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Abstract

Group testing is the problem of finding d defectives in a set of n elements, by asking
carefully chosen subsets (pools) whether they contain defectives. Strategies are preferred
that use both a small number of tests close to the information-theoretic lower bound
dlogy n, and a small constant number of stages, where tests in every stage are done in
parallel, in order to save time. They should even work if d is not known in advance. In
fact, one can succeed with O(dlogn) queries in two stages, if certain tests are randomized
and a constant failure probability is allowed. An essential ingredient of such strategies is
to get an estimate of d within a constant factor. This problem is also interesting in its own
right. It can be solved with O(logn) randomized group tests of a certain type. We prove
that Q(logn) tests are also necessary, if elements for the pools are chosen independently.
The proof builds upon an analysis of the influence of tests on the searcher’s ability to
distinguish between any two candidate numbers with a constant ratio. The next challenge
is to get optimal constant factors in the O(log n) test number, depending on the prescribed
error probability and the accuracy of d. We give practical methods to derive upper bound
tradeoffs and conjecture that they are already close to optimal. One of them uses a linear
programming formulation.

Keywords: group testing, combinatorial search, learning by queries, nonadaptive strategy,
competitive ratio, randomization, linear program, lower bound

AMS subject classification: 68Q17 Computational difficulty of problems, 68Q32 Compu-
tational learning theory, 68(Q87 Probability in computer science, 68 W20 Randomized algo-
rithms.

1 Introduction

Suppose that d unknown elements in a set of n elements have a property called defective, or
synonymously, positive. Non-defective elements are also called negative. A group test takes a
subset of elements, called a pool, and returns 1 if the pool contains at least one defective, and 0
otherwise. We also speak of a positive pool and negative pool, respectively. The combinatorial

*This is an extended version of a paper that appeared in preliminary form in the Proceedings of the 4th
International Conference on Combinatorial Optimization and Applications COCOA 2010, Big Island, Hawaii,
Lecture Notes in Computer Science (Springer) 6509, pages 117-130. The present manuscript slightly deviates
from the journal version, due to small corrections.



group testing problem asks to determine at most d defectives using a minimum number of
group tests; we also refer to them as queries. We remark that d is usually small compared
to n. Queries may be asked in stages, where all queries are prepared prior to the stage and
then asked in parallel. Queries prepared for the next stage can depend on the outcome of all
previous stages. Strategies with one query per stage are also called (fully) adaptive, whereas
1-stage strategies are (fully) nonadaptive. Group testing strategies with minimal “adaptivity”
are preferable for applications where the tests are time-consuming. Next, it is often assumed
that d (or at least a good upper bound for d) is known beforehand. A more realistic scenario
is that not only the defectives are completely unknown, but also their number d is.

Group testing with its numerous variants is a classical problem in combinatorial search,
with a history dating back to year 1943 [10], and it has applications in chemical testing, bioin-
formatics, communication network protocols, fault diagnosis, information gathering, compres-
sion, streaming algorithms, etc., see for instance [3, 4, 5, 6, 8,9, 11, 13, 14, 15, 16]. In chemical
testing applications, the elements are chemical samples, and the defectives are contaminated
samples. Instead of testing the samples individually it is often possible to test a whole pool at
once, so that a negative result reveals immediately that all samples in the pool are negative.

By the trivial information-theoretic lower bound, essentially at least dlogn queries are
necessary, in the worst case, to identify d defectives. (Here and in the following, logarithms
are always base 2, if not said otherwise.) A group testing strategy using O(dlogn) queries,
despite ignorance of d before the testing process, is called competitive, and the “hidden”
constant factor is the competitive ratio. (However, we always assume that the presence of
defectives is known, that is, d > 1.)

To our best knowledge, the currently best competitive ratio for deterministic, adaptive
strategies is 1.5 [17]. For 1-stage group testing, at least Q((d?/logd)logn) queries are needed
even in the case of a known d, see [1]. As opposed to this, already 2 stages are enough to
enable an O(dlogn) test strategy, also the competitive ratio has been improved in several
steps [8, 12, 2] to currently 1.9 for all d, and asymptotically to 1.44 as d grows [2]. Still these
strategies assume d being known in advance.

Apparently we were the first to study group testing strategies that are both minimal
adaptive and competitive, i.e., suitable even when nothing about the magnitude of d is
known beforehand [7]. Any efficient deterministic competitive group testing strategy needs
Q(logd/loglogd) stages (and O(logd) stages are sufficient). The picture changes radically
when randomization is applied. First we can estimate d; for clarity we define this subproblem
formally:

BDNNGT (Bounding the Defective Number by Nonadaptive Group Tests):

Let d denote the unknown number of defectives. A searcher can prepare some number L
of pools and perform nonadaptive group tests on them. Let s = sg...s5_1 be the string of
test results, where s; = 0 (s; = 1) if the ith pool is negative (positive). We tolerate some fixed
small failure probability ¢ > 0. Based on s, the searcher has to output an alleged defective
number d’ such that:

e On the one hand, d is underestimated (that is, d’ < d) with probability at most e.

e On the other hand, the expected ratio d’'/d, in the good case d’ > d, is bounded by
some constant ¢ independently of d.



As shown in [7], for every fixed failure probability € > 0 there is a randomized strategy
for BDNNT using L = glogn pools (g constant), where ¢ depends on € and g, but not on d
and n. Then, we can subsequently apply any 2-stage O(dlogn) strategy for known d (using
d' in the role of d), and thus obtain a randomized 3-stage competitive strategy. If we instead
append a randomized 1-stage strategy with O(dlogn) queries [2], we even get a competitive
group testing strategy that needs only 2 stages.

Determining d exactly would be as hard as combinatorial group testing itself, thus it would
require Q((d?/ log d) log n) nonadaptive queries. But an estimate of d within a constant factor
is sufficient (and also necessary) for minimal adaptive competitive group testing. We call the
expected ratio of our estimate and the true d a competitive ratio as well; it is always clear
from context which competitive ratio is meant.

In fact, a nonadaptive estimator of d as specified above is not hard to obtain [7]. To this
end we prepare pools as follows. We fix some probability ¢ and put every element in the
pool independently with probability 1 — ¢q. Clearly, the group test gives the result 0 and 1
with probability ¢? and 1 — ¢?, respectively. We prepare O(log n) of these pools such that the
values 1/log,(1/q) form an exponential sequence of numbers between 1 to n. Note that these
values are the defective numbers d for which ¢¢ = 1/2. Then, the position in the sequence
of pools where the test results switch from 0 to 1 hints to the value of d, subject to some
constant factor and with some constant error probability.

Note that the expected competitive ratio of 2-stage or 3-stage group testing is determined
by three quantities: the competitive ratio ¢’ of the group testing strategy used in the last
stage(s), and both the query number and competitive ratio of the BDNNGT strategy. With
the above notations, the expected total query number is (g/d+c'c)dlogn. The currently best
randomized 2-stage group testing strategy [2] uses (1.44+0(1))dlogn queries (asymptotically
for n — o0). Moreover, in the successful case d’ > d, the searcher can be sure that actually
all defectives have been found, based on properties of this strategy from [2].

In this paper we focus on the challenge of getting a best possible tradeoff between pa-
rameters €, ¢, g in BDNNGT. In the aforementioned (g/d + ¢’¢)dlogn result, obviously the
asymptotic competitive ratio for growing d is c’c, and the worst-case competitive ratio is
g + ¢, attained when d = 1. We can make ¢ arbitrarily close to 1, at cost of a large g, but
for minimizing the worst-case competitive ratio g+ ¢'c¢ we have to balance the number glogn
of pools and the expected ratio ¢ = d'/d.

Besides its use in competitive group testing, BDNNGT may also be of independent in-
terest: If samples come from the same source and are not distinguished (for example, water
samples from the same lake without particular consideration of the exact place, or food sam-
ples from the same shop), we may only be interested in the amount of contaminated samples
rather than their identities.

A first obvious question is whether O(logn) tests are really needed to solve BDNNGT.
Intuitively this should be expected, based on the following heuristic argument. “Remote”
queries with 1/log,(1/q) far from d will almost surely have a fixed result (0 or 1), thus they
contribute very little information about the precise location of d. Therefore we must have
queries with values 1/logy(1/q) within some constant ratio of every possible d, which would
imply an Q(logn) bound. However, the searcher may use the accumulated information from
all queries, and even though “unexpected” results of the remote queries have low probabili-
ties, a few such events might together reveal enough useful information about d. Apparently,



in order to turn the intuition into a proof we must somehow quantify the influence of re-
mote queries and show that they actually provide too little information in total. To see the
challenge, we first remark that the simple information-theoretic argument falls short. Imag-
ine that we divide the interval from 1 to n into exponentially growing segments. Then the
problem of estimating d up to a constant factor is in principle (up to some technicalities)
equivalent to guessing the segment where d is located. The number of possible outcomes is
some logn, thus we need Q(loglogn) queries, which is a very weak lower bound. The next
idea that comes into mind is to take the very different probabilities of binary answers into
account. The entropy of the distribution of result strings is low, however it is not easy to see
how to translate entropy into a measure suited to our problem.

One main result of the present paper is a proof of the Q(logn) query bound for any
fixed ¢ and e, at least when pools are constructed “elementwise” as proposed above. A key
ingredient is a suitable influence measure for queries. The proof is built on a simpler auxiliary
problem that may deserve independent interest: deciding on one of two hypotheses based on
probabilistic information, thereby respecting a pair of error bounds. It has to be noticed
that our result does not yet prove the non-existence of a randomized o(logn) query strategy
in general. The result only refers to randomized pools constructed in the aforementioned
simple way: adding every element to a pool independently with some fixed probability 1 —q.
However, the result gives strong support to the conjecture that Q(logn) is also a lower bound
for any other randomized pooling design for our problem. Intuitively, randomized pools that
treat all elements symmetrically and make independent decisions destroy all possibilities for a
malicious adversary to mislead the searcher by some clever placement of defectives. Therefore
it is hard to imagine that other constructions could have benefits.

The later part of the paper is devoted to practical methods to make ¢ as small as possible,
using a given number glogn of queries and respecting a given failure probability €. Getting
an optimal tradeoff turns out to be a highly nontrivial problem in itself. One approach is
a linear programming (LP) formulation. When € and a sequence of pools of fixed sizes are
given, minimizing ¢ is an LP. However, the LP formulation works for a given number n of
elements. In order to obtain also upper bounds on ¢ for n — oo (and fixed g and €) we use an
“infinitary extension” of BDNNGT inspired by ideas from the lower-bound proof and come
up with a nonlinear constraint optimization problem that can still be treated in practice,
using standard software packages. In particular, we use a sequence of pool sizes with some
nice invariance property, and we have reason to conjecture that our tradoffs are already nearly
optimal.

The rest of the paper is organized as follows. In Section 2 we give a formal problem
statement and some useful notation. In Section 3 we study a probabilistic inference problem
on two hypotheses, and we define the influence of the random bit contributed by any query.
This is used in Section 4 to prove the logarithmic lower bound for estimating the defective
number by group tests. Then we derive particular O(logn) query strategies for estimating
the defectives. In Section 5 we propose an LP formulation, and in Section 6 we argue for
translation-invariant pool sizes and introduce a method to calculate competitive ratios in the
limit, i.e., for n — oco. Section 7 reports some numerical results, and Section 8 concludes the
paper with open theoretical questions.



2 Preliminaries
We study the following problem abstracted from BDNNGT.

Problem 1: Given are positive integers n and L, some positive error probability € < 1,
and some ¢ > 1 that we call the competitive ratio. Furthermore, an “invisible” number
x € [1,n] is given. A searcher can prepare L nonadaptive queries to an oracle as follows. A
query specifies a number ¢ € (0, 1), and the oracle answers 0 with probability ¢*, and 1 with
probability 1 — ¢*. Based on the string s of these L binary answers the searcher is supposed
to output some number 2’ such that Pr[z’ < 2] < e and E[2’/z] < ¢ holds for every z.

The actual problem is to place the L queries, and to compute an z’ from s, in such a way
that the demands are fulfilled. The optimization version asks to minimize ¢ given the other
input parameters. We will prove that L = Q(logn) queries are needed, for any fixed e and
c. Note that randomness is not only in the oracle answers but possibly also in the rule that
decides on 2’ based on s, and even in the choice of queries.

Symbols Pr and E in the definition refer to the resulting probability distribution of x’
given x. Note that no distribution of x is assumed, rather, the conditions shall be fulfilled for
any fixed . We might, of course, define similar problem versions, e.g., with two-sided errors
or with worst-case (rather than expected) competitive ratio and tail probabilities. However we
stick to the above problem formulation, as it came up in this form in competitive 2-stage and 3-
stage group testing, and other conceivable variations would behave similarly. The connection
to BDNNGT is that an oracle query represents a randomized pool where every element is
selected independently with probability 1 — ¢, and z is the unknown number of defectives.
In Problem 1 we allow real-valued z, which does not change anything asymptotically (for
n — 00) but simplifies several technical issues.

Recall that both the construction of pools and the rule that decides d’ having seen s may
be randomized. A deterministic strategy for BDNNGT with O(logn) pools and guaranteed
success (e = 0) is impossible:

Theorem 1 No deterministic nonadaptive group testing strategy with O(logn) queries can
always output a number d'" with d < d' < cd, where d is the true number of defectives and c
any prescribed constant.

Proof. Assume we have such a strategy. Then we can determine d’ and, since d’ > d, apply
a deterministic 2-stage strategy (e.g., from [2]) to find the d defectives, using O(d'logn) =
O(cdlogn) = O(dlogn) further queries. But this contradicts our result in [7] that no de-
terministic strategy can find an unknown number d of defectives using O(dlogn) queries in
constantly many stages. ¢

This negative result motivates the nonzero failure probability in BDNNGT (and in Prob-
lem 1).

It turns out that some coordinate transformations reflect the geometry of Problem 1
better than the variables originating from BDNNGT. We will look at = on the logarithmic
axis and reserve symbol y for y = Inx. Note that y € [0,Ilnn]. Furthermore, we relate every
q to that value y which would make ¢* = ¢’ some constant “medium” probability, such as
1/e, the inverse of Euler’s constant. (The choice of this constant is arbitrary, but again it will



simplify some expressions.)t We denote this y value by ¢, in other words, we want qet =1/e,
it

which also means ¢ = e™¢  and In(1/q) = e~*. Symbol ¢ is reserved for this transformed g.

We refer to t as a query point. See Figure 1.

3 Probabilistic Inference of one-out-of-two Hypotheses

A well-known story tells that Buridan’s ass could not decide on either a stack of hay or a pail
of water and thus suffered from both hunger and thirst. The following problem also demands
a decision between two alternatives either of which could be wrong, but it also offers a clear
rationale for the decision. As usual in inference problems, the term “target” refers to the
true hypothesis. The connection to Problem 1 will be made later.

Problem 2: The following items are given: two hypotheses g and h; two nonnegative real
numbers €, < 1; furthermore N possible observations that we simply denote by indices
s=1,...,N; probabilities ps to observe s if g is the target, and similarly, probabilities ¢, to
observe s if h is the target. Clearly, Zévzl ps = 1 and Zévzl gs = 1. Based on the observed
s, the searcher can infer g with some probability zs, and h with probability 1 — ;. The
searcher’s goal is to choose her z, for all s, so as to limit to € the probability of wrongly
inferring h when g is the target, and to limit to § the probability of wrongly inferring g when
h is the target.

We rename the observations so that p1/q1 < ... < pn/qn-.

In the optimization version of Problem 2, only one error probability, say €, is fixed, and
the searcher wants to determine x1, ...,z N S0 as to minimize §. We denote the optimum by
d(€). Problem 2 is easily solved in a greedy fashion:

Lemma 2 A complete scheme of optimal strategies (one for every €) for Problem 2 is de-
scribed as follows. Determine u such that p1 + ... + pu—1 < € < p1 + ... + pu, and let
f=(e—p1—p2— ... —pu-1)/pu- Infer h if s < u, infer h with probability f in case s = u,
and otherwise infer g. Consequently, 6(e¢) = (1 — f)qu + qu+1 + ... + qn-

Proof. We only have to prove optimality. In any given strategy, let us change two consecutive
“strategy values” simultaneously by x5 := xs — As and x441 = Tsy1 + Agy1, for some
Ag, Agrq > 0. If the target is g, this manipulation changes the probability to wrongly infer A
by ps+1As11 — psAs. If the target is h, this manipulation changes the probability to wrongly
infer g by gs+1As+1 — gsAs. We choose our changes so that the first term is zero, that is,
As/Asi1 = psy1/ps- Now qsy1/qs < psy1/ps = As/Asi1 shows gs11A,41 — ¢sAs < 0, hence
we only improved the strategy. The manipulation is impossible only if some index u exists
with s = 0 for all s < u, and x; =1 for all s > u. Now the lemma follows easily. ¢

Lemma 2 also implies:

Corollary 3 §(¢) is a monotone decreasing and convex (i.e., sub-additive), piecewise linear

function with 6(0) =1 and §(1) =0. ¢

The following technical lemma shows that certain small additive changes in the probability
sequences do not change the error function much (which is quite intuitive). In order to avoid



heavy notation we give the proof in a geometric language, referring to a coordinate system
with abscissa € and ordinate d. See Figure 2.

Lemma 4 Consider the following type of rearrangement of a given instance of Problem 2.
Replace every ps with ps — ps, where >, ps = p. Similarly, replace every qs with qs — Ts,
where Ts = psqs/ps and > 7s = 7. Then add the removed probability masses, in total p
and T, arbitrarily to existing pairs (ps,qs) or create new pairs (ps,qs), but in such a way
that > .ps = 1 and >",qs = 1 are recovered. If such a rearrangement reduces 6(€), then the
decrease is at most T.

Proof. By Corollary 3, the curve of function d(e) is a chain of straight line segments whose
slopes —d'(e) get smaller from left to right, and these slopes are the ratios ¢s/ps. The
rearrangement has the following effect on the curve: Pieces of the segments are cut out,
whose horizontal and vertical projections have total length p and 7, respectively. Then their
horizontal and vertical lengths may increase again by re-insertions (and all these actions may
change the slopes of existing segments), and possibly new segments are created. Finally all
segments are assembled to a new chain connecting the points §(0) = 1 and §(1) = 0, and
having a monotone sequence of slopes again.

Consider a fixed e. Let pg and 79 be the total horizontal and vertical length, respectively,
of the pieces cut out to the left of €. Let p; and 7 be defined similarly for the pieces to the
right of e. The largest possible reduction of §(e) appears if: (a) some new vertical piece of
length 71 forms the left end, and (b) some new horizontal piece of length py and forms the
right end of the modified curve. Note that pieces in (a) were originally located below d(e),
and pieces in (b) were originally located to the left of e. This moves the remainder of the
original curve (a) down by 71 length units, and (b) to the left by py length units. The vertical
move (a) reduces d(e) by 71. The horizontal move (b) causes that the new function value at
€ is the old function value at € + pg. Since the slopes decrease from left to right, the slope at
our fixed € (and to the right of it) can be at most 79/pg. Thus, move (b) reduces d(€) by at
most po7o/po = 7. Finally note that 7 + 79 = 7. ©

One should not be confused by the fact that p does not appear in the decrease bound:
As we have chosen to consider § as a function of €, the setting is not symmetric.

We are particularly interested in the special case of Problem 2 where the N = 2% obser-
vations s are strings of L independent bits.

Problem 3: The following items are given: two hypotheses g and h; two nonnegative real
numbers €,§ < 1; and 2% possible observations described by binary strings s = si...sy.
Furthermore, for £k = 1,..., L, we are given the probability a; to observe s; = 0 if the target
is g, and the probability by to observe s = 0 if the target is h. The s; are independent. The
rest of the problem specification is as in Problem 2.

Clearly, our probabilities ps and g5 evaluate to

I
-l

Ds (1= sp)ag + sp(1 —ax)),

i
)

gs = | [ (1 = s)bg + si(1 — b))

o

b
Il
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Since the greedy algorithm in Lemma 2 applies also to Problem 3, a complete set of optimal
strategies is described as follows: Infer h for ps/qs below some threshold, infer g for ps/qgs
above that threshold, and infer g or A randomized (with some prescribed probability) for
ps/qs equal to that threshold.

Remark: Since the ps and ¢s are just products of certain probabilities ay or 1 — ay, and by
or 1 — by, respectively, taking the logarithm reveals a nice and simple geometric structure of
the optimal strategies from Lemma 2: Note that

L

log(ps/qs) = Z((l — sx)(logag — log by) + si(log(1 — ax) — log(1 — bg))).
k=1

Since log is a monotone function, comparing the p,/qs with some threshold is equivalent to
comparing the log(ps/qs) with some threshold. In other words, the decision for g or h is
merely a linear threshold predicate. We will not need this remark in our lower-bound proof,
still it might be interesting to notice.

In the following we consider any fixed ¢ > 0, and all notations are understood with
respect to this fixed error bound. Now think of our L independent bits as L — 1 bits plus a
distinguished one, say the kth bit. We define the influence of this kth bit as the decrease of
d(e), that is, the difference to the §(e) value accomplished by an optimal strategy when the
kth bit is ignored. Trivially, d(e) can only decrease when more information is available.

Lemma 5 With the above notations for Problem 3, the influence of the kth bit is at most
min(max(ag, by ), max(1 — ag, 1 — b)).

Proof. The kth bit splits every old observation s, consisting of the L — 1 other bits and
generated with probabilities ps, ¢s depending on the target, in two new observations. Their
new probability pairs are obviously (psag,qsbr) for s = 0, and (ps(1 — ag), gs(1 — b)) for
s = 1. In order to apply Lemma 4 we can view this splitting of observations as cutting out
pieces from the segment of slope ¢5/ps of the §(€) curve in the following way. If ¢s/ps < by /ag,
a piece of vertical length gsby, is cut out. If gs/ps > by /ak, a piece of horizontal length psay
is cut out, corresponding to a piece of vertical length psaxgs/ps = gsar. (Note that we must
first “cut out enough length” in both directions, therefore this case distinction is needed.)
This is done for all old s. Since, of course, the old gs sum up to 1, we have 7 < max(ay, by).

The same reasoning applies to 1 — ag, 1 — by, thus we have 7 < max(1 — ag, 1 — by) as well. ©

Note that the influence bound in Lemma 5 is expressed only in terms of the probabilities
of the respective bit being 0/1, conditional on the hypothesis. Hence we can independently
apply Lemma 5 to each of the bits, no matter in which order they are considered, and simply
add the influence bounds of several bits (similarly to a union bound of probabilities).

4 The Logarithmic Lower Bound

We further narrow down our one-out-of-two inference problem to a special case of Problem
3. (Below we reuse symbol ¢, without risk of confusion.)



Problem 4: The following items are given: two hypotheses r and 1. where r > 1 is a fixed
real number; two nonnegative real numbers €, < 1, furthermore 2* possible observations
described by binary strings s = sy...sp. For & = 1,...,L, let gi be the probability to
observe s, = 0 if the target is x. We also speak of a “query at q;”. The s; are independent.
The rest of the problem specification is as before. In particular, let € be the probability of
wrongly inferring 1 although r is the target, and let § be the probability of wrongly inferring
r although 1 is the target.

Now hypothesis z = r generates the string s with probability

L
[1(C = sk)ai + su(1 = i),
k=1

and hypothesis x = 1 generates s with probability

L

(1= sp)ar + k(1 — ),
pate}

in other words, aj = ¢j, and by, = g;. As earlier we fix some error bound e. From Lemma 5
we get immediately:

Lemma 6 With the above notations for Problem 4, the influence of a query at q is at most
min(g,1 —¢"). ©

Problem 4 was stated, without loss of generality, for hypotheses r and 1. Similarly we may
formulate it for hypotheses rz and x (for any positive ), which merely involves a coordinate
transformation. We speak of the “influence of ¢ on z” when we mean the influence of a query
at ¢, with respect to Problem 4 for hypotheses rz and x. Clearly, the influence of ¢ on x
equals the influence of ¢* on 1. Therefore Lemma 6 generalizes immediately to:

The influence of ¢ on x is at most min(g*,1 — ¢"*).

Remember y := In z from Section 2. By a slight abuse of notation, the phrase “influence
of g on y” refers to the logarithmic coordinates, and Lemma 6 gets this form:

The influence of ¢ on y is at most min(¢®”,1 — ¢"¢").
While ¢¢* obviously decreases doubly exponentially with growing y > 0, it is also useful

to have a simple upper bound for 1 — ¢"¢” when y < 0. Since 1 — e~ ? < z for any variable z,
we take z with e ™% = ¢"®’ to obtain 1 — ¢"® < z = —Inq¢"® = In(1/q)re?. Now we have:

The influence of q on y is at most min(¢®",In(1/q)re?).

Finally we also transform ¢ into ¢ as introduced in Section 2, and we speak of the “influence
of t on y”, denoted I(y). With ¢ = e~ " and In(1/q) = e7t, our influence lemma is in its
final shape:

ey~

Lemma 7 I;(y) < min(e """, re¥ %), o



From this bound we get:
Lemma 8 For every fired t we have [,"" I;(y) dy = ©(Inr).

Proof. For simplicity we bound the integral over the entire real axis. (Since I;(y) decreases
rapidly on both sides of ¢, this is not even too generous.) The advantage is that we can
assume t = 0 without loss of generality. We split the integral in two parts, at y = —Inr. As
I(y) is a minimum of two functions, we can take either of them as an upper bound. Specifi-
cally we get [0 Ii(y)dy < f:og” reddy+ [°,, e dy= [ reVd(—y) + [, e ¢ dy =
re”M" 4 O(Inr) = 1+ O(Inr). The second integral is O(Inr) since both e~¢" P = e l/r
and (for instance) e~ = ¢! are between some positive constants, the function is monotone
decreasing, and [j° e~ dy = O(1). o

The next lemma connects our “bipolar” number guessing problem to the problem we
started from.

Lemma 9 For every r > 1 and 0 < § < 1 we have: Any strategy solving Problem 1 with
error probability € and competitive ratio ¢ := 1+ (r — 1)0 yields a strategy solving Problem 4
with hypotheses rx and x, for every x < n/r, with error probabilities € and ¢.

Proof. Imagine a searcher wants to solve an instance of Problem 1, and an adversary tells
her that the target is either rx or x. Despite this strong help, in case that rx is the target,
the searcher must still guess rz subject to an error probability e, due to the definition of
Problem 1. In the other case when the target is x, error probability é means a competitive
ratio of (1 —0) +7rd =1+ (r—1)d. ¢

We are ready to state the main result of this section:

Theorem 10 Any strategy for Problem 1, with fized error probability € and competitive ratio
¢, needs Q(lnn/Inc) queries, where the constant factor may depend on e.

Proof. Fix some r > c and § = (¢ — 1)/(r — 1), hence ¢ = 1 + (r — 1)d. We choose
r = O(c) large enough so that D := 1 — € — § is positive. Due to Lemma 9, the set of
queries must be powerful enough to solve Problem 4 with hypotheses rz and z, for every
x < n/r, with error probabilities ¢ and . In the case of no queries, the error tradeoff at
every = would be simply d(¢) = 1 — e. Since we need to reduce d(e) down to our fixed 4§, all
queries together must have an influence at least 1 — e — § on z. In transformed coordinates
this means Y, I;(y) > D for all 0 <y < Inn — Inr, where the sum is taken over all ¢ in our
query set (multiple occurrences counted). Hence fén T s IL(y)dy > D(lnn —Inr). Since
Lemma 8 states f(}n "IN 1 (y) dy = ©(Inr) regardless of ¢, the number of queries is at least
(Inn—Inr)D/O(Inr) = Q(Inn/Inr). ©

Note that this integration argument also applies if the queries themselves are located
according to some probability distribution, that is, Theorem 10 also holds for “fully random-
ized” strategies.

Theorem 10 only shows that the query number is logarithmic, for any fixed parameter
values. But the proof method is not suited for deriving also good lower bounds on the hidden

10



constant factor. For instance, this factor should increase to infinity when e tends to 0. To
reflect this behaviour in the lower bound, apparently the previous proof must be combined
with some reduction between problem instances with different e. We leave this topic here.
Anyways, in practice one would apply some reasonable standard value like € = 0.05 rather
than trading much more queries for smaller failure probabilities. A more relevant question,
addressed in the remainder of the paper, is which upper bounds we can accomplish.

5 A Linear Program Formulation of BDNNGT

In this section we derive an LP formulation for the inference of d’ from the observed string
s of test results in BDNNGT, provided that the (randomized) construction of the pools is
fixed. For convenience we use symbols 4, j instead of d,d (true and predicted number of
defectives) because they will have the role of indices of other variables.

We denote by q; the conditional probability that the kth pool is negative if the number of
defectives is 7. Of course, the gi; depend on how the pools are constructed. The conditional
probability ps; to observe result string s if the number of defectives is i is easy to express in
terms of the qx;, due to the independence of pools:

L—1
psi = [ (1 = si)ari + k(1 — ars))- (1)
k=0
Recall that i,j are in the range 1,...,n. Since the string s is the only (one-shot) infor-

mation that the searcher obtains, a strategy for inferring j is now completely characterized
by the system of conditional probabilities ;s to choose j if string s was observed. Define
¢ij = j/i. Now BDNNGT for the given pools can be translated, with some care, into an LP
with variables x5 and c:

min ¢ (2)

Zpsl chjxjs <c (3)
s J
Vi>1: Zpsi ZCZ']'JU]'S <(1—-¢er (4)

Jj>i
Vi>1: Zpsiijsge (5)
s j<i

Vi, s: xjs >0 (6)
Vs : Za:js =1 (7)
J

In the following we use ¢; and ¢; as shorthands for the left-hand side of constraint (4) and
(5), respectively. The following Proposition basically says that the LP is correct:

Proposition 11 For any fized system of pools, e.q., probabilities ps;, we have: The system
of values xj5 returned by the LP (2)-(7) describes a strategy for BDNNGT, and the returned
objective value ¢ is a valid upper bound on the expected competitive ratio j/i, as defined in
the statement of BDNNGT, for any i =1,...,n. Moreover, if constraints (5) turn out to be
binding, c is exactly the smallest possible competitive ratio for the given system of pools.
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Proof. Constraints (6)—(7) only say that the x;, form a probability distribution conditional
on s, for each s. Clearly, ¢; is the probability to output some j < i, with ¢ being the
true number of defectives. Notice the special case ¢ = 0. For ¢ > 1, the expected ratio
j/i, conditional on j > 14, is ¢;/(1 — €;). Our actual objective in BDNNGT is to minimize
max; ¢;/(1 — €;). But since (5) enforces ¢; < €, we have ¢;/(1 — ¢;) < ¢;/(1 —€) < ¢ due to
(4). As for i = 1, the expected j/i = j is simply ¢; which is at most ¢ by (3). Altogether,
the two assertions follow from these inequalities. ©

We remark that we cannot simply replace € with ¢; in (4), since c is also a variable, and
then (4) would no longer be a linear constraint. Finally notice that max;¢;/(1 — €) would
not be a linear objective function, but by using a standard trick we have replaced, in (3),
the max; operator with the auxiliary variable ¢ that we minimize in (2). An alternative
LP formulation would fix ¢ to a constant, which avoids this “¢; problem”, and then use
an arbitrary (meaningless) objective function. Then the LP only decides the existence of a
feasible solution. The drawback is that we have to run that LP version many times in order
to find the optimal ¢ by, e.g., binary search. Thus we stick to the above LP version.

In our empirical results (for pool sizes discussed later on) we consistently observed the
following properties of our LP: (i) The ¢; are strictly monotone decreasing: ¢; > ... > ¢p.
(ii) ¢; = € for all ¢ > 1, that is, the maximum failure probability € is exhausted, for every
i > 1. (iii) Most strings s return a unique j with x;, = 1, and for the few strings s that return
several possible j (with z;; > 0), these j are a few consecutive integers. — Although these
properties are intuitive, we can prove only partial results that hint to them. Since they would
be of minor interest, we skip these partial results here and leave proofs (or counterexamples)
as an open problem.

6 Translation-Invariant Pooling Designs for BDNNGT

In our LP it remains to fix the q;. As mentioned in the Introduction, we put each element
independently with the same probability in the kth pool. For each k, let ¢ be the probability
not to put an element in the kth pool. Obviously this yields qx; = q,i. Furthermore, our
Q(logn) lower bound proof suggests that query points should divide the logarithmic axis of
defective numbers equidistantly; we also speak of translation invariance. Therefore we fix
some ratio b > 1 and use probabilities such that q._1 = q,l; for all k. In other words, we
choose qr = qbik, for k =0,...,L — 1, and some fixed ¢ < 1. Note that, asymptotically,
L =logn/logb, that is, g = 1/logb. We discuss experimental results in a separate section
below.

The LP yields an upper bound for the competitive ratio ¢ (given € and L) when also the
number n of elements is fixed, and it yields the best ¢ for a given sequence of pool sizes. For
trivial reasons c¢ increases with n (when € and g = L/logn are fixed). Thus it would also be
interesting to know the limit for n — oo. As a consequence of the quickly decreasing influence
of queries with pool sizes far from n/d one can show that lim,,_, ¢ is always finite (where ¢
denotes the optimum). However, experiments suggest that the convergence is slow, and the
larger n is, the more variables are needed in the LP, so that we cannot reach accurate limit
results from the LP. Therefore we also developed an alternative tool to address this question.
For this purpose we consider the following “infinite extension” of Problem 1. This has merely
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formal reasons that will be explained below.

Problem 5: Given are some positive error probability € < 1, some ¢ > 1 that we call the
competitive ratio, and an “invisible” number x which can be any real number. A searcher
can prepare countably infinitely many nonadaptive queries to an oracle as follows. A query
specifies a number ¢ € (0,1), and the oracle gives answer 0 with probability ¢* and answer
1 with probability 1 — ¢*. Based on the infinite string s of the binary answers, the searcher
is supposed to output some number 2’ such that Pr[2’ < z] < € and E[2’/x] < ¢ holds for
every .

For Problem 5 we naturally consider the density of queries, i.e., the number of queries
per length unit on the logarithmic axis, corresponding to L/Inn in Problem 1. We withhold
a precise formal definition of density, because for our upper bounds we will only consider
translation-invariant strategies, so that the notion of density is straightforward. We want to
minimize ¢, given € and the density.

Remember that y = Inz, and every query, with probability ¢ of responding with 0, is
matched to a query point ¢ on the logarithmic axis through ¢ = e~ If y is the unknown
target value (in logarithmic coordinates), the probability of answer 0 to a query at point ¢ is
q~° ' We place the query points ¢ equidistantly, at points ¢ = ju + v, where u is a
fixed space (thus u~! is the density), j loops over all integers, and v is a random shift being

= eiey
uniformly distributed in [0, u). For every two-sided infinite binary sequence s of answers we
also specify an y, such that the output ¢/ = Inz’ is located ys length units to the right of
the point of the leftmost answer 0 in s (see details below). One should not worry about
the uncountably infinitely many s; in practice we “cut out a finite segment” of this infinite
strategy according to:

Lemma 12 Any translation-invariant strategy for Problem & with bounds € and ¢ and density
u™! yields a strategy for the original Problem 1 that has asymptotically, i.e., for n — oo, the
same characteristics as the given strateqy: error probability €, competitive ratio ¢, and v~ ! Ilnn
queries.

Proof. We simply take the query points in the interval [0,lnn] plus some margins on both
sides, whose lengths grow with n but slower than Inn. Since even the total influence of the
(infinitely many!) ignored queries on any point y, 0 < y < Inn, decreases exponentially with
the margin length, the resulting finite strategy performs as the original strategy for Problem
5, subject to terms that vanish for n — co. ¢

The reason for replacing Problem 1 with Problem 5 is its greater elegance. This way we
avoid case distinctions with respect to the position of y. In particular, because of the equal
distances and the random shift, we can now assume without loss of generality that y = 0,
and the searcher does not know the shift of the coordinates. (This is an equivalent view of
the real situation where the searcher knows the coordinate system but not y.) We remark
that the random shift cannot make the upper bounds worse: If, in any strategy for Problem
5, the query points are first shifted randomly, then the resulting strategy still respects the
bounds € and ¢ at every y, if the original strategy did.

Next we describe how to calculate the optimal values y; for our specific strategy. We need
to consider only those two-sided infinite strings s that have a leftmost 0 and a rightmost 1.
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We call the segment bounded by these positions the significant segment. Clearly, all other
response strings appear with probability 0. We (arbitrarily) index the bits in each s so that
so = 0 is the leftmost 0, that is, s = 1 for all £ < 0. The point on the y-axis where the
leftmost query ¢ with answer 0 is located is called the reference point.

The probability density of the event that string s appears, and its reference point is ju+v
(j integer, 0 < v < u), is given by

fout o) = u T si)em ™ st e )
k

where k loops over all integers, and the s; are the bits of s as specified above.

Since, for each s, our strategy returns the point located y, units to the right of the
reference point ¢, the contribution of string s to the error probability (of having output
y' < 0) amounts to [~ f(t)dt. Hence our goal is to minimize 3, [T e!+¥= f(¢) dt under
the constraint >, [~ Y% f(t)dt < e. This together with Lemma 12 implies:

Proposition 13 For any fired u, the solution to the problem of minimizing the function
s fj;o e't¥s f (t) dt under the constraint Y-, [~ fs(t) dt < € yields an upper bound on the
competitive ratio ¢ for Problem 1 when u~'1In2-logyn queries are used. ©

Now these bounds can be calculated by standard nonlinear constraint optimization prob-
lem solvers. It suffices to consider some finite set of the most likely strings s whose sum of
probabilities is close enough to 1.

7 Some Numerical Results and Practical Issues

7.1 Linear Program for BDNNGT

We have implemented our LP using GLPK and run it extensively for many parameter com-
binations. We present a few numerical results in Tables 1 and 2. They show the best
competitive ratios ¢ we could obtain for different g (first column) and € = 0.01,...0.05 (in
0.01 steps) by chosing translation-invariant sequences. Note that g is meant as 1/logb rather
than g = L/logn which holds only asymptotically. Recall from Section 1 that the worst-case
competitive ratio for 2-stage group testing is currently g + 1.9c. The results suggest that
always some g around 2 minimize this objective. Clearly, the LP solutions tell us which
estimates j to choose for a given test result string s (not displayed here).

For the following brief discussion we define the notion of a pattern: For any binary string
s of test results, let the pattern [s] be the substring of s from the leftmost 0 to the rightmost
1. In the special case s =1...10...0 define [s] = A (the empty string). A left (right) shift of
s is a string with the same pattern as s, having the pattern substring more to the left (right).
For example, s = 1111111101001000000 has the pattern [s] = 01001.

The LP in its naive form becomes problematic for larger n, as the LP would then comprise
too many variables. Note that n2l ~ n291°8" = ng+1 variables xjs are needed if we consider
all binary strings s of length L. By the observation that long patterns are unlikely we can save
variables. We can ignore in the LP the least frequent strings s such that their max; >, psi
remains below some €, and run the LP for € — ¢’ (considering the occurrence of some rare
string as failure). It can be shown that we keep only strings s whose patterns [s] have some
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bounded length depending only on the fixed € but not on n. This reduces the number of
variables from n2” to some O(n). For huge n, even this would be too much. A way to keep
the number of variables manageable is to restrict ¢ and j to a mildly exponential sequence of
selected values and interpolate.

7.2 Asymptotic Competitive Ratios for BDNNGT

We implemented the method of Section 6 using the Matlab features fmincon for optimization
and quadgk for numerical integration. As an illustration, Table 3 displays the competitive
ratios for e = 0.01,...0.05 and glogy n pools, for some ¢ in 0.5 steps. Some c are even slightly
smaller than in the corresponding LP results; a possible explanation is that our LP does not
use a random shift in the pool sizes.

Of course, the optimizer also outputs the strategy variables ys. For larger g the calcu-
lations become too time-consuming: The denser the query points are, the more strings s
have non-negligible probabilities, and the resulting large number of variables leads to slow
convergence. However, these technical issues can be resolved by more computational power.
One should also bear in mind that a strategy, i.e., table of ys values, needs to be computed
only once for any given pair of input parameters g and ¢, thus long waiting times are accept-
able. Anyways, some optimality criterion for the problem could enable us to find the optimal
strategies more efficiently than by naive direct use of an optimizer.

8 Conclusions and Open Questions

Saving expensive tests in chemical analytics and biological testing by combinatorial methods
is a rewarding task. This paper is concerned with the special problem of estimating the
number of “defective” samples by nonadaptive group tests, formally stated as BDNNGT. A
main theoretical result is that 2(logn) queries are needed, if the single pools are formed in
a natural way by independent random choices. While this bound is intuitive, it has not been
proved before, and quite some technical efforts were needed. It remains open how to confirm
(or disprove) this lower bound also for arbitrary pools.

The logarithmic lower bound also suggests that query points should be placed translation-
invariant on the logarithmic axis of defective numbers. We gave such a strategy which allows
numerical calculation of the predictions and competitive ratios, for any given query density
and error bound. One could also think of other translation-invariant strategies, for instance,
query points may be chosen by a Poisson process, however this seems worse because then the
density of actual query points can accidentally be low around the target value. In summary
we conjecture that our strategy in Section 6 is already optimal, with respect to the constant
factors and parameters, among all possible randomized strategies.

For fixed pool sizes we also gave an LP formulation, leading to a practical solution method
that only requires an LP solver. Still it would be nice to prove optimality of translation-
invariant pooling designs, and the various structural properties we conjectured for the LP
solutions in Section 5.

The interpretation of BDNNGT as a game where an adversary chooses ¢ could also help
solve the open problems, since results from the theory of matrix games might be used. Fur-
thermore, it might be possible that the optimal strategies can be obtained purely combi-
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natorially, for example by some greedy algorithm. In that case the LP formulation would
only have an auxiliary role in the optimality proof. However, we found that some natural
candidates for greedy algorithms are not confirmed by our empirical LP solutions.

Finally, our upper-bound methods are only numerical. A challenging question is whether
the dependency of optimal competitive ratio, error probability and query number can be
characterized in a closed analytical form.
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Table 1: Competitive ratios for maximum 8 defectives.

g e0.01|e0.02]|e0.03]e0.04|¢e0.05
0.5 5.81 5.43 5.17 4.87 4.58
1.0 4.14 3.65 3.37 3.14 2.97
1.5 3.17 2.79 2.58 2.43 2.35
2.0 2.68 2.43 2.30 2.20 2.13
2.5 2.47 2.27 2.15 2.06 2.00
3.0 2.41 2.22 2.11 2.02 1.96

Table 2: Competitive ratios for maximum

16 defectives.

g e0.01|e0.02]|e0.03]e0.04|¢e0.05
0.5 8.26 7.26 6.64 6.21 5.86
1.0 4.71 4.07 3.67 3.43 3.28
1.5 3.46 3.07 2.87 2.71 2.59
2.0 3.00 2.67 2.50 2.39 2.30
2.5 2.76 2.47 2.32 2.23 2.15
3.0 2.69 2.36 2.22 2.14 2.07

Table 3: Competitive ratios for large n.

g1e0.01|e0.02]|e0.03]e0.04|¢e0.05
0.5 | 11.86 9.83 8.67 7.87 7.28
1.0 5.20 4.50 4.11 3.82 3.60
1.5 3.69 3.28 3.02 2.86 2.72
2.0 2.99 2.69 2.52 2.39 2.28
\
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Figure 1: An illustration of the logarithmic axis, with query points and test results. The
unknown number is somewhere in the middle of the picture, and only queries around this
point give informative answers.
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Figure 2: Example of a function d(¢) before and after small changes of the probabilities.
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