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Abstract

The group testing problem asks to find d � n defective elements out of n elements,
by testing subsets (pools) for the presence of defectives. In the strict model of group
testing, the goal is to identify all defectives if at most d defectives exist, and otherwise
to report that more than d defectives are present. If tests are time-consuming, they
should be performed in a small constant number s of stages of parallel tests. It is known
that a test number O(d log n), which is optimal up to a constant factor, can be achieved
already in s = 2 stages. Here we study two aspects of group testing that have not
found major attention before. (1) Asymptotic bounds on the test number do not yet lead
to optimal strategies for specific n, d, s. Especially for small n we show that randomized
strategies significantly save tests on average, compared to worst-case deterministic results.
Moreover, the only type of randomness needed is a random permutation of the elements.
We solve the problem of constructing optimal randomized strategies for strict group testing
completely for the case when d = 1 and s ≤ 2. A byproduct of our analysis is that optimal
deterministic strategies for strict group testing for d = 1 need at most 2 stages. (2) Usually,
an element may participate in several pools within a stage. However, when the elements
are indivisible objects, every element can belong to at most one pool at the same time.
For group testing with disjoint simultaneous pools we show that Θ(sd(n/d)1/s) tests are
sufficient and necessary. While the strategy is simple, the challenge is to derive tight lower
bounds for different s and different ranges of d versus n.
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1 Introduction

1.1 Multi-Stage Group Testing

In the group testing problem, a set of n elements is given, that are either defective (positive)
or non-defective (negative). Let P denote the set of positive elements. It is assumed that
|P | ≤ d, and usually d is very small compared to n. A group test takes any subset Q of
elements, called a pool. The test (or pool) is positive if Q ∩ P 6= ∅, and negative otherwise.
In the latter case, obviously, all elements in Q are recognized as negative. The goal is to
identify P using a minimum number of tests. A test strategy can be organized in s stages,
where all tests within a stage must be executed in parallel. In adaptive group testing, s is not
limited, hence the tests can be done sequentially. A pooling design is simply a set of pools.
Throughout the paper, log means log2. We also define L(n) := dlog ne. Since the tests are
binary, a trivial lower bound on the number of tests is log of the number of possible outcomes,
which is roughly d log(n/d).

A small number s of stages is desirable when the tests are time-consuming. It has been
known for a long time [15, 27] that O(d log n) tests are not sufficient if s = 1. It was a
breakthrough result [12] that O(d log n) tests are sufficient already in s = 2 stages, and
subsequent work [17, 4] has improved the constant factor. See also [10, 26] for complexity
results on randomized group testing in a few stages.

Group testing has interesting applications, most notably in biological and chemical testing.
For instance, in search for chemical samples that are contaminated with some substance,
one can group-test any subset of samples by gathering parts of each sample and pouring
them together. Applications in computer science include hardware diagnosis and network
communication protocols [11, 18, 21]. We cannot possibly give a survey of the field. Instead
we also refer to the textbooks [13, 14]. The present paper makes two independent new
contributions to multi-stage group testing.

Randomized strict group testing:
Plenty of strategies are known for different s, assumptions on d in relation to n, and

demands on the reliability of outcomes. The primary concern is to minimize the test number.
However these results are asymptotic, designed for optimal behaviour when n becomes large.
A question that received less attention is the design of optimal group testing strategies for
specific n. In every application one is faced with a specific instance size, but asymptotic results
(even optimal ones) do not necessarily entail the optimal strategy for just this n. Another
motivation for considering moderate, specific n is that the pool sizes of asymptotically optimal
strategies increase with n, but in some applications it may be practically infeasible to test
arbitrarily large pools (because of technical obstacles, dilution of chemicals, etc.). Then one
may split the given set into many small sets and treat them independently, but now, each one
with the provably optimal test number.

We list our notation, along with some comments:

• P denotes the initially unknown set of defectives, and an upper bound d on the number
of defectives is assumed.

• A group testing strategy is called hypergeometric if it always returns the correct P if
|P | ≤ d, but relies on the assumption that |P | ≤ d holds, i.e., this assumption is not
checked. (A common phrase is that the property |P | ≤ d is “promised” to the searcher.)
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• We call a group testing strategy strict if it always returns the correct P if |P | ≤ d, and
reports |P | > d otherwise. In the latter case the strategy is not supposed to recognize
any defective, but it might still return some partial information about possible sets P .
We also refer to [8, Section V.6] for this notion. It was argued earlier in the group
testing literature (e.g., [2]) that strict group testing is preferable. The understanding is
that |P | > d is unlikely but not impossible, such that in the “good” case |P | ≤ d, we
still need to confirm that no further defectives exist. This seems to be the most useful
type of strategies, since they produce safe outcomes.

• We use t(n, d, s) to denote the optimal number of tests needed, in the worst case, by a
strict group testing strategy for n elements, at most d defectives, and s stages.

• Strategies may also be randomized, yet we want them to be strict. In the randomized
case, t̄(n, d, s) denotes the optimal expected number of tests of a strict group testing
strategy, conditional on |P | = d. (Only for technical reasons we take |P | = d rather
than |P | ≤ d, anyway, the complexity is monotone in d.)

Group testing, like any combinatorial search problem, can be viewed as a game between a
searcher and an adversary, also called hider. Here we consider only deterministic strategies.
The searcher wants to identify the defectives using a minimum number of tests in the worst
case. She chooses a test strategy and sticks to it. The adversary is aware of the searcher’s
strategy and responds to the tests in such a way that the searcher is forced to use as many tests
as possible, for the chosen strategy. (We remark that the adversary must answer consistently,
i.e., there must always exist some set P that would generate exactly the given answers if
P were the true set of defectives.) Clearly, the test number enforced by the adversary is a
lower bound on the worst-case test number for the chosen strategy. Hence, a test number
that the adversary can enforce for arbitrary deterministic strategies is a lower bound on the
deterministic test complexity of the problem. (A more formalized description is given in the
Appendix. We also refer to [1] for a general introduction.) An additional standard proof
technique is to allow the adversary to reveal extra information to the searcher, besides her
answers to the tests. Since this only improves the searcher’s situation, it cannot increase the
lower bound. Hence it is correct to use such adversary actions in lower-bound proofs. The
reason for revealing information is that it sometimes simplifies the description of the searcher’s
instantaneous knowledge and the subsequent arguments.

In this paper we give a complete characterization of the exact values of t(n, 1, s) and
t̄(n, 1, 2), as a starting point for tackling this question also for d > 1. (A more detailed
description and motivation follows in Section 2.)

Group testing with disjoint simultaneous pools:
Group testing strategies with few stages and logarithmic test complexity must have pooling

designs where the pools within a stage heavily overlap. Such strategies cannot be used at all
if the elements are objects that cannot be split physically, thus an element must not occur in
more than one pool at the same time. As an illustrating example imagine that we want to test
light bulbs. When we turn on a set Q of bulbs in series connection, then light is on if all bulbs
work properly, and light is off whenever some bulbs in Q are defective. Hence light bulbs
are “group testable”, but we cannot split them. This is probably not a serious application
of group testing, however group testing could well be applied to checking other unsplittable
items such as electronic chips or other components. For instance, [3] referred to a real-world
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application that is best explained by quoting that passage: “The chips were group testable in
two phases as follows. In the first phase, a set of chips is exposed to a heating process within a
helium environment. If a chip in this set is pervious (defective) then some quantity of helium
will penetrate into the chip; otherwise the chip is not affected by the helium. [The heating
process does not damage the impervious (good) chips.] In the second phase, the same set is
exposed to a helium sensor which records a leak of helium. If at least one chip is defective
a leak will be recorded; otherwise no leak will be recorded.” Obviously, simultaneous pools
must be disjoint, and tests are time-consuming. Even in chemical testing it can be desirable
not to split items too much, e.g., simply because only a very limited amount of each sample
is available. In fact, the number of pools where an item participates is one of the quality
measures for pooling designs in “classical” group testing. Anyway, group testing with disjoint
simultaneous pools turns out to be an interesting and surprisingly deep problem in its own
right. (A more general model where every item may be shared by at most a fixed number
of simultaneous pools would be natural and interesting, too.) In this paper, we determine
the asymptotic test complexity of the latter problem for a fixed number s of stages, up to
constant factors that even tend to 1 under some conditions.

1.2 Overview of Results and Techniques

Throughout the paper we use n, d, s for the number of elements, defectives, and stages, re-
spectively, and L(n) := dlog ne.

After some basic definitions and facts (Section 2.1) we show that only some “canonical”
type of randomization, more specifically, a random permutation of the n elements, is needed in
optimal group testing strategies (Section 2.2). Basically this is an application of Yao’s minimax
principle. The value of this observation is that it limits the search space for randomized
strategies, for any given parameters n, d, s, to some finite set. Canonical randomizations have
also found interest in related fields like property testing [20, 9]. A possible downside is that
O(n log n) random bits are required to produce a random permutation.

Then we use this insight to derive the exact t(n, 1, s) values for s ≤ 2 (Section 2.3 ff.).
The t(n, 1, 1) values were already known (as we explain later in detail), thus it is natural
to look at t(n, 1, 2) next. We first settle the deterministic case (Section 2.4) by proving
t(n, 1, 2) = L(n) + 1 for all n. While t(n, 1, 2) < t(n, 1, 1) holds except for finitely many n, we
show that a third stage can never improve the worst-case test number: t(n, 1, 2) = t(n, 1, s)
holds for all s > 2. Next we prove that t̄(n, 1, 2) is always achieved by one of two randomized
strategies. One of them is structurally very simple, while the other one can be characterized
in terms of some result in extremal combinatorics. Thus, the problem to figure out the
optimal t̄(n, 1, 2) is solved as well. Moreover, the simpler of the two strategies is optimal for
large ranges of n above each power of 2 (Section 2.5), and comparison with t(n, 1, 2) exhibits
significant savings for those n. We also consider adaptive randomized strategies and show
that, essentially, t̄(n, 1, n) is no more than 0.5 expected tests away from the Huffman tree
lower bound (Section 2.6).

A remark is that deterministic and hypergeometric group testing for d = 1 is trivial: We
can encode n elements by strings of L(n) bits, and test L(n) pools, each consisting of the
elements that have bit 1 at a fixed position. The answers uniquely determine the defective,
and L(n) matches the information-theoretic lower bound. Our optimal strict group testing is
based on the same simple idea, but the details turn out to be more tricky.
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We argue that the combination of (a) the 1-defective case, (b) strict group testing, and
(c) randomization is of interest. Suppose that we have a huge instance with N � n elements,
but the pool size for tests is limited to n for technological reasons (as mentioned earlier).
Further assume that defectives are rare, d � N/n, and we want to use only a few stages to
save time. Then we would split the set randomly into N/n sets of size n, and treat them
in parallel. Most likely, each of these instances has no more than one defective – point (a).
Only a few instances that happen to have more defectives need to be solved afterwards. Here
it is important to apply strict group testing – point (b) – in order to distinguish these two
cases. Finally, since we work with many small instances, randomized tests that minimize the
expected test number are advantageous compared to strategies that just optimize the worst-
case test number – point (c). Moreover, the percentage of saved tests matters, rather than
the absolute expected savings which amount to at most 1 test per instance. Hence it makes
sense to “fight for fractions of 1 bit”. Besides these practical considerations it is interesting
to know the structure of the optimal randomized strategies.

Still it would be nice to get similar results also for general d. As indicated, calculating
exact test numbers is already subtle for d = 1, and in ongoing work we see a further jump
in the difficulty when we go to d = 2. We are able to get a bunch of exact t(n, d, s) results
also for d > 1, but this requires completely different combinatorial methods and is out of the
scope of the present paper.

To our best knowledge, only very partial results on exact test numbers exist so far [19, 23],
and the case of fixed s > 1 is not explored at all. A challenging open question is: Does there
exist some constant s such that, for all n and d, the optimal test number can already be
achieved in s stages, that is, t(n, d, n) = t(n, d, s)? As outlined earlier, the answer is affirmative
when it comes to the asymptotic test complexity, but this does not imply anything for exact
test numbers.

Our main result for group testing with disjoint simultaneous pools is that its test com-
plexity is essentially sd(n/d)1/s. Actually the upper bound is an old and simple result [24].
Our contribution is an almost matching lower bound, that holds at least if d = o(n1/s). We
emphasize that we consider the problem for any constant number s of stages, and particularly
for small s, having in mind that tests are often time-consuming, such that one cannot afford
many stages. For easier accessibility we divided the proof into small steps, going from easy to
complex, where each step introduces another technical idea. First we define the terminology
(Section 3.1). Once more, the case of one defective is central: We first solve the case d = 1
(Section 3.2). Here, a balancing argument shows that it is optimal to use, essentially, an
equal number of equally sized pools in every stage, and this pattern appears also later for
general d. The solution for d = 1 suggests already a simple strategy with recursively nested
pools. In order to show asymptotic optimality for any d, we have to prove that a deviation
from this nested scheme cannot save many tests. This claim is void for s = 1 and easy to
prove for s = 2. We use the idea of revealing a set of defectives that hits all positive pools.
These defectives “explain” all positive pools and thus destroy all structure in the descrip-
tion of the searcher’s instantaneous knowledge. This simplifies things and allows us to prove
a lower bound of Ω(d(n/d)1/s) tests for any fixed s, although first with an underestimated
constant factor (Section 3.3). In the following sections we specify this factor better. By a
graph-theoretic argument, we prove an almost tight bound, first for s = 3, provided that
d = o(n1/3). Then, it is a small step to extend the result to any fixed number s (Section 3.4).
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Up to that point we assumed the number d to be known in advance. If d is unknown, we
can get, in stage 1, a randomized estimate of d (Section 3.5). Finally we solve one problem
towards raising our lower bound for s = 3 stages, for the case that d comes closer to n1/3.
This part may find independent interest as we develop (to our best knowledge) a new piece
of matroid theory: We prove a guarantee for the weight of maximal independent sets in a
certain class of weighted matroids stemming from bipartite graphs (Appendix).

Some comparison to related literature is interesting. The test complexity Θ(sd(n/d)1/s) is
similar to that of interval group testing [5, 6]. In that version of group testing, the elements
are in a fixed total order, and pools must be intervals of consecutive elements. Despite
similar complexity, the two group testing versions are not comparable: (a) Our pools are
arbitrary subsets, rather than members of some restricted family, and (b), in interval group
testing, pools within a stage may overlap. Thus, the two problems also need very different
combinatorial tools. Furthermore, we studied the subproblem of estimating the number d
of defectives already for classical group testing [10], but for disjoint pools it works quite
differently.

2 Randomized Strict Group Testing

2.1 Preliminaries

An antichain, also known as Sperner family, is a family of sets none of which is subset of
another one.

A pool hypergraph represents a pooling design as follows: Vertices are pools, edges are
elements, and a vertex Q belongs to an edge e if and only if e ∈ Q. At any moment during the
execution of a group testing strategy, a candidate element is an element that has appeared so
far in positive pools only.

The last stage of an optimal strict group testing strategy is always deterministic, even
within a randomized strategy with optimal t̄(n, d, s). This is a simple consequence of strictness:
The actual pooling design in the last stage must guarantee identification of the defectives if
|P | ≤ d, and recognition of the case |P | > d. Hence the best we can do is to use the smallest
design with that property, and randomization has no benefits. In particular, optimal strict
group testing strategies for s = 1 are deterministic, without loss of generality.

A pooling design is d-disjunct if its pool hypergraph is d-cover free, that is, no union of
d edges contains another edge as subset. Equivalently, for every set C of size |C| ≤ d and
every element v /∈ C, there exists a pool Q with v ∈ Q and C ∩ Q = ∅. It is well known
that d-disjunct pooling designs recognize up to d defectives and also recognize the presence
of more than d defectives. That is, they solve the strict group testing problem for s = 1. For
the sake of completeness we insert the proof of this fact:

Proposition 1 A pooling design solves the strict group testing problem in 1 stage if and only
if it is d-disjunct.

Proof. Consider a d-disjunct pooling design, and any set C, |C| ≤ d. If the true set P of
defectives equals C then every v /∈ C appears in some negative pool and, trivially, no element
of C appears in a negative pool. Hence the searcher recognizes C as the complement of the
union of all negative pools. The case |P | > d is recognized, too, because in this case, more
than d elements remain outside all negative pools. Now, consider a pooling design that is not
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d-disjunct. Hence there exist C, |C| ≤ d, and v /∈ C, such that no pool Q satisfies v ∈ Q and
C ∩ Q = ∅. Now it may be the case that P = C. Since either no pool at all contains v, or
every pool containing v also intersects C (and is therefore positive), obviously the searcher
cannot confirm v /∈ P . �

That is, calculating t(n, d, 1) and t̄(n, d, 1) is equivalent to the construction of optimal
d-disjunct pooling designs. Asymptotic constructions have been studied extensively, however,
exact numbers are known for a few n only, and hard to calculate, see [23]. As opposed to
s = 1, randomization saves tests on average already when s = 2, as we shall see later.

2.2 A Canonical Form of Randomized Group Testing

We say that a randomized group testing strategy is deterministic up to random permutation if
it is obtained as follows: prior to stage 1, the n elements are randomly permuted, that is, all
n! permutations are equally likely. Then, some deterministic strategy is applied. This seems
very natural, since, in the group testing problem, no set of possible candidates is preferred
over others a priori. The remarkable fact is that no other randomizations are needed to obtain
an optimal expected number of tests. As opposed to this, known strategies (e.g., in [4]) do
apply other randomizations to keep the asymptotic analysis simple.

Before we state and prove the theorem it is useful to recapitulate some general remarks.
Our t̄(n, d, s) was defined to be the optimal expected number of tests, conditional on |P | =
d. Any randomized strategy can be viewed as a probability distribution on deterministic
strategies. (All possible randomized steps can be decided right from the beginning, and
then applied depending on the test answers.) Any deterministic strategy confronted with
any defective set P of size d runs with a specific number of tests. Moreover, the number of
deterministic strategies is finite for trivial reasons: In every stage, the number of possible
pooling designs and test outcomes is limited by some function of n, and s is fixed.

Theorem 2 For any fixed n, d, s there is always a randomized strict group testing strategy
with optimal t̄(n, d, s) which is deterministic up to random permutation.

Proof. Consider a matrix where each row represents a deterministic strategy σ, and each of
the m :=

(n
d

)
columns represents a set P of d elements. Every matrix entry qσ,P denotes the

test number of strategy σ, if P is the set of defectives.
Consider some row ρ where the average of test numbers t := (1/m)

∑
P qρ,P is minimal.

We show that no randomized strategy can yield an expected test number below t for all P .
Since a randomized strategy is a probability distribution on the rows, let π(σ) denote the
probability of choosing strategy σ. Then we have

∑
σ π(σ)(1/m)

∑
P qσ,P ≥ t, due to the

minimality of t. Hence there exists some column P where
∑
σ π(σ)qσ,P ≥ t. By linearity of

expectation, this weighted sum is also the expected test number when this P is the true set
of defectives.

Now we give a strategy that has the claimed form and yields an expected test number t on
every P , and is therefore optimal. We apply the deterministic strategy ρ corresponding to our
specified row with minimum t, but first we randomly permute the n elements. The resulting
strategy corresponds, in our matrix, to a set S of n! rows, each of which is chosen equiprobably
and has the same row average t. We claim that every column restricted to S contains exactly
the same multiset of test numbers, hence their average is t again: (1/n!)

∑
σ∈S qσ,P = t for
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every P . This claim is evident from a symmetry argument: Since the subsets P of the same
size d are not distinguished by the group of all permutations of the n elements, they cannot
behave differently in the devised randomized strategy. �

We remark that the proof did not really need the stage number s and the strictness
property, but we have formulated Theorem 2 in this way, just to serve our specific purpose.
Based on Theorem 2 we will now design provably optimal strategies for one defective in two
stages.

2.3 Some Lemmas for the One-Defective Case

Pooling designs that solve the strict group testing problem for d = 1 in one stage are exactly
those with the pool hypergraph being an antichain. We also refer to them as antichain designs.
Hence, minimizing t(n, 1, 1) and t̄(n, 1, 1) amounts to the problem of constructing maximal
antichains, which is solved by Sperner’s theorem. Thus we will immediately go on to the
study of t(n, 1, 2) and t̄(n, 1, 2).

We observe that, for s = 1, an antichain design is still necessary if the existence of some
defective is already guaranteed, i.e., this extra information does not help the searcher. This
holds because, if some edge e contains another edge f in the pool hypergraph, and element e
happens to be positive, we cannot infer the status of f . Another trivial but useful observation
is that, whenever |P | ≤ 1 and n > 1, in any antichain design that solves the strict group
testing problem, at least one pool will be negative.

A pooling design, say with t pools, divides the set of elements into 2t disjoint subsets of
elements that we refer to as cells, where the elements in each cell belong to exactly the same
pools. Note that a cell may be empty. The cell of elements being in no pool is called the
uncovered cell. All other cells are covered. Provided that |P | = 1, a positive (negative) pool
Q tells us that the only defective is in Q (is in the complement of Q). Hence the answers
from a pooling design in stage 1 specify exactly one cell that may contain the defective. We
call it the candidate cell. This should not be confused with the earlier notion of a candidate
element: There may exist candidate elements outside the candidate cell, since the searcher
is not yet sure that |P | ≤ 1. Furthermore, if the uncovered cell is the candidate cell, then
possibly |P | = 0.

Lemma 3 Let d = 1, and consider the last stage of a strict group testing strategy. If the
candidate cell C resulting from the previous stages has more than one element, then it is
optimal to do the last stage as follows: Take an optimal antichain design in C and add to
each pool the complement of C.

Proof. As stated earlier, the last stage can be assumed to be deterministic.
First we show sufficiency of the tests in the last stage. If |P | ≤ 1 then at least one pool

of the antichain design is negative (as observed above), and since every pool contains the
complement of C, all elements outside C will be confirmed to be negative. Moreover, the
antichain design solves the strict group problem restricted to C. Note that the cases |P | = 0
and |P | > 1 are detected as well.

Secondly we show that fewer pools are not sufficient. Assume that a helper reveals that
no defective is outside C. Even with this extra information, the searcher still has to solve the
strict group testing problem in C. Thus, the intersections of our pools (in the last stage) with
C must form an antichain design, and we took an optimal one. �

8



The following cases are easy to check directly:

Lemma 4 Let d = 1, and consider the last stage of a strict group testing strategy. If the
candidate cell C resulting from the previous stages has exactly one element, then it is optimal
to do the last stage as follows:
If C is a covered cell, and all other elements are already recognized as negative, then the only
candidate element must be positive, thus no further tests are needed. We call this case a
“verified defective”.
If C is a covered cell, but further candidate elements exist, then exactly one further test is
needed to falsify these other candidate elements.
If C is the uncovered cell, then exactly one further test is needed to check whether the candidate
element is positive. �

We call a cell with k elements a k-cell. Let a(k) be the size of an optimal antichain design
in a k-cell, for any k ≥ 1. For trivial reasons, a(k) is monotone increasing in k. We also
remark, for later use, that a(k) = k for k ≤ 4. Sperner’s classical theorem [28, 25] implies
that a(k) is the minimum integer a where

( a
ba/2c

)
≥ k.

Lemma 5 For all k > 1 it holds that a(k − 1) ≤ a(k) < a(2k − 1) ≤ a(2k).

Proof. If a is even, we have
(a+1
a/2

)
/
( a
a/2

)
= (a + 1)/(a/2 + 1) < 2. If a is odd, we have( a+1

(a+1)/2

)
/
( a
(a−1)/2

)
= (a+ 1)/((a+ 1)/2) = 2. That is, the largest k with a given a value is at

most doubled when we increment a. Now consider any fixed k. Trivially, the largest argument
with function value a(k)− 1 is at most k− 1. Thus the largest argument with function value
a(k) is at most 2k−2, which yields a(2k−1) > a(k) as claimed. The other inequalities follow
by monotonicity. �

2.4 Optimal Deterministic Strategies for One Defective

The previous lemmas have already determined much of the structure of a strict group testing
strategy that minimizes t(n, 1, 2). What remains to be determined is the number t of tests
in stage 1, and the sizes of the 2t cells. Lemmas 3 and 4 say that, if the candidate cell is a
k-cell, then a(k) tests are needed in stage 2, unless we get a verified defective. Remember
L(n) := dlog ne.

Theorem 6 For all n, the optimal deterministic strict group testing strategy for 1 defective
in 2 stages requires t(n, 1, 2) = L(n) + 1 tests in the worst case. For almost all n, the second
stage is actually needed to accomplish this test number, with the following exceptions where
one stage suffices: n = 1, 2, 3, 5, 6, 9, 10, 17, 18, 19, 20, 33, 34, 35, 65, 66, 67, 68, 69, 70.
Moreover, more stages do not improve the worst-case test number, that is, we have t(n, 1, 2) =
t(n, 1, s) for all n and all s ≥ 2.

Proof. In stage 1 we use a pooling design with L(n) tests that produces 0-cells and 1-cells
only, where the 1-cells are placed arbitrarily. (In other words: We encode the n elements
arbitrarily by distinct strings of L(n) bits. Then every bit string that is actually used yields
a 1-cell, while the others yield 0-cells.) Then, by Lemma 4, at most one further test suffices
in stage 2.
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In order to prove optimality of the test number (even if more stages were permitted), we
define t′(n) as the optimal worst-case test number of an adaptive strict group testing strategy
for one defective, where the searcher even gets the additional a priori information that some
defective is present. We have t′(1) = 0 by definition, and we claim that t′(n) ≥ L(n) + 1 for
n > 1.

We prove the claim by induction, with n = 2 as the base case. Denote the two elements
e and f . Then the pool {e, f} is always positive, thus not informative. When we test exactly
one element, say e, and e happens to be the defective, then the positive answer leaves us
uncertain about f : it could be defective or not, as |P | = 1 is not known in advance. Hence
t′(2) = 2 = L(2) + 1.

For the induction step suppose that the claim holds for 1 < n ≤ 2t, for some t. Consider
2t < n ≤ 2t+1, and test a pool of k elements first. If the test is positive, we have to solve the
problem for k elements (and confirm that no defective is in the complement). If the test is
negative, we have to solve the problem for n − k elements. (Note that we gave the searcher
the extra knowledge that some defective is present, hence if no defective is in the pool, there
must be some in the complement set.) Thus we have t′(n) ≥ 1 + mink max{t′(k), t′(n − k)}.
Since t′ is monotone, the best choice is k = bn/2c, and the claim follows by induction.

Finally we determine those n where t(n, 1, 2) = t(n, 1, 1). Recall that a strict 1-stage
strategy must apply an antichain design, which needs a(n) tests. It remains to figure out all n
with a(n) ≤ L(n)+1. For n ≤ 70 this is easy to do with little calculation (we skip the details),
which leads to the list above. We show that a(n) > L(n) + 1 for n > 70. Observe a(71) = 9
and L(71) + 1 = 8, and further L(128) + 1 = 8, which establishes the strict inequality for
71 ≤ n ≤ 128. Next observe a(129) = 10, whereas L(129) + 1 = 9. The rounded logarithm
L(n) grows only after each power of 2, hence Lemma 5 yields that a(n) grows at least that
fast, which maintains the strict inequality. �

Theorem 6 solves the problem of optimal deterministic strict group testing strategies for
d = 1 and all s completely. Using randomization we can still achieve better expected query
numbers, which is the next issue.

2.5 Optimal Randomized Strategies for One Defective in Two Stages

In the following we calculate strategies that minimize t̄(n, 1, 2) and enjoy the structure speci-
fied in Theorem 2. Our next step is to determine the optimal cell sizes in stage 1. We remind
the reader that a pooling design with t pools can be viewed, equivalently, as an assignment
of t-bit vectors to each element, and every pool comprises the elements that have a 1 at a
specific position. Elements that are assigned the same t-bit vector form a cell. To “move”
an element from a cell to another cell (which is a very convenient expression in the following
proof) simply means to change the bit vector of that element.

Lemma 7 There is a strict group testing strategy minimizing t̄(n, 1, 2) that produces, in stage
1, either 1-cells and 2-cells only, or 0-cells and 1-cells only, and in the latter case the 1-cells
are the majority.

Proof. Consider a (b + 1)-cell and a c-cell, where b > c. Let us move one element from the
larger to the smaller cell, thus obtaining a b-cell and a (c+ 1)-cell. Due to Theorem 2, in the
case |P | = 1, every element after applying the random permutation is the defective with the
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same probability 1/n. We study how the move improves the expected number of tests. To
this end we use Lemmas 3 and 4, and for convenience we omit the common factor 1/n in the
test number.

If b ≥ 1 and c = 0 then the improvement is at least b · (a(b+ 1)−a(b)) + (a(b+ 1)−1) ≥ 0.
Hence we can fill all 0-cells with elements from cells of more than one element, without
deteriorating the expected test number. If b ≥ 2 and c = 1 then the improvement is at least
b · (a(b+ 1)− a(b))− 2 + (a(b+ 1)− 2). This expression is also nonnegative, since a(2) = 2,
a(3) = 3, a(4) = 4. It follows that we can enlarge all 1-cells without making the expected test
number worse. We repeat this step until only 1-cells and 2-cells remain, or every cell has at
least 2 elements.

In the latter case we invest one more test in stage 1, thus doubling the number of cells,
and we split every 2k-cell in two k-cells, and every (2k − 1)-cell in a k-cell and a (k − 1)-cell.
Remember that a(k) tests are needed if the defective happens to be in a k-cell, k ≥ 2, and at
most 1 test if k = 1. Using Lemma 5 we get that the split improves the expected number of
tests in stage 2 by at least 1. This compensates for the extra test in stage 1. We conclude
that we always reach one of the two cases in the statement of the Lemma.

In the case of 0-cells and 1-cells, assume that the 1-cells are not the majority of cells.
Then we do the opposite action: We save one test in stage 1 and redistribute the elements
arbitrarily to the cells, placing at most one element in each cell. Since 0 or 1 tests are needed
if the defective is in a 1-cell (by Lemma 4), the expected number of tests for stage 2 is raised
by at most 1, therefore the total expected test number does not increase either. �

Definition 8 The k-lattice is the set of all subsets of a fixed set of k elements. Let F be
a family of exactly n sets in the k-lattice. A set in F is minimal (with respect to inclusion)
if it contains no other set of F as a subset. Clearly, the minimal sets in F always form an
antichain. For n not being a power of 2, we define M(n) to be the largest possible number of
minimal sets in a family of exactly n sets in the L(n)-lattice. For n being a power of 2, we
set M(n) := 0.

About calculating M(n):
By virtue of M(n) we will characterize the optimal randomized 2-stage strict group testing

strategies for one defective. The M(n) and corresponding optimal antichains in the L(n)-
lattices can be efficiently computed for all n, even in the more general lattices of multisets [7].
We emphasize that M(n) and an optimal F can be precomputed for any considered n, and
this calculation is not part of the test complexity.

To explain how the M(n) are obtained, consider n between any fixed consecutive powers
of 2, that is, 2k−1 < n < 2k, where k = L(n). Note that n > 2L(n)/2. According to Definition
8 we want to choose a family F of n sets in the L(n)-lattice so as to maximize the number
of sets being minimal in F . By Sperner’s theorem, a largest antichain in the L(n)-lattice
is given by the sets of size bL(n)/2c; we refer to it as the Sperner family. In particular, F
itself is not an antichain, since the Sperner family is smaller than 2L(n)/2 < n = |F |. It also
follows that, if the L(n)-lattice contains at most n sets of size at least bL(n)/2c, an optimal
choice for F is simply the Sperner family filled up with any selection of n −

( L(n)
bL(n)/2c

)
larger

sets. This simple case applies to some interval of values n above 2k−1. As n < 2k is getting
larger, the Sperner family and all larger sets together do not contain enough sets any more;
we will call this case an overflow. Then we must gradually insert in F some sets with less
than bL(n)/2c elements. Specifically, these sets added to F are always sets of the largest
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cardinality and in colexicographic order, that were not yet in F . This guarantees a maximum
antichain, due to the Kruskal-Katona theorem. (To define the colexicographic order < of
subsets, let be S := {1, . . . , k}. For any two subsets A and B of S, we say A < B if and
only if

∑
a∈A 2a <

∑
b∈B 2b.) We skip further details and refer to [7] and the pointers therein.

We remark that, for any fixed k, the M(n) are monotone non-increasing for 2k−1 < n < 2k,
which follows straight from Definition 8: Given an optimal F of n sets, simply remove some
non-minimal set (F is not an antichain), in order to see M(n− 1) ≥M(n).

We demonstrate that, in fact, the M(n) are now easy to calculate. The M(n), n ≤ 11, in
Table 1 are easily checked. The first overflow case is n = 12, since

(4
2

)
+
(4
3

)
+
(4
4

)
= 11. Verify

that the antichain of minimal sets in F cannot have exactly 5 members, but the 1-element sets
obviously form an antichain of size 4, which yields M(12) = . . . = M(15) = 4. To discuss the
interval 16 < n < 32, observe that

(5
2

)
+
(5
3

)
+
(5
4

)
+
(5
5

)
= 26, hence M(17) = . . . = M(26) = 10.

The optimal antichain of minimal sets for the first overflow case |F | = 27 in the 5-lattice
consists of {1}, {2, 3}, {2, 4}, {2, 5}, {3, 4}, {3, 5}, {4, 5}, hence M(27) = 7. Similarly as above,
the antichain of minimal sets in F cannot have exactly 6 members, but the 1-element sets
obviously form an antichain of size 5, which yields M(28) = . . . = M(31) = 5, and so on.

The test strategy:
First we calculate min{L(n) + 2 − 2L(n)/n, L(n) + 1 −M(n)/n}. If the first term is the

minimum, we set up, in stage 1, the pooling design with bit vectors of length L(n)− 1, where
every bit vector is assigned once or twice. This is possible since n/2 ≤ 2L(n)−1 < n. That is,
only 1-cells and 2-cells are generated; a nice detail is that the 2-cells can be chosen arbitrarily.
Depending on the candidate cell size we apply Lemma 3 or 4 in stage 2. If the second term
is the minimum, we set up a pooling design with bit vectors of length L(n), where every
bit vector is assigned at most once, thus generating only 0-cells and 1-cells. The 1-cells are
arranged such that the pool hypergraph, which is a family of n subsets of the L(n)-lattice,
has M(n) minimal edges. Then, Lemma 4 is applied in stage 2. (If both terms are equal, we
can go either way.) Now we are going to prove optimality of this strategy.

Theorem 9 An optimal randomized strict group testing strategy finding 1 defective in 2 stages
uses

t̄(n, 1, 2) = min{L(n) + 2− 2L(n)/n, L(n) + 1−M(n)/n}

tests on average. In particular, we have

L(n) < t̄(n, 1, 2) ≤ L(n) + 1.

Proof. By Theorem 2, every element is the defective with probability 1/n, provided that
|P | = 1. Now consider the two options in Lemma 7.

If we decide on 1-cells and 2-cells, then we never get a verified defective (see Lemma 4).
This holds because all cells contain elements, in particular the uncovered cell does. Hence
there are always candidates outside the (covered) candidate cell. It follows from Lemma 3
and 4 that it does not matter in which way we place one or two elements in the cells. We
need exactly k tests in stage 2 if the defective is in a k-cell (k = 1, 2). Since n elements are
located in 2L(n)−1 cells, the number of elements in 2-cells is 2(n − 2L(n)−1). This yields the
expected test number (L(n)− 1) + 1 + 2(n− 2L(n)−1)/n = L(n) + 2− 2L(n)/n.

If we decide on 0-cells and 1-cells, then a defective is verified if and only if it corresponds to
a minimal edge in the pool hypergraph. By Lemma 4, no further test is needed for them, while
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Table 1: Optimal expected test numbers for 1 defective in 2 stages.
n 1 2 3 4 5 6 7 8 9 10 11 12
t̄(n, 1, 2) 1.00 2.00 2.33 3.00 3.40 3.50 3.57 4.00 4.22 4.40 4.45 4.67
M(n) 0 0 2 0 3 3 3 0 6 6 6 4
strategy 1,2 1,2 0,1 1,2 1,2 0,1 0,1 1,2 1,2 1,2 0,1 0,1
t̄/t 1.00 1.00 0.78 1.00 0.85 0.88 0.89 1.00 0.84 0.88 0.89 0.93
n 13 14 15 16 17 18 19 20 21 22 23 24
t̄(n, 1, 2) 4.69 4.71 4.73 5.00 5.12 5.22 5.32 5.40 5.48 5.55 5.57 5.58
M(n) 4 4 4 0 10 10 10 10 10 10 10 10
strategy 0,1 0,1 0,1 1,2 1,2 1,2 1,2 1,2 1,2 0,1 0,1 0,1
t̄/t 0.94 0.94 0.95 1.00 0.85 0.87 0.89 0.90 0.91 0.92 0.93 0.93
n 25 26 27 28 29 30 31 32 33 34 35 36
t̄(n, 1, 2) 5.60 5.62 5.74 5.82 5.83 5.83 5.84 6.00 6.06 6.12 6.17 6.22
M(n) 10 10 7 5 5 5 5 0 20 20 20 20
strategy 0,1 0,1 0,1 0,1 0,1 0,1 0,1 1,2 1,2 1,2 1,2 1,2
t̄/t 0.93 0.94 0.96 0.97 0.97 0.97 0.97 1.00 0.87 0.87 0.88 0.89

non-verified defectives need exactly one further test. This immediately yields the expected
test number L(n) + 1 −M(n)/n, when we use a pooling design with the maximum number
M(n) of minimal edges. �

For brevity we call the two options the 1, 2-strategy and the 0, 1-strategy. Note that the
0, 1-strategy is optimal if and only if M(n) ≥ 2L(n) − n. We report the optimal results for
n ≤ 36 in Table 1. The t̄(n, 1, 2) values are rounded to two decimals. The strategy row
indicates which of the two specified strategies from Theorem 9 is optimal, and the t̄/t row
gives the ratio of the randomized and deterministic test number. We see that several percent
of costs are saved, in particular if n is slightly above a power of 2.

The strategies in Theorem 9 do not only minimize the expected test number. Moreover,
they never use more than L(n) + 1 tests in the worst case, which is also optimal due to
Theorem 6. This property is not self-evident for combinatorial search problems: For instance,
the problem of sorting by comparisons can be viewed as a combinatorial search problem (find
an unknown permutation). Quicksort is a fast randomized strategy, but its worst-case bound
is far higher than a deterministic upper bound one can achieve in a different way.

2.6 Randomized Adaptive Strategies for One Defective

With the help of Theorem 2 we also get optimal randomized adaptive group testing strategies
in the case of one defective. In strict group testing, the task was to identify the single
defective and confirm that it is the only one. In the adaptive case we want to characterize the
expected t̄(n, 1, n). (It does not harm to set s = n, although actually some log n queries and
stages are sufficient.) By Theorem 2 it suffices to study deterministic strategies up to random
permutation, and due to this random permutation we can assume that every element is the
defective with probability 1/n, provided that |P | = 1.

First let us consider a simpler problem: Suppose the searcher does already know that
|P | = 1. Then every group test on a pool Q obviously divides the set of possible outcomes:
The defective is Q (in the complement of Q) if Q was positive (negative). Thus, a deterministic
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strategy can be viewed as a binary tree with the elements as leaves, and minimizing the
expected number of tests is nothing else than constructing an optimal Huffman tree [22] for
the uniform distribution. It is well known that the optimal Huffman trees in this case are
the full binary trees characterized as follows: All levels are full (the kth level has 2k nodes),
except the last level if n is not a power of 2. The leaves in the last level form pairs of siblings,
but apart from that, their placement is arbitrary. Let T (n) denote the average path length of
any such tree. We have T (n) = log n if n is a power of 2, but T (n) is also very easy to express
analytically for general n; we skip these details as we do not need them in the sequel.

Now we approach our original problem where the searcher is not sure in advance that
|P | = 1. Clearly t̄(n, 1, n) ≥ T (n), but the question is what is the price for verifying the
existence of only one defective. We can construct the optimal strategies for all n, and a nice
upper bound holds:

Theorem 10 We have t̄(n, 1, n) < T (n) + 0.5 +O(1/n).

Proof. Let us first assume that |P | ≥ 1 is already known. In the end we will adjust the
result to possible absence of defectives. For notational clarity we use again the notion of
candidate cell C. After each test with a pool Q, the new candidate cell is C ∩ Q if the test
was positive, and C − Q else. When the search has narrowed down the candidate cell C to
2 elements, say C = {e, f}, we need another 1.5 expected queries (provided that |P | = 1).
This is accomplished as follows. In the next pool we put e, together with all candidate
elements that may still exist outside C. With probability 0.5 the test is negative, thus we
also learn that f is defective. With probability 0.5 the test is positive, and then we have to
test the other elements in one further pool, in order to verify that all are negative. Hence 1.5
expected queries are enough. This is also optimal in the specified situation: Since C is the
candidate cell, it contains the defective, and elements outside C are not defective (provided
that |P | = 1), but the latter must be confirmed by the searcher. Hence a pool including none
or both elements of C would just be wasted, and including all elements outside C is not a
mistake.

Now consider any binary tree with n leaves, representing an adaptive test strategy that is
deterministic up to random permutation. Let u be any inner node, and v, w its children. Let
C(u) denote the set of leaves in the subtree rooted at u, and note that C(u) is the candidate
cell when the search has reached node u. Either of C(v) and C(w) could be used as the pool
corresponding to u. If |P | = 1 were known a priori, both choices would be equally good, but
since we only know |P | ≥ 1, it is important how we choose the pools. Specifically we do the
following. If both v and w are leaves, we proceed as in the previous paragraph, and we are
done with 1.5 expected further queries. If exactly one child of u, say v, is a leaf, the next
pool consists of all candidate elements except v. Hence, if the test is positive, we proceed to
w, and if the test is negative, we can stop and output v as the defective. If no child of u is a
leaf, the next pool is any of C(v) and C(w). This strategy is optimal for the given tree, since
optimality for a node with two leaf children was shown above, and no further verification tests
have been introduced at other leaves.

We can interpret the result for the fixed tree as follows. For every pair of sibling leaves,
0.5 expected further tests are needed in addition to the path length, if some of them is the
defective. No further tests are needed if some leaf with a non-leaf sibling is the defective. Now
we are also able to optimize the shape of the tree. Suppose that u has two leaves v and w as
children, and some leaf x is closer to the root than u. Then we attach v and w as children
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to x, while u becomes a leaf. This reduces the expected path length by at least 2/n. The
verification queries at v and w are the same as before. In the worst case we create a new pair
of sibling leaves (u and its sibling), which causes 1/n expected new verification queries. Still
we have improved the tree. By iterating this step it follows that the optimal tree is a full
binary tree. Next, remember that the pairs of sibling leaves in the last level can be placed
arbitrarily, without affecting the expected path length. We attach them to the nodes of the
second last level in such a way that a maximum number of leaves therein has a non-leaf as
sibling. (The greedy procedure for this is trivial.) Since any full binary tree is a Huffman
tree, in particular, the expected number of tests is T (n) + 0.5 or better.

We have to make some final adjustments to accommodate the possibility that |P | = 0.
Since |P | = 0 can occur, the unique tree path with only negative answers ends in a leaf u
for which the searcher does not know whether it is defective. Thus we need one extra test
there, in addition to the path length. That is, if u is the defective, we must confirm this as
well, but this happens only with probability 1/n and adds 1/n to the expected test number.
Furthermore, if really |P | = 0, then we get to this leaf with probability 1. In order to avoid
that the path length plus 1 exceeds the average test number that we got for |P | = 1, we can
move u one level higher and, in exchange, move O(1) nodes to the last level, which obviously
adds O(1/n) to the expected test number, too. �

Since T (n) = L(n) − (1/n) ∗ (2L(n) − n) ≤ log2 n + 0.086 is known [1, Theorem 1.9], our
bound can be stated more explicitly as t̄(n, 1, n) < log2 n+ 0.586 +O(1/n).

3 Group Testing with Disjoint Simultaneous Pools

3.1 Notation and Basic Facts

We start defining the terminology needed in this section. The notions of positive (defective)
and negative elements, group testing problem, pools, and stages were already given in Section
1.1. A candidate element is an element that has not appeared so far in a negative pool,
thus it may still be positive. Parameters n, d, s are used as before. We explicitly mention
the difference between hypergeometric and strict group testing (see Section 1.1) only when
it is relevant for the complexity results. To avoid heavy notation we will sometimes silently
omit lower-order terms in complexity bounds, in particular, rounding brackets for fractional
numbers are omitted.

From now on we exclusively deal with the version of group testing where pools within
the same stage must be disjoint: Whenever two pools Q and Q′ are tested simultaneously in
a stage, they must satisfy Q ∩ Q′ = ∅. Due to this demand, any stage naturally induces a
partitioning of the candidate elements: The parts of this partitioning are the pools used in
that stage, and the rest, which is the set of elements being in no pool in that stage.

A set D is called a hitting set of a given family of sets, if D has a nonempty intersection
with every set of this family. For our proofs we will also need some standard graph-theoretic
notion. A graph is a pair G = (V,E) of a vertex set V and an edge set E, where every edge is
an unordered pair of vertices. An edge between vertices x and y is denoted xy. An edge xy
and each of its vertices x and y are said to be incident, and the vertices x and y are called
adjacent. A graph is bipartite if V can be split in two disjoint sets X and Y , called the partite
sets, such that every edge is incident to vertices from both X and Y . In order to stress that
a graph is bipartite we may write it as G = (X,Y ;E). A path is a sequence of vertices such
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that any two consecutive vertices are adjacent. A cycle is a path starting and ending in the
same vertex. In a connected graph, any two vertices are joined by some path. A connected
and cycle-free graph is a tree, and a cycle-free graph (not necessarily connected) is a forest. If
G = (V,E) is connected, a spanning tree of G is any tree T = (V, F ) with F ⊆ E. Similarly, a
spanning forest of an arbitrary graph G is any forest T = (V, F ) with F ⊆ E. The attribute
“spanning” refers to the demand that T must contain all vertices of G. A matching is a set
M ⊆ E of edges that are pairwise disjoint, i.e., do not share vertices. We say that M covers
the 2|M | vertices appearing in the edges of M .

3.2 The One-Defective Case and a Simple General Strategy

Adapting an old result [24], we first get the asymptotic complexity in the case d = 1 (which
will be a building block of our reasoning for general d), and a simple strategy for any d. Then,
almost the whole remainder of Section 3 is devoted to proving asymptotic optimality of the
resulting upper bound, if d grows slowly compared to n.

Proposition 11 Any strategy for d = 1 needs at least sn1/s − s tests in the worst case.

Proof. As introduced above, every stage divides the candidate elements into parts. The
adversary reacts as follows in every stage. She chooses some part Q of maximum size. If Q
is a pool, the answer to Q is positive, and all other pools are negative. If Q is the rest, then
all pools are negative. In the case of hypergeometric group testing it is obvious that, after
any stage, the candidate elements are exactly the elements in Q. In the strict group testing
model, however, the rest may contain further defectives when some pool was positive. In this
case our adversary also reveals that no defective is in the rest, such that we arrive at the same
statement: After any stage, the candidate elements are exactly the elements in Q.

Against this adversary it is always optimal for the searcher to make the parts equally
large (with differences of at most 1), because this minimizes the size of the maximum part Q
specified above. Let pi be the number of parts in stage i. Then stage i reduces the number
of candidate elements to a fraction 1/pi. Hence the searcher must choose the pi such that
p1 · . . . · ps ≥ n, and she wants to minimize p1 + . . .+ ps. By routine calculation, her optimal
choice is to set all pi = n1/s, from which the claimed lower bound follows. Note that we
subtract s since the number of tests in every stage is pi − 1. �

The lower bound in Proposition 11 is tight, up to minor additive gaps.

Proposition 12 We can identify one defective using sn1/s− s and sn1/s− s+ 2 tests, in the
hypergeometric and the strict group testing model, respectively.

Proof. In every stage, divide the candidates into n1/s parts of equal size. If some pool is
positive, we hand it over to the next stage, otherwise we hand the rest over to the next stage.
Obviously we will eventually find the defective. In the case of strict group testing we also
have to check that only one defective is present: We proceed as above in all stages but the
last one. In the last stage we test all elements from the received part individually, and we test
one pool consisting of all rests of earlier stages that exhibited some positive pool. The latter
test is done in order to rule out further defectives that may be hidden in these rests. Thus
we need two more tests than in the hypergeometric model. �
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We call a strategy nested if every pool in a stage is a subset of some part (pool or rest) from
the previous stage. The above strategy for one defective is nested and suggests the following
nested strategy for the general case, cf. [24].

Theorem 13 We can identify up to d defectives using at most sd(n/d)1/s tests.

Proof. First consider the hypergeometric model. In stage 1 we partition the elements into
p pools of size n/p, where p will be specified below. First suppose that d pools are positive.
Then we treat them as d instances of the problem with one defective, to be solved in the
remaining s − 1 stages. By Proposition 12, we can solve each with (s − 1)(n/p)1/(s−1) tests.
(For simplicity we omit the minor additive term s − 1 and take a slightly worse bound.)
Specifically, we choose p so as to minimize p + (s − 1)d(n/p)1/(s−1). Standard calculation
yields p = d(n/d)1/s, hence n/p = (n/d)1−1/s and (s − 1)d(n/p)1/(s−1) = (s − 1)d(n/d)1/s.
We remark that the same number of tests is used in every stage, and that exactly d pools in
every stage are positive.

If fewer than d pools are positive in stage 1, we simply continue on these positive pools,
using the same pool sizes as above, in every stage. What is new is that positive pools may
now contain several defectives. Thus, when we split a positive pool into p smaller pools in the
next stage, several of them may answer positively. But since all pools in a stage are disjoint,
trivially, the total number of positive pools in every stage is still bounded by d. Hence the
total number of tests in all stages together gets only smaller than in the case when d pools
were positive already from stage 1 on.

In the strict group testing model, nothing changes in the strategy, because we only discard
elements in negative pools. Here the only difference is that more than d disjoint pools can be
positive, but in this event we stop. �

3.3 Revealing Defectives and a Preliminary Lower Bound

One might think that sd(n/d)1/s from Theorem 13 (actually from [24]) is also an immediate
lower bound: An adversary reveals a partitioning into d sets of size n/d with one defective
each, and by Proposition 11 roughly s(n/d)1/s tests are needed to find every defective. How-
ever, note that the searcher is not bound to search the d sets independently. Actually, the
previous argument proves a matching lower bound only for nested strategies. Without this
restriction, the searcher may use pools that overlap several earlier parts. The question is if
such intersections can save tests. As our next step, we actually establish a simple lower bound
of Ω(d(n/d)1/s) for every fixed s, that is, with some hidden factor depending on s only.

Observe that the possible sets D of defectives at any moment during the execution of a
search strategy are characterized by three conditions: |D| ≤ d; D contains only candidate
elements; and D intersects every positive pool, in other words, D is a hitting set of the family
of positive pools restricted to the candidate elements.

The technique of revealing extra information was explained in Section 3.1. In particular,
the adversary may reveal a defective v, and then we can forget about all positive pools that
contain v, because v “explains” these positive pools, i.e., they do not supply the searcher with
any further information.

Lemma 14 Consider the family F of positive pools encountered in all stages prior to the last
stage. Then the following holds for each candidate element v: If F has a hitting set D, such
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that |D| < d and v /∈ D, then v must be tested individually in the last stage. Consequently, if
F has a hitting set D with less than d elements, then all candidate elements in the complement
of D must be tested individually.

Proof. Let the adversary reveal a hitting set D of defectives, as specified. Then all positive
pools are explained, and the searcher has to check if more defectives exist among the other
candidate elements. Consider the pooling design used for this task in the last stage. Every
candidate element v /∈ D must appear in some pool, since otherwise the searcher cannot
decide the status of v. Furthermore, no pool Q may contain several elements, because, if Q
is positive, the searcher cannot decide which element in Q is defective. Since no intersecting
pools are allowed, the elements in a pool are not distinguishable. Thus, the singleton {v}
must be a pool, which was the claim. �

The proof essentially uses that overlaps are prohibited, and, in fact, Lemma 14 does not
hold in unrestricted group testing. Now we get already a reasonable lower bound. For s = 1,
trivially n individual tests are needed, by arguments as in the proof of Lemma 14. In the
following we always assume s ≥ 2.

Theorem 15 Any strategy for a fixed s ≥ 2 and general d needs at least
(1/(s− 1))1−1/s · sd(n/d)1/s − s− d tests in the worst case.

Proof. In all stages but the last one, the adversary sets the d/(s−1) largest parts positive and
also reveals one defective in every such part. Actually, a slightly smaller number of parts is
selected, such that at most d−1 defectives are revealed in total. The set D of these defectives
is a hitting set of the family of positive pools. Hence, by Lemma 14, the remaining candidate
elements, except the at most d− 1 elements of D, must be tested individually in stage s. As
earlier, for a searcher playing against this adversary it is optimal to use parts of equal size
within every stage. Again, let pi denote the number of parts in stage i. In particular, ps
candidate elements still exist before stage s. Then we have for every i < s: In stage i, the
number of candidate elements is multiplied by a factor d/((s− 1)pi) < 1. Hence the searcher
must choose the pi such that n(d/(s− 1))s−1/(p1 · . . . · ps−1) ≤ ps, and she wants to minimize
p1 + . . . + ps. The constraint can be written as n(d/(s − 1))s−1 ≤ p1 · . . . · ps. By routine
calculations, in the optimal choice the inequality becomes an equation, and all pi become
equal to some p, giving n(d/(s− 1))s−1 = ps and sp = (1/(s− 1))1−1/s · sd(n/d)1/s. �

Note that the bound in Theorem 15 is already tight when s = 2, subject to an additive gap
that does not depend on n. For any s > 2 there remains a multiplicative gap of (s− 1)1−1/s

between the upper and lower bounds in Theorem 13 and 15. In the following we will narrow
down this gap, using more sophisticated techniques.

3.4 An Almost Matching Lower Bound

Until now we have obtained tight lower bounds for s = 1 and s = 2 only. Next we introduce
a structural argument that enables us to solve our problem to optimality also for s = 3, at
least if d � n1/3. Eventually we extend this result to any fixed s, but the main difficulty is
the step from 2 to 3 stages. One of the new ideas we need is to defer the adversary’s decision
on the defectives. Another prerequisite is the following graph-theoretic lemma.
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Lemma 16 Let B be any bipartite graph with positive integer edge weights. Define the weight
of a vertex v to be the sum of weights of the edges incident to v. Then B has a spanning forest
T with (changed, positive, integer) edge weights such that every vertex has in T the same
weight as in B.

Proof. If B has no cycle then set T := B. Otherwise let C be any cycle of edges in B. We
will change the edge weights by integer amounts and destroy at least one edge in C, without
changing the vertex weights. Thus iterated application of this step will yield a spanning forest
as claimed.

Let e be an edge in C with minimum weight, say w. We subtract w from the weight of e,
add w to the weight of the next edge in C, and so on, that is, subtraction and addition are
done alternatingly while traversing the cycle. Since C has an even number of edges, obviously
this manipulation is well defined and preserves the vertex weights. Edge e, as well as any
other possible edge whose weight has been reduced to 0, is removed from B. �

In the following we will need that some number p of parts, all of equal size, have been
used in stage 1. The adversary will make d′ of them positive, where d′ is some number with
d′ ≤ d. (In more detail: She gives a positive answer either to d′ pools, or to d′ − 1 pools and
reveals that the rest contains a defective.) If all parts actually have size n/p, this results in d′

positive parts of that size. If the sizes are unequal, obviously it is optimal for the adversary
to make the d′ largest parts positive, thus retaining more than nd′/p candidate elements. But
from this we cannot simply conclude that equally sized parts are optimal for the searcher. (It
might be true, there is just no simple argument.) The catch is that some of the d′ largest
parts may be smaller than n/p, and then it is not clear whether the situation is worse for
the searcher, than a scenario with equal sizes. To overcome this difficulty we guarantee some
minimum size which is only slightly smaller than n/p:

Lemma 17 If p > d′ pools are used in stage 1, then the adversary can leave the searcher with
d′ disjoint positive parts, each containing at least (1− d′/p)n/p elements.

Proof. Let x := (d′/p)(n/p). A part with at least n/p− x elements is called large, otherwise
it is called small. In every large part we mark n/p−x of the elements, and in every small part
we mark all elements. If at least d′ parts are large, the statement of the Lemma is true. If the
d′-th largest part is small, then so are the p− d′ smallest parts. Together they have at most
(p− d′)(n/p− x) elements, hence the d′ largest parts together have at least d′n/p+ (p− d′)x
elements. Since at most d′(n/p−x) of them are marked, at least px elements in the d′ largest
parts are unmarked. Note that unmarked elements can occur only in large parts. For every
large part, the adversary answers positively and also announces that some marked element in
the part is defective. Thus the searcher has no knowledge about the status of the unmarked
elements there. The adversary collects the at least px unmarked elements and groups them
into new fictitious parts of size n/p− x. Thus she obtains px/(n/p− x) > px/(n/p) fictitious
large parts. In the worst case for the adversary, only one real part is large, and all (but one)
large parts are fictitious. Still the adversary can make d′ parts (real or fictitious ones) positive,
and they have the claimed size n/p− x = (1− d′/p)(n/p). �

Remember that we sometimes silently ignore lower-order terms. We also adopt the hyper-
geometric group testing model; the lower bound for the strict model cannot be smaller.
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Theorem 18 Any strategy for d defectives and s = 3 stages needs at least (1−o(1))3d′(n/d′)1/3

tests in the worst case, where d = o(n1/3) and d′ := d− 1.

Proof.
Outline: The plan of the proof is as follows. We construct an adversary that will force every

3-stage strategy to execute the claimed number of tests. Every 3-stage strategy corresponds
to an edge-weighted bipartite graph representing stage 2, in a way that we specify below. We
speak of a forest strategy if this bipartite graph is a forest. We will analyze the number c of
remaining candidate elements after stage 2. It indicates, subject to lower-order terms, the
number of tests that our adversary can impose on a considered strategy. We show that, for
any strategy σ, there exists a forest strategy σ′ with the same or smaller c. Finally we prove a
lower bound on the test number of forest strategies, helped by the fact that forests have fewer
edges than vertices. Due to the previous point, this lower bound then applies to all 3-stage
strategies. Now we detail these steps.

Adversary: In stage 1, the searcher tests some number p of pools. Our adversary gives
positive answers to d− 1 parts with sizes guaranteed by Lemma 17. Let Ui, i = 1, . . . , d− 1,
denote these positive parts, and let V1, . . . , Vq be the parts used by the searcher in stage 2.
Only in stage 2, our adversary reveals d−1 defectives, exactly one in every Ui. The adversary
chooses these revealed defectives so as to maximize the total number c of elements in all Vj
that contain revealed defectives. Then, the adversary gives positive answers to these parts
Vj , and negative answers to all other parts.

First analysis steps: The revealed defectives form a (d − 1)-elements hitting set of the
family of positive parts after stage 2. Hence Lemma 14 applies. Since all elements in the
positive parts Vj are candidate elements, it follows that at least c−d tests are needed in stage
3, and we can establish a lower bound p+ q+ c− d. Note that the searcher has already fixed
the number p of tests of stage 1. Thus, for any fixed number q of tests in stage 2, it suffices to
consider such pooling designs (in stage 2) that minimize the maximum c that the adversary
can enforce.

Feasible families and forest strategies: We call a family F of parts Vj feasible if there exist
d − 1 elements, one from each Ui, that intersect exactly the sets in F . (To motivate the
definition, note that feasible families are exactly those that can be made positive by revealing
d− 1 defectives, as above.)

In the following we do not notationally distinguish between parts (sets of elements) and
vertices representing those parts in a certain graph; this should not cause confusion. To any
pooling design in stage 2 we assign a bipartite graph with vertex sets U = {U1, . . . , Ud−1} and
V = {V1, . . . , Vq}, where vertices Ui and Vj are joined by an edge of weight |Ui ∩Vj | whenever
Ui ∩ Vj 6= ∅. Trivially, |Ui| =

∑q
j=1 |Ui ∩ Vj | holds for all i. Vertex weights are defined as in

Lemma 16.
Conversely, to any bipartite graph on vertex sets U = {U1, . . . , Ud−1} and V = {V1, . . . , Vq},

with integer edge weights, and vertex weights |Ui| at all vertices Ui, we can assign a pooling
design for stage 2 as follows. Simply put in Ui ∩ Vj as many elements as the given edge
weight indicates; this defines Vj (which equals

⋃d−1
i=1 (Ui ∩ Vj) for each j). Clearly, our edge-

weighted bipartite graphs and pooling designs are therefore in one-to-one-correspondence up
to isomorphisms, i.e., permutations of elements.

Now consider any pooling design in stage 2, and let B denote the assigned bipartite graph.
Let T be a spanning forest of B as given by Lemma 16. Consider the pooling design assigned
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to T . Since the weights of all Ui in T are the same as in B, this pooling design is, in fact, valid
and may be used in stage 2 instead of B. Since T possesses only edges that also exist in B,
no feasible families are newly created when we replace B with T . Finally, since the weights of
all Vj in T are the same as in B, too, every feasible family in T comprises the same number
of candidates as it would have in B. Together it follows that c does not increase. Thus, for
proving our lower bound of the form p+q+c−d, it suffices to consider forest strategies. Next
we observe that a forest strategy has at most q + d− 2 < q + d nonempty sets Ui ∩ Vj , since
these intersections correspond to the edges of a forest with q+ d− 1 vertices. In other words,
all Vj , with fewer than d exceptions, are subsets of parts Ui from stage 1. (That is, a forest
strategy is almost nested.)

Finishing the analysis: Since we are proving a lower bound, we can now make the adversary
weaker and give away some candidate elements: Instead of maximizing c for the given pooling
design from stages 1 and 2, let the adversary simply choose the largest Ui∩Vj for every i, and
fix some defective there. Assume for a moment that |Ui| = n/p for all i. Now we are able to
express how many candidates the adversary can secure before stage 3. At best, the searcher
can split the d − 1 parts Ui of size n/p into, in total, q + d smaller pieces, upon which the
adversary selects the largest piece from each Ui. Define q′ := q + d for brevity. By routine
extremal value calculations, the searcher achieves the minimum by using the same number
q′/(d − 1) of equally sized pieces in every Ui, hence every piece has n(d − 1)/(pq′) elements,
which yields c = n(d− 1)2/(pq′) candidates.

The number of tests in all 3 stages is therefore at least p + q′ + n(d − 1)2/(pq′), subject
to lower-order terms. This expression is minimized if p = q′ = (d− 1)1−1/3n1/3, hence we can
write p = q + d = (d − 1)1−1/3n1/3 + o(n1/3). In a final step this also yields asymptotically
n(d− 1)2/(pq) = (d− 1)1−1/3n1/3. Actually the Ui may be smaller by a factor (1− d′/p) due
to Lemma 17, but since we assumed d = o(n1/3), this does not affect the constant factor in
the main term of the query complexity. This completes the proof. �

Let us rephrase the key observation in this proof. In stage 2, the adversary can keep at
least a d′/(d′ + q − 1) fraction of the candidate elements. Actually we used that, in an edge-
weighted bipartite graph with partite sets U and V of size d′ and q, respectively (where the
edge weights are numbers of candidate elements), some spanning forest exists where the edge
weights are in general changed but the vertex weights are preserved. Then we have chosen
the maximum-weight edge incident to each vertex in U and shown that these edges together
hold the desired fraction of the weight. Note that, for the entire proof to work, the adversary
has to select, for each of the d′ vertices in U , exactly one incident edge. Also note that all
vertex weights in U are equal. However, our weak adversary in Theorem 18 gives away many
candidate elements, thus it should be possible to raise the guaranteed fraction of candidate
elements. By studying examples we came up with the following conjecture. (For convenience
let k := d′ and m := q.)

Claim. Let B = (U, V ;E) be a bipartite graph, k := |U | and m := |V | with k < m,
and let f : E → R+ be a weight function on the edges, such that all u ∈ U satisfy∑
v:uv∈E f(uv) = 1/k. Due to the last property we call the weight function U -balanced.

Define π(v) :=
∑
u:uv∈E f(uv); note that

∑
v∈V π(v) = 1. We will call any nonnegative func-

tion π on V with sum 1 a distribution, and say that π is induced by f . For a fixed distribution
π, the weight of a set S ⊆ V is naturally defined as π(S) :=

∑
v∈S π(v). – Then B has a

matching M that covers some set S ⊆ V of weight π(S) ≥ k/m.
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Clearly, the scaling factor 1/k is arbitrary. We remark that the U -balanced property is
essential (when it is dropped, one easily finds counterexamples already for k = 2), and that
k/m is optimal for trivial reasons.

The claim implies that the adversary can even keep a d′/q fraction of the candidate ele-
ments: She takes the matching M , fixes one defective in every corresponding set Ui ∩ Vj , and
gives positive answers to all these Vj , hence all elements therein remain candidates. Since M
is a matching, we get that only |M | ≤ d′ defectives are fixed, and d′ − |M | further defectives
can be fixed in order to hit all Ui (which have to be positive parts!).

In fact, we can prove the claim under mild assumptions: m ≥ 2k−1 is sufficient. Since this
proof is much more complex and uses matroid theory, we give it separately in the Appendix.
Using a fraction d′/q instead of d′/(d′ + q − 1) avoids the loss of d tests in our lower-bound
analysis. The resulting improvement of the lower bound is minor when d = o(n1/3), as
considered in Theorem 18 (also, the technical issue addressed in Lemma 17 is still in place),
however, it becomes more significant as d grows. We also believe that this graph-theoretic
result is structurally interesting in itself, and it removes one obstacle on the way to a future
extension of the (1 − o(1))3d′(n/d′)1/3 lower bound to larger d. We must leave the latter as
an open problem.

We conclude this section with the generalization to any fixed s. No further technical ideas
are needed, we only have to combine the earlier ingredients.

Theorem 19 Any strategy for d defectives and s stages needs at least (1− o(1))sd′(n/d′)1/s

tests in the worst case, where d = o(n1/s) and d′ := d− 1.

Proof. In stage 1, the adversary generates disjoint positive sets U1
1 , . . . , U

1
d−1 as in Lemma

17. The method in the proof of Theorem 18 shows that, in every stage j = 2, . . . , s − 1,
the searcher can minimize the number of remaining candidate elements by applying a forest
strategy, yet the adversary can keep the number of candidates as large as it would be in
a nested strategy with only d additional tests per stage, and these candidates form disjoint
positive sets U j1 , . . . , U

j
d−1, with U ji ⊂ U

j−1
i for all i. Eventually, the searcher has to test all but

d− 1 candidates in U s−1
1 ∪ . . .∪U s−1

d−1 individually in stage s. Again, straightforward extremal
value calculation shows that now the total number of tests is minimized if the searcher uses
the same number of tests in every stage, and parts of equal size within every stage. Thus the
test number is, subject to lower-order terms, the same as in an optimal nested strategy, as
calculated earlier. �

We conjecture that our test number is asymptotically optimal for all ranges of parameters
n, d, s, and merely our proof techniques are still too weak, see the discussion above.

3.5 When the Number of Defectives is Unknown

So far we assumed that the number d of defectives, or an upper bound on d, is known in
advance. If we have no clue how large d could be, we can first estimate d in stage 1, and then
append our optimal strategy with s− 1 stages. However we need randomization to estimate
d. Again we neglect lower-order terms for simplicity.

Theorem 20 We can identify d defectives, where d is not known beforehand, using
t := (s−1)d(n/d)1/(s−1) tests. If d happens to be small compared to n1/s, then (s−1)s1/sdn1/s
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tests are sufficient. (We can either find all defectives for sure, with an expected number t of
tests, or find them with high probability using t tests.)

Proof. We will argue below that we can estimate d in one stage using o(n1/s) randomized
tests, with a multiplicative error that becomes, with arbitrarily high probability, arbitrarily
small when n→∞. Then, the number of tests in stage 1 is negligible compared to the tests
needed to actually identify the defectives. To this end we apply the strategy from Theorem
13 in stages 2, . . . , s, with the exception that we need not stop if more than the estimated
number of defectives are present. Note that this strategy still works correctly even in the case
of a false d, as the input parameter d only affects the number of tests.

For stage 1 we apply a random permutation to the n elements1 and then divide them into
p disjoint pools, such that the i-th pool has size is−1+ε, with an arbitrarily small ε > 0. Since
n ≈

∑p
i=1 i

s−1+ε ≈ ps+ε/s, we get p = o(n1/s). Moreover, the pool sizes are below (sn)1−1/s.
Since the pool sizes start with 1 and grow slowly (as a power function), in some prefix of

the sequence only a minority of pools is positive, and the defectives are, with high probability,
located in different pools. Thus we can easily estimate d/n by the number of positive pools
divided by the number of elements in that prefix. The larger n is, the larger is the prefix
we can use, and the more accurate is the estimate of d. (Since we only state the asymptotic
result, no analysis of the variance of the estimator is needed here; it suffices to notice that it
tends to 0 when n→∞.)

Theorem 13 applied with s− 1 instead of s stages gives the test complexity. If d is small
compared to n1/s, then even the largest pool size s1−1/sn1−1/s is small compared to n/d. More
importantly, the number of candidates after stage 1 is then bounded by d(sn)1−1/s. Thus we
can replace n/d in Theorem 13 with (sn)1−1/s and obtain the claimed test complexity. �

The multiplicative error of our estimator gets arbitrarily small as n grows. For moderate
problem sizes, however, the variance of the estimate of d cannot be neglected, so that more
analysis, theoretically or experimentally, is needed. Next, it would be interesting to figure out
the price of ignorance of d, that is, the optimal competitive ratio. Note that, compared to
the case of known d, essentially one stage is lost. The competitive ratio is well investigated
for classical adaptive group testing [29]. For the present problem we believe that it cannot be
constant but must be some function of parameters d and s.
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Appendix

Interpretation of Group Testing as a Game

Here we give a more formal presentation of the game-theoretic setting we use for proving
lower bounds. In the group testing problem we are searching for some unknown subset P of
an n-element set I of elements, and we can choose pools Q ⊂ I in order to test whether Q∩P
is empty or not.

A deterministic s-stage group testing strategy A is a function which successively selects
sets Ti := {Qi,1, . . . , Qi,ti} of pools, 1 ≤ i ≤ s. Given some subset P ⊂ I, the result of test
stage i is given by the vector ri := (ri,1, . . . , ri,ti), where ri,j := 0 if Qi.1 ∩P = ∅, and ri,j := 1
else. The strategy may use the results of stages 1, . . . , i− 1 when selecting Ti, hence Ti may
depend on P if i > 1. The cost of stage i is the number of tests, ti = ti(P ).

A strategy A solves the strict (d, n) group testing problem if, for each P ⊂ I, |P | ≤ d, the
sequence of results ri, 1 ≤ i ≤ s, uniquely determines P as a subset of I. (In particular, if the
strategy is applied to a set P of cardinality larger than d, the test results show that |P | > d).

We denote by A the finite set of all deterministic s-stage strategies solving the strict (d, n)
group testing problem. Moreover, we denote by t(A,P ) :=

∑s
i=1 ti(P ) the cost of A, given

P , and by t(A) := max{t(A,P ) : P ⊂ I, |P | ≤ d}, the worst-case cost of strategy A. Now,
t(n, d, s) := minA∈A t(A).

An adversary strategy S is a function which, given a sequence rj , 1 ≤ j ≤ i−1, of possible
results for an s-stage group testing algorithm and some test set Ti of pools, chooses some
vector ri = S(r1, . . . , ri−1, Ti) of results for the tests in Ti. In what follows, we are considering
adversary strategies generating results which are consistent with at least one subset P ⊂ I

and denote the (finite) set of all such strategies by S.
Given some adversary strategy S ∈ S and an s-stage group testing strategy A ∈ A, we

define t(A,S) as the total number of tests used if A is applied to the results generated by S,
while S is applied to the test sets generated by A.

The number t(A,S) can be interpreted as the total number of tests used in a game between
two players, the searcher and the hider. The searcher wants to find P , and the tests she uses
are given by algorithm A. The hider provides results for the tests by using her strategy S.
The number t(S) := minA t(A,S) denotes the worst-case cost that the hider can enforce by
using strategy S.

Clearly, we have t(A) = maxS∈S t(A,S), hence minA t(A) ≥ maxS t(S). In fact, it is well
known that equality holds:

min
A

max
S

t(A,S) = max
S

min
A

t(A,S) = t(n, d, s).

This can be proved by induction on s by slightly modifying the proof of Proposition 1.31
in [1] and is a special case of the Minimax Theorem of Game Theory. Hence t(S) is a lower
bound for t(n, d, s) for each adversary strategy S.

In our arguments, we also use a variant of the strategies discussed above: Imagine that, in
stage i, the pool set Ti is tested. Instead of providing results for the tests Qi,j only, the hider
might be allowed to reveal more information for free, that is, add positive or negative test sets
Qi,j to Ti, which are not counted as tests in computing t(A,S). (Of course, the answers must
remain consistent with some set P ). For a strategy S in this generalized sense, the inequality
t(S) ≤ t(n, d, s) holds a fortiori.
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A randomized strategy is now given by a probability distribution π onA. Its expected costs
are defined as E[π] :=

∑
A∈A π(A)t(A). With similar definitions for randomized adversary

strategies τ as probability distributions on S, the Minimax Theorem of Game Theory yields:

min
π
E[π] = maxτE[τ ].

Extremal Matchings in Balanced Weighted Bipartite Graphs

In this section we prove the Claim from Section 3.4, provided that m ≥ 2k − 1 (equivalently,
d ≤ (q+ 3)/2). It was already stated and motivated there, such that we can now focus on the
proof. We presume familiarity with the notion of a matroid, otherwise we refer to [30].

The transversal matroid of a bipartite graph B = (U, V ;E) has as independent sets exactly
those sets S ⊆ V for which there exists a matching that covers S. It is well known that, in
any matroid, an independent set, also called a basis, of maximum weight can be computed by
a greedy algorithm due to [16]. It works as follows in our case of a transversal matroid, for a
given B = (U, V ;E) and π: Sort the vertices in V by non-ascending weights π(v), and start
with S := ∅. Scan this sorted list and always put v into the basis S if and only if the resulting
set S := S ∪ {v} remains independent, otherwise let S unchanged. (The greedy algorithm
has to call an “oracle” that checks whether some matching covers S.) We denote by g(π) the
weight π(S) of a maximum-weight basis S.

We suppose in the following that B possesses a matching of size k, that is, a matching
that covers U . Then we have |S| = k, since in a matroid all maximal independent sets have
the same cardinality.

Let ∆ denote the set of all distributions π on V . Since ∆ is compact and g, with argument
π ∈ ∆, is a continuous function on ∆, the minimum minπ∈∆ g(π) exists. Denote by ∆∗ the
set of all distributions π∗ ∈ ∆ where g(π∗) attains this minimum. ∆∗ is compact as well.

In the following we adopt the convention x log2 x = 0 for x = 0. The entropy function
h(π) := −

∑
v∈V π(v) log2 π(v) is continuous, in particular on ∆∗. Hence some distribution

σ ∈ ∆∗ maximizes the entropy. We claim that g(σ) ≥ k/m. Of course, the Claim then follows
for all distributions from ∆∗ and hence from ∆, and then the k/m lower bound is proved for
any graph B as specified above. We just need the entropy as an auxiliary measure to prove
this Claim. A basic property of the entropy h(π) is that it increases if we replace two items
in π, say x and y such that x < y, with x+ ε < y − ε, where ε > 0.

When applying the greedy algorithm to σ, we may assume that the vertices of V are
sorted in such a way that, for every existing value a of vertex weights σ(v), those vertices v
from {v ∈ V : σ(v) = a} that enter the basis S appear before the vertices of equal weight
that do not enter the basis. Thus we obtain the following structure. We can split S into
S = S1 ∪S2 ∪ . . .∪Sr, such that all vertices in each Si have the same weight, and the weights
in each Si are strictly larger than the weights in Si+1. Furthermore we can split L := V \ S
into L = L1 ∪ L2 ∪ . . . ∪ Lr, such that S1, L1, S2, L2, . . . , Sr, Lr is a partition of the whole
V sorted by non-ascending weights, into consecutive subsets, and the weights in each Li are
strictly larger than the weights in Si+1. Note that some Li may be empty.

We also fix some matching that covers S (which exists since S is a basis) and divide U
into U = W1 ∪W2 ∪ . . . ∪Wr, where Wi comprises the matching partners of vertices in Si.

Lemma 21 The vertices in each Sj ∪ Lj have all their neighbors in W1 ∪ . . . ∪Wj.
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Proof. Any edge incident to a vertex in v ∈ Lj has its second vertex in some Wi with i ≤ j,
since otherwise the greedy algorithm would have added v to the basis. The main work is to
prove the Lemma also for Sj .

Assume that an edge uv exists with u ∈Wi, v ∈ Sj , and i > j. Let w ∈ Si be the matching
partner of u. We increase f(uw) and decrease f(uv) by some ε > 0; we will specify below
how small it has to be. Let σ′ be the resulting distribution on V . Clearly, the change does
not affect the sum of weights of the edges incident with u ∈ U , and we get σ′(w) = σ(w) + ε

and σ′(v) = σ(v)− ε. Moreover, σ′ has a higher entropy than σ.
Since all σ weights in Si were equal, we can assume w to be the first vertex in Si, and

since the σ weights in Si−1 ∪ Li−1 were strictly larger, the position of w in the order of σ′

weights remains the same as in σ, for a small enough ε. Similarly we can assume that v is
the last vertex in Sj . If v keeps its position as well, then the greedy algorithm returns the
same basis containing both v and w, hence g(σ′) = g(σ). Now assume that g(σ′) > g(σ).
Then there must be some v′ ∈ Lj with σ(v′) = σ(v) that replaces v in the greedy basis
(otherwise the greedy basis cannot change any more). That means, S1∪ . . .∪Sj ∪{v′}\{v} is
an independent set in the transversal matroid of B. Accordingly, let M ′ be a matching that
covers S1 ∪ . . .∪Sj ∪{v′} \ {v}. Let M be a matching that covers S1 ∪ . . .∪Sj and maps this
set to U = W1 ∪ . . . ∪Wj . Note that M exists, and u does not belong to any edge in M .

Consider the alternating path A in M ′ ∪M that starts in v′ with an edge of M ′. If A
ends in U , then we can use the M ′-edges in A to cover v′ and those vertices of S1 ∪ . . . ∪ Sj
that appear in A. The other vertices of S1 ∪ . . . ∪ Sj are still covered by their M -edges. If A
ends in V , then the last vertex of A is necessarily v, since otherwise we could continue A with
another M ′-edge. But now we can append the edge vu to A instead, since u is not involved
in any M -edge. We are back to the previous situation and can cover v′ and those vertices of
S1 ∪ . . . ∪ Sj that appear in A, using M ′-edges and the extra edge vu. Finally, A cannot be
a cycle, i.e., return to v′, since v′ is not incident with any M -edge. In either case we found
a matching that covers S1 ∪ . . . ∪ Sj ∪ {v′}. But this contradicts the fact that the greedy
algorithm applied to the original σ weights did not put v′ in the basis.

This contradiction disproves the assumption g(σ′) > g(σ). Hence we always obtain g(σ′) =
g(σ), since g(σ) was minimal. Thus we have σ′ ∈ ∆∗, contradicting the choice of σ as
the distribution with maximum entropy in ∆∗. This contradiction, in turn, shows that the
assumed edge uv with u ∈Wi, v ∈ Sj , and i > j cannot exist, which completes the proof. �

Define ki := |Si|, and let σ(X) denote the weight of any subset X ⊆ V . Consider any prefix
S1, L1, . . . , Si, Li of our sequence S1, L1, . . . , Sr, Lr. The edges incident to the k1 + . . . + ki
vertices in W1 ∪ . . . ∪ Wi have together the weight (k1 + . . . + ki)/k, and the vertices in
S1 ∪ L1 ∪ . . . ∪ Si ∪ Li get their weights from such edges only, due to Lemma 21. It follows
σ(S1 ∪ L1 ∪ . . . ∪ Si ∪ Li) ≤ (k1 + . . .+ ki)/k. Recall that k = |S|, m = |V |, and we want to
prove σ(S) ≥ k/m.

At this point we can forget about the graph and consider S1, L1, . . . , Sr, Lr as a sequence
of sets of weighted items which enjoys the following properties:
(i) All weights in each Si are equal.
(ii) All weights in Si are at least as large as all weights in Li.
(iii) All weights in Si are at least as large as all weights in Si+1.
(iv) All prefixes satisfy σ(S1 ∪ L1 ∪ . . . ∪ Si ∪ Li)/σ(V ) ≤ (k1 + . . .+ ki)/k.

Our claim is σ(S)/σ(V ) ≥ k/m for such sequences. From this, the original claim for the
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graph would follow. Note that we have ignored some stronger properties that are no longer
needed: The entire sequence of weights is not necessarily monotone, and σ(V ) = 1 is not
required. (Obviously, ratios do not change if we multiply all weights with a common scaling
factor.) Now we can proceed without much calculation, just using monotonicity arguments.

Lemma 22 σ(S)/σ(V ) ≥ k/m holds for sequences that satisfy (i)-(iv).

Proof. Let V ′ be any prefix, S′ = S ∩ V ′, and k′ = |S′|. By property (iv), σ(V ′) is below
average, and by monotonicity property (iii), σ(S′) is above average (for a selection of sets Si
with totally k′ vertices, together with their Li). Hence σ(S′)/σ(V ′) ≥ σ(S)/σ(V ).

Now we multiply all weights in V ′ with a scaling factor smaller than 1, until the weights
in the last Si in V ′ equal those in Si+1. Scaling down the prefix obviously does not affect (i)
and (ii), moreover we have respected (iii), and (iv) remains true because diminishing some
prefix reduces the relative weight of every prefix. Hence the invariants (i)–(iv) are preserved.

Moreover, σ(S′)/σ(V ′) ≥ σ(S)/σ(V ) ensures that the new ratio σ(S)/σ(V ) after the
scaling can only get smaller, as we have reduced the relative weight of V ′ in V . Thus, by
repeating this manipulation we can equalize all weights in S without increasing σ(S)/σ(V ).
But once all items in S have reached the same weight, σ(S)/σ(V ) ≥ k/m is true because of
property (ii). �

Altogether we can conclude:

Theorem 23 Let B = (U, V ;E) be any bipartite graph which is U -balanced with respect to the
edge weight function f with sum 1, let π be the distribution on V induced by f , and k = |U |,
m = |V |. If B has a matching of size k then B also has a matching that covers some S ⊆ V
with π(S) ≥ k/m. �

The additional assumption that B has a matching of size k is not that satisfactory, but
finally we prove the statement with a precondition only on the sizes of the partite sets of B.

Theorem 24 Let B = (U, V ;E) be any bipartite graph which is U -balanced with respect to the
edge weight function f with sum 1, let π be the distribution on V induced by f , and k = |U |,
m = |V |. If m ≥ 2k − 1 then B has a matching that covers some S ⊆ V with π(S) ≥ k/m.

Proof. Let µ < k be the size of a maximum matching. There exists U0 ⊂ U , such that the
induced subgraph B[U0 ∪ V ] does have a matching that covers U0, and U0 is a maximal set
with this property. In particular, |U0| = µ. The total weight of edges in B[U0 ∪V ] is µ/k. By
Theorem 23, V contains an independent set S, in the transversal matroid of B[U0 ∪ V ], with
weight at least (µ/m)(µ/k) = µ2/(mk). Since U0 was maximal, the k − µ vertices in U \ U0

have all their neighbors in S. Thus, in the entire graph B, the basis S has a weight at least
(k − µ)/k + µ2/(mk) = ((k − µ)m + µ2)/(mk). Observe that ((k − µ)m + µ2)/(mk) < k/m

would imply (k − µ)m+ µ2 < k2, thus (k − µ)m < k2 − µ2 and m < k + µ. Consequently, S
has weight at least k/m provided that m ≥ k + µ, in particular if m ≥ 2k − 1. �
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