
[1] that strict group testing is preferable. It does not rely on the assumption |P | ≤ d, and
the searcher is sure about not having missed any defective.

For complexity results and various applications of group testing we refer to [8, 9, 3, 24,
5, 20, 29, 33] as entry points to further studies. For the test number in s = 1 stage, a

lower bound d2

2 log2[e(d+1]/2] log2 n+ o(log2 n) was given in [13] and later refined in [16, 17]. As

opposed to that, O(d log n) tests are sufficient already if s = 2, as shown by the random coding
upper bound in [14], followed by several improved constructions [15, 10, 6, 18, 17]. However,
even asymptotically optimal strategies do not necessarily entail optimal strategies for specific
input sizes n. Furthermore, pool sizes increase with n, whereas in some applications large
pools may be infeasible. Still we can split an instance into many small instances and solve
them independently, each with optimal efficiency. To mention a practical example, screening
millions of blood donations for infectious diseases is performed at some labs in instances
(“minipools”) of, e.g., 16 samples [30], and group testing is proposed [35] to reduce the
waiting times and costs. We also refer to [12] for biological applications of 2-stage strategies,
with tests in the last stage being individual (whereas we will drop this restriction).

We define t(n, d, s) to be the optimal worst-case number of tests needed for strict group
testing for n elements, up to d defectives, and at most s stages. Some monotonicity relations
hold trivially: If n ≤ n′, d ≤ d′, and s ≥ s′ then t(n, d, s) ≤ t(n′, d′, s′). If t(n, d, s) = t(n, d, n),
we write t(n, d, s+) to indicate that more stages would not lower the test number.

To our best knowledge, the strict group testing model and the construction of optimal
strategies for specific problem sizes in the multistage case are under-researched so far. Our
ambition is to initiate a combinatorial theory of strict group testing that (a) connects the
problem to other fields and (b) enables us to calculate as many t(n, d, s) values as possible,
along with the corresponding optimal strategies.

We remark that t(n, d, 1) is the size of a d-disjunct matrix, also known as superimposed
code. The first bounds were given in [26]. Exact t(n, d, 1) values follow from [25] for all
n ≤ 14 and some larger n. As we observed in [4], t(n, 1, 1) = log2 n+ o(log2 n) is the smallest
k with

(
k

k/2

)
≥ n. Namely, by [31] this k is the optimal size of a completely separating set

family (see Section 3), and these are exactly the pooling designs for nonadaptive strict group
testing when d = 1. Although this connection is simple, this seems to be the first case of
a combinatorial search problem where completely separating systems really appear. Next,
t(n, 1, 2+) = dlog2 ne + 1 is a side result in [4], and [21] gave partial results on adaptive
strategies. The t(n, 2, 2) case is particularly interesting. Note that t(n, 2, 2) ≥ 2 log2 n − 1
holds trivially, and a result from [28] implied t(n, 2, 2) ≤ 3 log2 n. The currently best known
upper bounds for t(n, d, 2) for general d can be found in [17]. Here we will improve on
t(n, 2, 2). Other work addresses optimal test numbers in other group testing variants [34].

Here we give an overview of the paper structure and the novel contributions.

• We introduce some useful hypergraphs related to strict group testing. In particular,
the candidate hypergraph lists the candidate sets for the defective set P (Section 2).

• We show that the last stage of a problem instance, which is nonadaptive strict group
testing on a candidate hypergraph, is equivalent to the set basis problem, one of the
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“oldest” NP-hard optimization problems on hypergraphs, and to the 0-cover number
in Communication Complexity (Section 3).

• Furthermore, this is equivalent to optimal coloring of a so-called conflict graph derived
from the candidate hypergraph. The set basis formulation enables some elegant proofs
of other facts, whereas conflict graph coloring is often more suitable calculating specific
test numbers. Our characterizations also naturally generalize d-disjunct matrices to the
case of arbitrary hypergraphs (Section 3).

• We study compositions of candidate hypergraphs that are relevant in our calculations.
The product formalizes independent problem instances on disjoint sets. We disprove
the natural conjecture that the test number is additive, but we prove it in a useful
special case and state a slightly weaker conjecture on additivity (Section 4).

• We collect a number of further tools for proving bounds on t(n, d, s) (Section 5 and 6).
Using all these preparations we finally manage to give optimal strategies for almost all
triples n, d, s with n ≤ 10 (Section 7). Some of the designs are surprising and would
be hard to find without our techniques. In particular, the last stage is often not just
individual testing of candidates. (We also stress that matching lower bounds cannot
be achieved naively by considering all possible pooling designs in every stage, as their
number is doubly exponential in n.) The results extend similar work for s = 1 to s > 1
stages and thus save tests.

• For t(n, 2, 2) we obtain optimal results also for some larger n. We also show t(n, 2, 2) ≤
2.44 log2 n+ o(log2 n), essentially helped by the set basis characterization (Section 8).

2 Set and Hypergraph Notation

A k-set (≤ k-set, ≥ k-set) is a set with exactly (at most, at least) k elements. We use this
notation also for pools, hyperedges, and other sets in special roles. A hypergraph is a set of
vertices equipped with a family of subsets called hyperedges. A graph is a hypergraph with
only ≤ 2-hyperedges, called edges. A loop is a 1-hyperedge. We allow parallel hyperedges
which are identical as sets but occur multiple times. Set A is a subset (superset) of B if
A ⊆ B (A ⊇ B). Two sets are incomparable if neither is a subset of the other one. A family
of pairwise incomparable sets is an antichain (Sperner family). Standard graph-theoretic
symbols Kn, Cn, Km,n denote the clique, cycle, and complete bipartite graph, respectively,
with the indicated vertex numbers. A forest (union of trees) is a cycle-free graph, and a leaf
is a vertex incident to only 1 edge.

Consider any moment after some stages of a group testing strategy. An element that has
not yet appeared in negative pools is called a candidate element. A candidate set is any set
of up to d candidate elements that is consistent with all previous test outcomes (and thus,
possibly the true set P ). The name is justified by a simple observation: An element v is
possibly positive until it is discarded, as a member of some negative pool, and before that,
the searcher cannot safely conclude that v is negative. Therefore we can even have candidate
elements outside all candidate sets, called dummy elements. For example, if n = 5 and d = 2,
and we test 2 disjoint 2-pools with positive outcome, then the 5th element was in no negative
pool so far, but any candidate 2-set must take one element from both pools.

The candidate hypergraph has the candidate elements as vertices and the candidate sets as
hyperedges. For d = 2 we speak of the candidate graph, possibly with loops. The candidate
hypergraph completely describes the searcher’s instantaneous knowledge. The definitions
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imply that the possible sets P are exactly the candidate sets and all their supersets. (But
note that the candidate sets do not necessarily form an antichain.) An instance of the strict
group testing problem is solved if and only if the candidate hypergraph retains exactly one
hyperedge and no dummy elements. We also remark that the candidate sets are exactly those
≤ d-sets of candidate elements which are hitting sets of the family of positive pools so far.

As usual in the field, some proofs use adversary arguments, where an adversary answers
to the tests in order to enforce a certain worst-case test number.

3 Characterizations of Nonadaptive Strict Pooling Designs

The candidate hypergraph captures the searcher’s knowledge after any number of stages, and
the question is how the searcher should efficiently finish the search in the remaining stages.
This gives rise to the following generalization of the problem, that we call strict group testing
on a candidate hypergraph. (This should not be confused with the different concept in [23].)
A candidate hypergraph is given, and the searcher knows already that the true set P of
positive elements is one of the candidate sets or their supersets. If P is among the candidate
sets, the searcher must both identify P and verify that all elements outside P are negative.
If P is not among the candidate sets, the searcher is only supposed to recognize this fact.

In the following we consider, in particular, the situation prior to the last (s-th) stage. We
call a pooling design strict if it solves the strict group testing problem on the given candidate
hypergraph nonadaptively. Our first characterization of strict designs relates to the algebraic
notion of set basis. Let us be given a hypergraph whose hyperedges we call target sets. A set
basis is another hypergraph on the same vertices – we call its hyperedges basis sets – such
that every target set equals the union of some basis sets.

Theorem 1. A pooling design is strict if and only if the complement of every candidate set
is the union of some pools.

Proof. Suppose that the pools form a set basis for the complements of candidate sets. More-
over, suppose that P is some candidate set. Then the complement of P is the union of
negative pools, hence all candidate elements outside P are discarded. Still P may contain
other candidate sets as subsets, let P ′ ⊂ P be any of them. The complement of P ′ is a union
of some pools as well. At least one such pool Q intersects P , hence Q is positive. Since also
P ′ ∩Q = ∅, this test outcome rules out P ′ as a candidate set. Since this reasoning holds for
every P ′ ⊂ P , it follows that only the candidate set P remains, and no dummy elements,
as seen above. If P is not a candidate set, the searcher recognizes this fact as follows. P
is a superset of some candidate set P ′. Since only candidate elements outside P appear in
negative pools, we retain some candidate set together with further elements, unlike the case
above. Altogether, the pooling design is strict.

For the converse, assume that the complement of some candidate set P is not a union
of pools. Then the negative pools do not exhaust the complement of P , thus, again some
candidate set together with further candidate elements remains. Now this means that the
pooling design is not strict.

The proof also shows that decoding is trivial: Discard all elements in negative pools,
and what remains is P . Finally check that P is a candidate set. By Theorem 1, solving
nonadaptive strict group testing on candidate hypergraphs with a minimum number of pools
is equivalent to finding a set basis of minimum size (where the target sets are the complements
of the candidate sets). The latter problem NP-hard [32], but, of course, we can still solve it
for special hypergraphs of interest.
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There is always a trivial set basis where the pools are the complements of all candidate
sets, thus we have:

Corollary 2. Any candidate hypergraph of m candidate sets permits a nonadaptive strict
group testing strategy with at most m tests.

Another consequence is that dummy elements can be ignored for the test number:

Corollary 3. Let G be a candidate hypergraph obtained from another candidate hypergraph G′

by removing all dummy elements. Let t and t′ be the optimal number of pools for nonadaptive
strict group testing on G and G′. Then t = t′.

Proof. Take an optimal pooling design for G and add the dummy elements to each of the t
pools. Since the pooling design for G is a set basis according to Theorem 1, and the dummy
elements in G′ are in the complements of all candidate sets, this yields a set basis for G′.
This shows t′ ≤ t, and the other direction t ≤ t′ is trivial.

We add a similar statement for s stages, as we will need it in this form, too.

Lemma 4. Let G be a candidate hypergraph with n > d vertices where all candidate sets are
d-sets. Let G′ be obtained from G by adding dummy elements. Then the optimal test number
on G′ (for unchanged d, s) is the same as for G.

Proof. Add the dummy elements to every pool of an optimal strategy for G. Since n− d > 0
elements must be discarded, in every possible application of the strategy (i.e., for any test
outcomes), at least one pool is negative, or the searcher recognizes |P | > d. This negative
pool also discards the dummy elements.

Theorem 1 can be rephrased as follows.

Corollary 5. A pooling design is strict if and only if, for every pair of a candidate set C
and a candidate element v /∈ C, some pool Q exists such that v ∈ Q and C ∩Q = ∅.

Remember that initially, before stage 1, the candidate sets are all ≤ d-sets. In this special
case, Corollary 5 just expresses the well-known condition for d-disjunct pooling designs, hence
t(n, d, 1) is the optimal number of rows of a d-disjunct matrix with n columns. For d = 1, the
condition in Corollary 5 is the definition of completely separating set families: for any two
elements u and v, some set Q in the family satisfies v ∈ Q and u /∈ Q. Next we give another
reformulation which is often more suitable for calculating optimal pool numbers.

In a partial vector, any position either has a fixed value 0 or 1, or remains open, indicated
by the ∗ symbol. We index the candidate elements by i = 1, 2, 3, . . . and encode every pair of
a candidate set C and a candidate element v /∈ C by a partial vector as follows. We assign
0 to all positions of elements of C, and 1 to the position of v. All other positions are open.
Two partial vectors conflict if they have 0 and 1 at the same position. Partial vectors without
conflict are compatible. We translate the candidate hypergraph into a conflict graph defined
as follows. Vertices represent the partial vectors for all C and v /∈ C, and two vertices are
adjacent if the corresponding partial vectors conflict. Next, any pool is represented as its
indicator vector: the bit vector with 1 at all positions of elements in the pool, and 0 elsewhere.
A pool covers a partial vector if every fixed value 1 or 0 in the partial vector equals the value
in the pool’s indicator vector. The number of colors needed to color a graph G, such that
adjacent vertices get distinct colors, is known as its chromatic number χ(G). We refer to
χ(G) of a conflict graph G as conflict chromatic number.
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Theorem 6. Solving the strict group testing problem nonadaptively for a given candidate
hypergraph is equivalent to coloring the conflict graph. Consequently, the conflict chromatic
number equals the number of pools required.

Proof. The condition in Corollary 5 can also be expressed by saying that, for every pair of a
candidate set C and candidate element v /∈ C, some pool must cover its partial vector. A set
of partial vectors can be covered by a single pool, if and only if they are pairwise compatible.
In the conflict graph, compatible partial vectors correspond to nonadjacent vertices. Thus,
a set of partial vectors can be covered by a single pool if and only if the vertices form an
independent set. Since partitioning a graph into a minimum number of independent sets is
graph coloring, the assertion follows.

Once more, NP-hardness of graph coloring does not stop us from computing χ(G) for
specific conflict graphs G.

Theorem 1 opens even more avenues. First, the set basis problem is equivalent to the
minimum biclique edge cover problem in bipartite graphs. A biclique edge cover is a family
of complete bipartite subgraphs (bicliques) such that every edge belongs to some of them.
The equivalence is seen as follows. Think of the target sets T and elements v as vertices of a
bipartite graph, with an edge between T and v if and only if v ∈ T . A minimum set basis can
always be made of intersections of the target sets only, and intersections obviously correspond
to bicliques. For every v and T , element v must appear in some basis set contained in T ,
which is exactly the edge cover condition.

Next we forge a bridge to Communication Complexity. Recall that the partial vectors
forming the vertex set of the conflict graph are encodings of the pairs of candidate elements v
and candidate sets C with v /∈ C. Now we identify the vertices with these pairs. Consider the
incidence matrix M of any candidate hypergraph (that is, rows correspond to the candidate
elements, columns to the candidate sets). The vertices of the conflict graph correspond to
the 0 entries of M . There is an edge between two 0’s if and only if the corresponding vertices
have a conflict, that is, the candidate set of one of them contains the candidate element
of the other. Let x = (v, V ) and y = (w,W ) be two vertices of the conflict graph. An
edge between x and y exists if and only if the (v,W ) entry or the (w, V ) entry of M is
1. Hence some vertices of the conflict graph form an independent set if and only if the
corresponding 0 entries of M can be covered with a submatrix containing 0’s only, also called
0-monochromatic submatrix, and now the conflict chromatic number equals the minimum
number of 0-monochromatic submatrices covering all 0 entries of M . This is a well-known
measure in Communication Complexity, called the 0-cover number. Its logarithm is the co-
nondeterministic communication complexity of M (actually, of the corresponding function).
Moreover, a clique in the conflict graph is a so-called fooling set of M .

The 0-cover number of M equals the minimum number of bicliques covering the edges of
the bipartite graph whose adjacency matrix is E−M , where E is the all-1 matrix of the same
size as M . Due to these relationships, results in Communication Complexity or biclique edge
covering may be used to obtain results in strict group testing. It is also possible the other
way round; just as an illustration we give a two-sentence proof of the following theorem from
[7] that was rediscovered in [22, 2]. Another short proof can be found in [36]. It is well known
that the 0-cover number of the n× n identity matrix In is at most 2dlog2 ne (see, e.g., [27]).
It is much less known that the exact value is determined precisely.

Theorem 7. (de Caen et al. [7]) The 0-cover number of In is the smallest number k, such
that

(
k

k/2

)
≥ n.
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Proof. Consider the strict group testing problem on n elements, and s = 1, d = 1. The
candidate hypergraph contains the 1-element sets and the empty set, thus its incidence matrix
is In plus an all zero column, whose 0-cover number is obviously the same as of In, which is,
by the above observations, the same as t(n, 1, 1) = min(k :

(
k

k/2

)
≥ n).

4 Independent Instances of Nonadaptive Strict Group Testing

A frequent situation is that a candidate hypergraph is composed of two (or more) smaller
hypergraphs on disjoint subsets of elements, and the overall candidate sets are all combina-
tions of candidate sets in these “independent” parts. This happens, e.g., when two subsets of
earlier positive pools (within disjoint sets) require hitting sets of at least d1 and d2 positive
elements, respectively, where d1 + d2 = d.

We formalize this case by a certain product of hypergraphs. Let G1 and G2 be any two
candidate hypergraphs on disjoint sets of vertices (elements), denoted V1 and V2. We define
their product G = G1 × G2 as the candidate hypergraph on the vertex set V1 ∪ V2, whose
candidate sets are the unions C1 ∪ C2, for all pairs of candidate sets C1 ⊆ V1 and C2 ⊆ V2,
from G1 and G2, respectively. Let ti be the optimal number of pools for nonadaptive strict
group testing on Gi (i = 1, 2), and t the optimal number for G. We have t ≤ t1 + t2, since
the pools from optimal pooling designs for both G1 and G2 together form a set basis of G.

One might conjecture additivity: t = t1 + t2. However, the searcher could use pools with
elements from both V1 and V2 and save some tests. In fact, additivity does not always hold
true. Apparently the smallest counterexample is the candidate graph K3,4. Here V1 and V2
are the partite sets of the bipartite graph, with 3 and 4 elements, respectively, and exactly 1
element on each side is positive. Then t1 = t(3, 1, 1) = 3 and t2 = t(4, 1, 1) = 4, but for the
K3,4 we need only 6 = 7− 1 pools, as given in the following incidence matrix.

1 0 0 1 1 0 0
1 0 0 0 0 1 1
0 1 0 1 0 1 0
0 1 0 0 1 0 1
0 0 1 1 0 0 1
0 0 1 0 1 1 0


Due to symmetry it suffices to check for one edge that its complement is the union of

some pools. (Remarkably, the same design appeared already in [34] in a different context.)
This and a few other, similar counterexamples seem to rely on specific numbers. Our current
conjecture is that additivity holds with some sporadic exceptions, and t ≥ t1 + t2−1 holds in
general. Below we prove additivity in special cases that are powerful enough for our purposes.

Theorem 8. Let G1 be the candidate hypergraph with hyperedges {v1} and {v2} (that is,
exactly one of these 2 elements is defective), and G2 be an arbitrary candidate hypergraph.
Then nonadaptive strict group testing on G1 ×G2 needs t2 + 2 tests.

Proof. Due to Corollary 3 we can assume without loss of generality that G2 has no dummy
elements. Let v3, v4, . . . be the elements of G2. Pools must cover all partial vectors according
to Corollary 5 and Theorem 6. First consider those candidate sets of G1 ×G2 containing v1.
Their partial vectors have the fixed value 0 at the 1st position. Hence t2 pools are needed to
cover already these partial vectors. Assume that t2+1 pools are sufficient for G1×G2. Every
partial vector of the form [10 . . . ], with further 0s at the positions of some candidate set from
G2, conflict with the t2 former pools. Hence all partial vectors [10 . . . ] must be covered by
the same last pool. Since all vi, i > 2, belong to candidate sets in G2, thus give rise to 0s,
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this last pool can only be {v1}. Now the key step is that, by symmetry, the pool {v2} must
also exist. But the indicator vectors of these pools, [100 . . . 0] and [010 . . . 0], conflict with all
t2 pools needed to cover the partial vectors from G2, since each of these has a fixed value 1
at some position vi, i > 2. Hence we need t2 + 2 pools in total.

As one immediate consequence, the candidate graph K2,n needs t(n, 1, 1) + t(2, 1, 1) =
t(n, 1, 1) + 2 nonadaptive tests. The power of Theorem 8 is also illustrated by the following
example. Consider k disjoint pairs of elements, where one element of each pair is defective.
Inductive application of Theorem 8 gives the lower bound 2k (individual testing is optimal),
whereas the information-theoretic lower bound is only k.

We add some small observation that should help attack the additivity conjecture in the
future, as it greatly restricts the structure of optimal designs. Consider a pooling design for
G = G1 ×G2. We define a bipartite graph B on a vertex set X1 ∪X2 as follows. The edges
of B represent the pools Q, and the vertices of Xi represent the different intersections Q∩Vi
(i = 1, 2). That is, the vertices for Q∩V1 and Q∩V2 are joined by the edge for Q. (Note that
the edges of any two pools Q and Q′ with Q ∩ Vi = Q ∩ Vi are incident to the same vertex
in Xi. Also, one of the vertices in Xi may represent the empty set.) If all pools are entirely
in V1 or V2, then B consists of two star graphs, one with center in X1 and one in X2, and
these center vertices represent the empty set. In particular, this B is a forest. Remarkably,
the latter also holds in general:

Proposition 9. There is always an optimal nonadaptive strict pooling design for G1 × G2

whose bipartite graph B is a forest.

Proof. Assume that B has a cycle. We replace every pool Q corresponding to an edge in this
cycle with the pools Q∩V1 and Q∩V2. The total number of pools does not increase, and the
modified pooling design is still a set basis for the complements of candidate sets in G1 ×G2.
Thus, by Theorem 1 we still have a strict pooling design. For the bipartite graph this means
to remove the edges of the cycle and to connect its vertices with the empty-set vertex on the
other side of B. By iterating the procedure we destroy all cycles.

Next we study a second fundamental operation. Let G1, . . . , Gc be c candidate hyper-
graphs on pairwise disjoint vertex sets Vi. We define their disjoint union G1 + · · · + Gc as
the candidate hypergraph on the vertex set V1 ∪ · · · ∪ Vc, whose candidate sets are all orig-
inal candidate sets Ci ⊆ Vi from the Gi. Again, let ti be the optimal number of pools for
nonadaptive strict group testing on Gi.

Theorem 10. Nonadaptive strict group testing on G1 + · · · + Gc can be done with at most
t(c, 1, 1) + max1≤i≤x ti pools.

Proof. By Theorem 1 we only need a set basis for the complements of the sets Ci. Our set
basis comprises two types of pools. Firstly, since the c sets Vi are pairwise disjoint, we can
obviously create a set basis of t(c, 1, 1) pools for their complements. We call them coarse
pools. Secondly, we take a set basis (of subsets of Vi) for every Gi and index these pools
arbitrarily by Pi1, Pi2, Pi3, . . . , Pi,ti . To this sequence we append empty pools if ti is not
maximum. Then, for every j ≤ max ti we create the pool P1j ∪ · · · ∪ Pcj . We call them fine
pools. To see that these pools together form a set basis, consider any fixed candidate set Ci.
The complement of Vi is the union of some coarse pools. Furthermore, Vi \ Ci is the union
of some pools that participate in fine pools. By construction, the “rests” of these fine pools
are outside Vi. Hence the complement of Ci is the union of some pools.
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5 Further Tools for Lower Bounds

The simple counting bound says that the number of tests is at least log2 of the number

of outcomes. In particular we have t(n, d, n) ≥ log2(1 +
∑d

i=0

(
n
i

)
) where the summand 1

accounts for the outcome “|P | > d”. First we give a more powerful lower bound which often
guarantees one more test.

Lemma 11. If m > 2r candidate sets exist which form an antichain, then strict group testing
requires at least r + 2 tests, even adaptively.

Proof. It suffices to consider m = 2r + 1. We use induction on r. We first see that 2 tests
are required if r = 0, that is, m = 2. If 1 test were enough then we could do it in 1 stage.
Thus Theorem 1 applies and, obviously, 2 incomparable sets cannot be unions of pools when
only 1 pool is present. Assume that the claim is true for r, and let m = 2r+1 + 1. In one test
outcome, the majority of candidate sets remain. Therefore, after the first test we would keep
at least 2r + 1 candidate sets. By the inductive hypothesis the claim holds for r + 1.

The next two lemmas are evident monotonicity observations, therefore the proofs are
omitted. Recall that we discuss strict group testing in a prescribed number s of stages.

Lemma 12. Suppose that the adversary, in response to a given deterministic test strategy,
applies a test answering strategy A that enforces t tests in the worst case. If the searcher
replaces some pool Q, that is negative (positive) in A, with a subset (superset) of Q, then still
at least t tests are needed in the worst case.

Lemma 13. Suppose that the adversary reveals the outcomes of some pools of a stage to
the searcher, and then allows the searcher to redesign the remaining pools of this stage from
scratch. If t further tests are not sufficient despite redesign, then they are not sufficient for
the original problem instance either.

6 Pool Hypergraphs and Some Candidate Hypergraphs

A pool hypergraph represents a pooling design, but in dual form, which will turn out to be
convenient. Its pool vertices p1, p2, p3, . . . are the pools, and its hyperedges are the candidate
elements. A vertex belongs to a hyperedge if the corresponding pool contains the correspond-
ing element. Those elements being in no pools are represented as loops at a symbolic null
vertex p0. We may speak of a pool graph if all hyperedges are ≤ 2-sets.

Recall that our main goal is to get exact values t(n, d, s) for as many triples n, d, s as
possible. Since the t(n, 1, 1), and t(n, 1, 2+) were completely known before, we study d ≥ 2
only. We summarize our methodology: In every possible pool (hyper)graph that the searcher
may apply in stage 1, an adversary fixes a certain subset W of vertices and renders all pools
in W positive and the others negative. The remaining candidate elements are precisely the
(hyper)edges in the sub(hyper)graph induced by W , and the defective (hyper)edges must
cover W . Then we use our lower-bound techniques to enforce certain test numbers in the
resulting candidate (hyper)graphs. Symmetries and the preceding lemmas reduce the amount
of case inspections. As a preparation we collect some conclusions from our theorems, as well
as special cases that will be used in our t(n, d, s) calculations.

Let d = 2. The following pool graphs enforce, by Lemma 11, the following minimum
numbers of further tests for adaptive strict group testing, provided that all pools respond
positively. (Note that candidate sets of the same size form an antichain.)
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2 loops at a vertex: 2 candidate 1-sets, hence 2 tests.
2 loops at a pool vertex and 1 loop at p0: 3 candidate 2-sets, hence 3 tests.
3 loops at a vertex: 3 candidate 2-sets, hence 3 tests.
4 loops at a vertex: 6 candidate 2-sets, hence 4 tests.
2 loops at distance 1 or 2: 3 candidate 2-sets, hence 3 tests.
C3: 3 candidate 2-sets, hence 3 tests.
C4: 2 candidate 2-sets, hence 2 tests.

Next we look at some useful special candidate graphs. The candidate graph C4 = K2,2

has conflict chromatic number 4, since the partial vectors [010∗], [0 ∗ 10], [∗001], [10 ∗ 0]
conflict pairwise. Therefore, if d = 2, s = 2, and the pool graph used in stage 1 has 2 vertices
with 2 loops each (which yields the candidate graph C4 when they respond positively), then
at least 4 more tests are required in stage 2.

An observation is that, for d = 2, the largest possible clique size in the conflict graph
is 5, thus, in general we need stronger arguments than the clique size in order to determine
conflict chromatic numbers. We continue with some of them, that we use later.

A nonadaptive strategy on the candidate graph K1,k requires t(k, 1, 1) tests, as the central
vertex together with either leaf is a candidate set. For instance, if d = 2, s = 2, and the pool
graph used in stage 1 has an edge p1p2 and a total of k loops at p1, p2, and p0, then we get
this situation when p1, p2 are positive.

Now let K1,k + e denote the k-star K1,k with one extra edge between two of the leaves.
We can prove the necessity of 1 more test using the conflict chromatic number, in a similar
way as in Theorem 8:

Lemma 14. A nonadaptive strict group testing strategy for the candidate graph K1,k + e
requires t(k, 1, 1) + 1 pools.

Proof. Assume that t(k, 1, 1) pools are enough. Leaving aside the candidate 2-set represented
by the extra edge e, we first consider the partial vectors due to the k edges of the k-star.
(See the definitions prior to Theorem 6.) Let the first position correspond to the center of
the k-star, while the other k positions correspond to the leaves. All partial vectors from
the k-star have the form [0 . . .], since all edges share the center vertex. The 2nd defective is
either of the k leaves. Thus we need already t(k, 1, 1) pools to cover all these partial vectors.
Without loss of generality let e be the edge between the 2nd and 3rd vertex. Among the
partial vectors due to e, we have in particular [100 ∗ . . .]. This conflicts all earlier partial
vectors with 0 at the 1st position. Thus, another color (i.e., pool) is needed to cover this
partial vector.

Lemma 14 captures some frequent cases, for example: Let n = 4, d = 2, s = 2, let the
pool graph in stage 1 be C3 plus 1 loop at 1 vertex, and let all these pools be positive. Then
the resulting candidate graph is K1,3 + e, hence t(3, 1, 1) + 1 = 4 tests are needed in stage 2.

However, the candidate graph K1,3 +e can be solved with 3 tests when we allow 2 further
stages: Let the candidate 2-sets be the edges v1v2, v1v3, v1v4, v2v3. We only test {v2} in
stage 1. No matter whether this pool is positive or negative, there remain 2 candidate 2-sets
for stage 2, which requires only 2 more nonadaptive tests by Corollary 2.

7 Optimal Strategies for Small Instances

Now we systematically list the optimal test numbers t(n, d, s) that we found. This section
contains only the practical part: we describe the strategies and pooling designs. Their
optimality proofs may be tedious to read, therefore we move them to the Appendix. The
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reader may go through some, to get an idea how the techniques work. Results that trivially
follow from the listed ones by monotonicity (see Section 1) are omitted.

t(3,2,1+) = 3, t(4,2,1+) = 4, t(5,2,1+) = 5, t(6,2,1+) = 6 : by individual testing.

t(7,2,3+) = 6. Use 3 mutually disjoint 2-pools in stage 1. If at most 1 of them is positive,
at most 3 candidate elements are left, which are tested individually in stage 2. If all 3 of
the 2-pools are positive, we conclude |P | > 2. If exactly 2 are positive, then, in stage 2, we
query separately 1 element from each positive pool (2 tests). A negative outcome means the
other element is positive, whereas a positive outcome renders the queried element positive.
Thus, 1 positive element is recognized in both cases. A 6th test in stage 3 on the remaining
candidate elements confirms they are negative, or yields |P | > 2.

t(7,2,2) = t(7,2,1) = 7, t(7,3,1+) = 7, t(8,2,1) = t(8,3,1+) = 8 : by individual testing.

t(9,2,2+) = 7. Let the pool graph in stage 1 be K4 (6 edges) plus 3 loops at p0. It is
impossible that exactly 1 pool responds positively. If all pools are negative, then so are
the edges in the K4. If exactly 2 pools are positive, then exactly the edge between them is
positive. In the above cases there remain only 3 candidates (loops) in stage 2. If 3 or 4 pools
are positive, then we get exactly 3 candidate 2-sets, using edges of the K4 vertices only. Now
Corollary 2 applies.

t(9,2,1) = t(9,3,1+) = 9 : by individual testing.

t(10,2,3+) = 7. Here we particularly emphasize that our pooling design is far from being
obvious, we found it after excluding other options with the help of our lower-bound methods.
The same remark applies to other cases as well.

We use the following pool graph in stage 1. Take a K4, but delete one edge, say p1p4, and
insert a loop at p1 and p4 instead. These 7 elements are complemented with 3 loops at p0.
As can be quickly checked one by one, all conceivable test outcomes yield one of the following
cases (possibly with further dummy elements): at most 3 candidate sets; or 1 recognized
defective and at most 4 candidates for a 2nd one; or the candidate graph K1,3 + e. Using
t(4, 1, 2) = 3, Corollary 2, and Lemma 4 for the next 2 stages, we can solve all cases in 2
more stages with 3 more tests.

t(10,2,2) = 8. We use K5 as the pool graph in stage 1. It is easy to check that 3 more tests
are always enough in stage 2.

t(10,2,1) = 9 follows from [25].

t(10,3,3+) = 9. Our strategy tests 3 disjoint 2-pools in stage 1. If at most 1 pool is positive,
the at most 6 candidate elements are tested individually. If 2 pools are positive, 2 tests
recognize 2 defectives in stage 2 (as in the t(7, 2, 3+) strategy). To find a possible 3rd
defective among the other 6 elements in stage 3 we use the strategy for t(6, 1, 1) = 4. If all 3
pools are positive, we determine the 3 defectives by 3 tests in stage 2, and 1 final test is used
to discard the negative elements or to report |P | > 3.

t(10,4,1+) = 10 : by individual testing.

8 The Case of Two Defectives and Two Stages

Our t(9, 2, 2) = 7 strategy readily extends to larger n as follows. Let m be the smallest
integer with

(
m
2

)
+ 3 ≥ n. Using Km plus 3 loops at p0 (or any subset of this edge set) as

the pool graph in stage 1, the same reasoning as for t(9, 2, 2) yields t(n, 2, 2) ≤ m + 3. (See
Table 1.) More formally:
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T 8 9 10 11 12 13 14 15 16 17 ... 20 ... 25
N1 8 12 13 17 20 26 28 42 48 68 ... 84 ... 293
N2 13 18 24 31 39 48 58 69 91 127 ... 254 ... 823

Table 1: This table illustrates that more stages save tests, for the example of d = 2 defectives.
Here, T is a budget of tests, N1 is the maximum n that is resolved in 1 stage according to
known results [25, 11, 10], and N2 is the maximum n that is resolved in 2 stages in the
present paper.

Proposition 15. For n ≤
(
m
2

)
+ 3 we have t(n, 2, 2) ≤ m+ 3.

Although this test number is Θ(
√
n), it is optimal, or close to optimal, for surprisingly

many n. Below we report further exact results for t(n, 2, 2). Once more, the lower-bound
arguments are moved to the Appendix.

t(10,2,2) = t(13,2,2) = 8. Use Proposition 15 with m = 5.

t(15,2,2) = t(18,2,2) = 9. Use Proposition 15 with m = 6.

t(22,2,2) = t(24,2,2) = 10. Use Proposition 15 with m = 7.

Remarkably, the Km plus 3 loops strategy misses the simple antichain lower bound of
Lemma 11 by at most 1 test up to n = 31, and by at most 2 tests up to n = 58. Next, instead
of a pool graph being a clique plus some loops at the null vertex, we may similarly use a
pool hypergraph being the counterpart of a clique: For some fixed k > 2, let the elements be
all k-subsets of the pool vertices. The tricky question is how many tests remain for stage 2,
and whether such constructions are beneficial for certain ranges of n. In fact, we found that
k = 3 is a good choice for many n. In detail:

Let m now be the smallest integer with
(
m
3

)
+ 7 ≥ n. In stage 1 we use m pools, let the

elements be represented by, up to
(
m
3

)
, different 3-sets of pools in the pool hypergraph, and

represent up to 7 more elements as loops at the null vertex. We claim that 7 tests are always
sufficient in stage 2. Then it follows precisely as above:

Proposition 16. For n ≤
(
m
3

)
+ 7 we have t(n, 2, 2) ≤ m+ 7.

In fact, this is currently the best upper bound on t(n, 2, 2) that we know for 70 ≤ n ≤ 823.
For proving Proposition 16 it remains to prove our claim on 7 tests. If 0 pools in stage 1 are
positive, only the 7 loops are candidate elements, and we test them naively. The case of 1 or
2 positive pools is impossible. If we get 3 positive pools, then 1 defective is identified, and
again we check the 7 loops individually. In all other cases the candidate 2-sets must be pairs
of 3-hyperedges. (It might be interesting to notice that the candidate graph is then a Kneser
graph.) At most 6 pools can be positive, otherwise we instantly see |P | > 2. If exactly 4 pools
are positive, we have just 4 candidate elements. If exactly 6 pools are positive, the candidate
2-sets are 10 disjoint pairs of elements, hence t(10, 1, 1) = 5 < 7 further tests suffice. The
worst case is when exactly 5 pools are positive. One easily verifies that the candidate graph
is then the famous Petersen graph, consisting of 2-disjoint copies of C5 connected by 5 more
edges which form a perfect matching. We do not even need the exact shape of the Petersen
graph; the latter property is enough to establish a test number at most 7, due to Theorem 1
and the following:
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Lemma 17. Let G be a graph whose vertex set can be partitioned in U and V , each with
exactly k vertices, and with exactly k edges between U and V , which are pairwise not incident.
Then the family of the complements of G’s edges (viewed as 2-sets of vertices) has a set basis
of size at most k + 2.

Proof. Our basis sets are simply U , V , and the k edges between them. For brevity we call
them cut edges. The complement of any edge e within U is the union of V and of the k−2 cut
edges that do not touch e. By symmetry, we also serve the edges within V . The complement
of any cut edge is the union of the other k − 1 cut edges.

This also concludes the proof of Proposition 16. Clearly, for large enough n some O(log n)
tests strategy takes over, and it is interesting to ask what constant factor we can achieve.
Note that t(n, 2, 2) ≥ 2 log2 n− 1 is a trivial lower bound.

Theorem 18. Any 2-disjunct matrix of size z · log2 n + o(log2 n) yields an upper bound
t(n, 2, 2) ≤ (2.5 − 1

4z−6) log2 n + o(log2 n). In particular we achieve t(n, 2, 2) ≤ 2.44 log2 n +
o(log2 n).

Proof. Let b > 1 be some integer, and x, y be positive real numbers with x + y = 1. These
method parameters will be fixed later. For convenience we omit rounding brackets if in some
real expressions only integer values make sense. This does not affect the asymptotic result.

We divide the elements in nx bags containing ny elements each, and we encode the nx bags
as vectors over an alphabet of b symbols. The code length is m := logb n

x = x logb 2 · log2 n.
In stage 1 we test bx logb 2 · log2 n pools, each consisting of all elements that share a fixed
symbol at a fixed position. At most 2 of the b pools for every position can be positive,
otherwise |P | > d = 2 is confirmed. Let k be the number of positions where we obtain 2
positive answers.

If k = 0, then the positive answers identify one bag of ny elements containing all, up to
2, defectives. This case can be solved with any 2-disjunct matrix in stage 2. It follows that
zy log2 n further pools in stage 2 are enough.

If k > 0, then it is easy to see that the candidate 2-sets form the edges of the disjoint union
of 2k−1 complete bipartite graphs Kny ,ny . Clearly, the worst case is k = m. Thus, applying
Theorem 10 we can solve this case in stage 2 by using fewer than t(2m, 1, 1) + 2t(ny, 1, 1)
pools. (In the bipartite graphs we search for 1 defective on both sides separately, therefore
the factor 2.) Since t(c, 1, 1) = log2 c + o(log2 c) as mentioned earlier, this pool number is
x logb 2 · log2 n+ 2y · log2 n+ o(log2 n).

Now we can bound the factor of log2 n in the total pool number in both stages. We
obtained bx logb 2 + zy and (b + 1)x logb 2 + 2y in case k = 0 and k > 0, respectively. By
trying the values of b and using the monotonicity of bx logb 2 for b > 4 one can figure out
that b := 4 gives the optimal performance. Also recall that x = 1− y. Then the two bounds
evaluate to 2x + zy = 2 + (z − 2)y and 2.5x + 2y = 2.5 − 0.5y. Clearly their maximum is
minimized if they are equal, that is, 2 + (z − 2)y = 2.5− 0.5y, hence y = 1

2z−3 , which yields
the assertion. To our best knowledge, the best published value of z is still 5.482 due to [19],
which yields the second assertion. (We remark that x := 1 and y := 0 gives a basic strategy
with factor 2.5.)

We highlight that our strategy does not require extra time for computations, e.g., for
decoding the test results: Excluding the non-candidate elements after stage 1 is trivial,
the candidate graph is completely described by the partite sets of the complete bipartite
subgraphs (we do not list the quadratically many edges), and stage 2 works with either a
2-disjunct matrix or, through Theorem 10, with some composition of 1-disjunct matrices
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that simultaneously identify the right bipartite graph and the right pair of vertices therein.
(Details become evident from the construction in Theorem 10.) Finally, it is well known that
d-disjunct matrices are easy to decode.

9 Further Research

Certainly, our tools can be further refined to limit the case inspections even more, and capture
more n, d, s. It would also be helpful to partly automatize the search and leave case inspections
to computer programs. However this is not straightforward. To avoid combinatorial explosion
we must generate certain set families up to symmetries. Already the construction of smallest
d-disjunct matrices is notoriously difficult. Since the number of rows (pools) is O(d2 log n),

naive exhaustive search would need 2O(d2n logn) = nO(d2n) time. But in the realm of exact and
parameterized algorithms, one could turn structural theorems, as in [25] and in the present
paper, into branching rules that fill the matrix entries more efficiently. The same question
arises for general candidate hypergraphs, i.e., for the NP-complete set basis problem.

Some other open questions are intriguing, too: Regarding the product of candidate hy-
pergraphs, in which cases is the nonadaptive test number additive, and how much better
than the sum can it be else? Similarly, how can we optimally deal with disjoint sums of
candidate hypergraphs? Such results would be useful for studying multistage pooling designs
that first separate the candidates for defectives into disjoint subsets (as we have seen in some
examples). Does there exist, for every d, some s such that t(n, d, s) = t(n, d, n)? In [4] we
got an affirmative answer only for d = 1, namely s = 2.
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Appendix: Optimality Proofs for Small Instances

t(3,2,1+) = 3, t(4,2,1+) = 4, t(5,2,1+) = 5 hold by the counting bound.

t(6,2,1+) = 6. It suffices to consider adaptive strategies. If we begin with a 1-pool and it is
negative, we need t(5, 2, 1+) = 5 further tests. If we begin with a 2-pool and it is positive,
there remain 9 > 23 candidate 2-sets, hence Lemma 11 requires 5 more tests. Due to Lemma
12 we need not consider more cases.

t(7,2,3+) = 6 follows from t(6, 2, 1+) = 6.

t(7,2,2) = 7. This is the first complicated case that needs the whole machinery prepared in
this paper.

We assume for contradiction that t(7, 2, 2) ≤ 6 and consider the pool hypergraph of stage
1. Assume that some ≥ 3-hyperedge e exists. If e is positive, e explains 3 or more positive
pools. Since t(6, 1, 2) = 4, the searcher needs 4 more tests for the 2nd defective. Hence the
pool hypergraph is merely a graph. Next, let p be a pool vertex with degree 1. Let p be
negative and apply Lemma 13. The edge incident to p is negative, hence still 2 defectives
among 6 elements must be found, and 1 pool is used up. Thus t(6, 2, 2) + 1 = 6 + 1 = 7
tests are needed. Hence the minimum degree is 2. Assume that parallel edges exist, that is, 2
pools share 2 or more elements. Declare these 2 pools positive and apply Lemma 13 together
with Lemma 11. Since still at least 11 > 23 candidate 2-sets remain, and 2 pools are used
up, the searcher needs 2 + 3 + 2 pools. Altogether, the pool hypergraph must be a graph of
minimum degree 2 without parallel edges. It has at most 5 pool vertices, since 6 pools would
forbid a 2nd stage and require t(7, 2, 1) = 6, contradicting the known result t(7, 2, 1) = 7 [25].

Next we show that cycles C3, C4, C5 in the pool graph, together with edges or loops for
the other elements, always create bad induced subgraphs that enforce too many tests in stage
2. In detail:

A C3 with loop implies 4 more tests (by the example after Lemma 14). Thus a C3 implies
that only these 3 pool vertices exist, and the other elements are 4 loops at p0. The latter
imply 4 more tests (see Section 6). Hence no C3 can be in the pool graph. Similarly, a C4

implies 2 more tests, hence only these 4 pool vertices exist. Since a 5th edge would create
a C3, the remaining 3 elements are loops. Loops at distance 1 or 2 imply 3 more tests (see
Section 6). Hence the 3 loops are (at most) at one pool vertex p1 and at p0. Let p2 be some
neighbor of p1 in the C4. If p1 and p2 are positive, the edge p1p2 with any of the 3 loops is a
candidate 2-set, thus Lemma 11 yields 3 more tests. This excludes C4. Also a C5 prohibits
both further pool vertices and further edges. The remaining 2 loops cannot be at distance 1
or 2, hence they are at one pool vertex p1 or at p0. Using a neighbor p2 similarly as above,
Lemma 11 now yields 2 more tests. Altogether, the pool graph has no cycles.

Therefore the pool graph is a forest, perhaps with loops, and all leaves must have loops
due to the minimum degree 2. If some leaves have distance 4 (path of 5 pools with 6 elements
2 of which are loops at the leaves), we cannot place the remaining loop without creating a
subgraph that incurs at least 2 more tests. Leaves (with loops) at distance 2 imply 3 more
tests, thus no further pool vertices may exist. Now every conceivable placement of the loops
implies 4 more tests. If some leaves have distance 3, therefore, only these 3 edges exist, and
4 loops. We cannot add a 5th, isolated, pool vertex, since it must have 2 loops implying 2
more tests. But with only 4 pool vertices, every conceivable placement of the 4 loops implies
3 more tests. Leaves at distance 1 require 3 more tests, thus at most 1 further, isolated, pool
vertex may be present. Again this isolated vertex has at least 2 loops, hence the only edge
has exactly 1 loop at each end (to avoid 2 vertices with 2 loops each). But now 4 loops are
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together at the isolated vertex and p0. This allows at least 5 candidate 2-sets, and Lemma
11 yields 4 more tests. Thus a 3rd pool vertex is ruled out. The remaining case is 1 edge
and a total of 6 loops at both ends and possibly p0. The candidate graph contains K1,6 + e.
Lemma 14 implies t(6, 1, 1) + 1 = 5 more tests.

It follows that all pool vertices are isolated and have at least 2 loops each. Since 2 such
vertices imply already 4 more tests, we can have at most 2 pool vertices and p0. By the
pigeonhole principle, 2 vertices have at least 2 and 3 loops, respectively (or even 1 vertex has
5 loops). Hence the candidate graph contains K2,3. Using Theorem 8, at least t(3, 1, 1)+2 = 5
more tests are required. Thus we can have only one pool vertex p1. Since at least 2 loops are
at p1, the candidate graph contains K2,5, and t(5, 1, 1) + 2 = 4 + 2 = 6 more tests are needed
by Theorem 8.

t(7,3,1+) = 7. Follows from the 35 candidate 3-sets by Lemma 11.

t(8,2,2+) = 7. It suffices to consider adaptive strategies. If we begin with a 2-pool and it
is negative, then t(6, 2, 6) = 6 enforces 6 further tests. If we begin with a 3-pool and it is
positive, the 18 > 24 candidate 2-sets and Lemma 11 enforce 6 more tests. Due to Lemma
12 we need not consider more cases.

t(8,2,1) = 8 is implicit in [25].

t(8,3,1+) = 8. Consider the first test of an adaptive strategy. A negative 1-pool enforces
7 more tests since t(7, 3, 7) = 7. A positive 2-pool leaves us with 36 > 25 candidate 3-sets.
Apply Lemma 11 and finally Lemma 12.

t(9,2,1) = 9 is known from [25].

t(9,3,1+) = 9. We systematically check the tree of all adaptive strategies and give test
answers + or − to the searcher’s disadvantage. For certain paths in the search tree we find
that the searcher is forced to apply too many tests, using earlier bounds and Lemma 11. By
Lemma 12 and exploring symmetric cases we can prune most of the tree. We remark that
our proof has to check just 11 paths, compared to the host of possible strategies and answers.
They are presented here:
{v1}(−): t(8, 3, 8) = 8.
{v1, v2}(+), {v1}(+): t(8, 2, 8) = 7.
{v1, v2}(+), {v3, v4}(−), {v1}(+): The searcher must find 2 defectives among v2, v5, . . . , v9,
but t(6, 2, 6) = 6.
{v1, v2}(+), {v3, v4}(−), {v5}(−), {v1}(+): The searcher must find 2 defectives among
v2, v6, . . . , v9, but t(5, 2, 5) = 5. Hence it suffices to consider a 4th pool avoiding both v1
and v2.
{v1, v2}(+), {v3, v4}(−), {v5}(−), {v6}(−): 9 candidate 3-sets are left.
{v1, v2}(+), {v3, v4}(−), {v5}(−), {v6, v7}(+): 12 candidate 3-sets are left.
{v1, v2}(+), {v3, v4}(−), {v5, v6}(+), {v5}(+): There remain 9 candidate 2-sets. This also
rules out any 4th pool with some of v1, v2, v5, v6.
{v1, v2}(+), {v3, v4}(−), {v5, v6}(+), {v7, v8}(−), {v6}(+): The 5 > 22 candidate 2-sets for
the other 2 defectives enforce 4 more tests. This also rules out any 5th pool with some of
v1, v2, v5, v6. It remains to query v9.
{v1, v2}(+), {v3, v4}(−), {v5, v6}(+), {v7, v8}(−), {v9}(−): Here the counting bound enforces
4 more tests.
{v1, v2}(+), {v3, v4}(−), {v5, v6}(+), {v7, v8, v9}(+): 12 candidate 3-sets are left.
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{v1, v2}(+), {v3, v4, v5}(+): The 33 > 25 candidate 3-sets enforce 7 more tests.

t(10,2,3+) = 7 holds since t(10, 2, 3) ≥ t(8, 2, 3) = 7.

t(10,2,2) = 8. Assume that t(10, 2, 2) ≤ 7. In the same way as for t(7, 2, 2) we can show,
due to t(9, 1, 2) = 5, t(7, 2, 2) = 7, and Lemma 11, that the pool hypergraph in stage 1 is a
graph without parallel edges, now with minimum degree 4. The latter implies that at most
5 pool vertices exist. Since a C3 with loop implies 4 more tests, no further pool vertices can
exist. By minimum degree 4, each vertex has at least 2 loops. If all 3 pools are positive, the
9 candidate 2-sets yield 5 more tests by Lemma 11. A C3 without loop would mean that
any vertex of the C3 has also 2 neighbors outside, leading to 5 pools. But the C3 requires
already 3 more tests. Hence no C3 can exist. Thereom 8 gives that 2 vertices with 2 loops
each require 4 more tests. Thus, in a C4 at least 3 vertices must be incident to further edges.
To avoid C3, at least 6 pool vertices are needed. Hence no C4 can exist either. A C5 cannot
exist, since further edges create smaller cycles, and 2 loops per vertex are too many. Hence
the pool graph is a forest, with at least 3 loops at every leaf or isolated vertex. Since 2
vertices with 3 and 2 loops imply 5 tests (Theorem 8), at most 2 pool vertices exist. If p1
and p2 exist, we choose 2 loops at p1 and 4 loops at p2 (or possibly the edge p1p2 instead of 1
loop) to get a candidate graph K2,4 that needs t(4, 1, 1) + 2 = 6 more tests. If only p1 exists,
we choose 2 loops at p1 and the 8 other loops from p1 or p0 to get a candidate graph K2,8

that needs t(8, 1, 1) + 2 = 7 more tests, again due to Theorem 8.

t(10,2,1) = 9 follows from [25].

t(10,3,3+) = 9 holds since already t(9, 3, 1+) = 9.

t(10,4,1+) = 10. Consider the first test of an adaptive strategy. A negative 1-pool enforces
9 more tests since t(9, 4, 9) = 9. In the case of a positive 2-pool, even revealing a defective
means that 3 defectives out of 9 elements are still to be found, but we have t(9, 3, 9) = 9. By
Lemma 12, this case distinction is complete.

t(15,2,2) = 9. The value of t(14, 2, 2) remains open. In the following we use Lemma 11
and Lemma 13. Assume that t(15, 2, 2) ≤ 8, and consider the pools in stage 1. A positive
≥ 7-pool allows 70 > 26 candidate 2-sets, hence the remaining 7 tests would not be sufficient.
A negative ≤ 5-pool together with t(10, 2, 2) = 8 yields 9 tests. Hence only 6-pools can be
used. But 2 intersecting positive 6-pools allow at least 25 + 14 = 39 > 25 candidate 2-sets,
and 2 disjoint positive 6-pools allow 36 > 25 candidate 2-sets, such that the remaining 6 tests
are not sufficient. Hence only one 6-pool may be used. If it responds positively, there remain
69 > 26 candidate 2-sets, implying 8 more tests.

t(22,2,2) = 10. Here, the exact t(n, 2, 2) values for n = 19, 20, 21 remain open. Assume that
t(22, 2, 2) ≤ 9, and consider the pools in stage 1. A positive ≥ 8-pool allows 28 + 8 · 14 =
140 > 27 candidate 2-sets, leading to 10 tests in total. A negative ≤ 7-pool together with
t(15, 2, 2) = 9 yields 10 tests, too. Hence no pool size is usable.
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