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Abstract

Suppose that we are given a set of n elements d of which have a property called
defective. A group test can check for any subset, called a pool, whether it contains a
defective. It is known that a nearly optimal number of O(d log(n/d)) pools in 2 stages
(where tests within a stage are done in parallel) are sufficient, but then the searcher must
know d in advance. Here we explore group testing strategies that use a nearly optimal
number of pools and a few stages although d is not known beforehand. We prove a lower
bound of Ω(log d/ log log d) stages and a more general pools vs. stages tradeoff. This is
almost tight, since O(log d) stages are sufficient for a strategy with O(d log n) pools. As
opposed to this negative result, we devise a randomized strategy using O(d log(n/d)) pools
in 3 stages, with any desired success probability 1 − ε. With some additional measures
even 2 stages are enough. Open questions concern the optimal constant factors and
practical implications. A related problem motivated by, e.g., biological network analysis
is to learn hidden vertex covers of a small size k in unknown graphs by edge group
tests. (Does a given subset of vertices contain an edge?) We give a 1-stage strategy
using O(k3 log n) pools, with any parameterized algorithm for vertex cover enumeration
as a decoder. During the course of this work we also provide a classification of types of
randomized search strategies in general.

Keywords: nonadaptive group testing, competitive group testing, combinatorial search,
randomization.
AMS subject classification: 68Q17 Computational difficulty of problems, 68Q32 Compu-
tational learning theory, 68Q87 Probability in computer science, 68W20 Randomized algo-
rithms.

1 Background

The group testing problem is to find d elements called positive, or synonymously, defective, in
a set X of size n by queries of the following type. The searcher can choose arbitrary subsets
Q ⊂ X called pools, and ask whether Q contains at least one defective. Non-defective elements
are called negative. A positive pool is a pool containing some defective, thus responding Yes

∗This is an extended version of a paper presented at the 17th International Symposium on Fundamentals of
Computation Theory FCT 2009, Wroclaw, Lecture Notes in Computer Science (Springer) 5699, pages 84-95.
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to a group test. A negative pool is a pool without defectives, thus responding No to a group
test.

Group testing has several applications, most notably in biological and chemical testing,
but also in communication networks, information gathering, compression, streaming algo-
rithms, etc., see for instance [9, 10, 15, 20, 21, 22] and further pointers therein.

Throughout this paper, log means log2 if no other base is mentioned. By the information-
theoretic lower bound, at least log

(n
d

)
≈ d log(n/d) pools are needed to find d defectives

even if the number d is known in advance, and it is an easy exercise to devise an adaptive
query strategy using O(d log(n/d)) pools. Here, a strategy is called adaptive if queries are
asked sequentially, that is, every pool can be prepared based on the outcomes of all earlier
queries. For many applications however, the time consumption of adaptive strategies is hardly
acceptable, and strategies that work in a few stages are strongly preferred: The pools for every
stage must be prepared in advance, depending on the outcomes of earlier stages, and then
they are queried in parallel.

Any 1-stage strategy needs Ω(d2 log n/ log d) pools, as a consequence of the lower bound
for d̄-separable matrices [6] which are pooling designs that can distinguish between any two
possible sets of at most d defectives. The same lower bound was already well known for
d-disjunct matrices, i.e., special d̄-separable matrices that also allow very simple decoding of
the test results [18, 24]. On the other hand, O(d2 log n) pools are sufficient. The currently
best factor is 4.28; see [8] and the references therein. The first 2-stage strategy using a
number of pools within a constant factor of optimum, more precisely 7.54 d log(n/d), was
developed in [14] and later improved to essentially 4 d log(n/d) [19] and finally 1.9 d log(n/d),
or even 1.44 d log(n/d) for large enough d [8]. These strategies use stage 1 to find O(d)
candidate elements including all defectives, which are then tested individually in stage 2.
Such 2-stage strategies are called “trivial” (a misunderstandable but established term); they
are of independent interest as an intermediate type of strategies between 1-stage and “truly
2-stage” strategies. Note that a trivial 2-stage strategy requires no subsequent decoding.

The 2-stage strategies still require the knowledge of an upper bound d on the number
of defectives, and they guarantee an almost optimal query complexity only relative to this
d which can be much larger than the true number of defectives in the particular case. As
opposed to this, adaptive strategies with O(d log(n/d)) pools do not need any prior knowledge
of d. Beginning with [3, 16, 17], substantial work has been done to minimize the constant
factor in O(d log(n/d)), called the competitive ratio. The currently best results are in [25].
Our problem with unknown d was also raised in [22], and several batching strategies have
been proposed and studied experimentally. To our best knowledge, the present work is the
first to establish rigorous results for this question:

Can we take the best of two worlds and perform group testing without prior knowledge of
d in a few stages, using a number of pools close to the information-theoretic lower bound?
This question is not only of theoretical interest. If the number d of defectives varies a lot
between the problem instances, then the conservative policy of assuming some “large enough”
d systematically requires unnecessarily many tests, while a strategy with underestimated d
even fails to find all defectives.

It is fairly obvious that a 1-stage strategy cannot do better than n individual tests. On
the bright side, O(log d) stages are sufficient to accommodate a strategy with O(d log(n/d))
pools: Simply double the assumed d in every other stage, and apply the best 2-stage strategy
repeatedly, including a check if all defectives have been found. In this paper we prove that
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almost log d stages are really needed in the worst case. This clearly separates the complexity
of the cases with known and unknown d.

In related work [11] we studied query strategies and the computational complexity of
learning Boolean functions depending on only a few unknown relevant variables. Group
testing is the special case where the Boolean function is already known to be the disjunction
of the relevant variables.

One modern application of group testing is the reconstruction of biological networks,
e.g., protein interaction networks, by experiments that signal the presence of at least one
interaction in a “pool” of proteins. In some experimental setting, a group test signals that
one fixed protein, called a bait, interacts with some protein in a pool. Hence the problem of
finding precisely the interaction partners of a bait is just the group testing problem. Since the
degrees d of vertices in interaction networks are very different and tests are time-consuming,
we arrive again at the type of problem discussed above. In [13] we studied a similar prolem
with more powerful, non-binary queries that return all interaction partners of a bait.

Instead of learning a whole graph, i.e., the neighbors of every vertex, we may want to
learn only a small set of vertices that is incident to all edges, that is, a small vertex cover. In
interaction networks, these vertices can be expected to play a major role, as a small vertex
cover represents, e.g., a small group of proteins involved in all interactions [23]. Suppose that
an edge group test is available that tells us, for a pool Q of vertices, whether some vertices
in Q are joined by an edge. This assumption is also known as the complex model of group
testing. Then we encounter the problem of learning a hidden vertex cover: Given a graph
with a known vertex set but an unknown edge set, and a number k, identify a vertex cover
of size at most k (or all of them), by using a possibly small number of edge group tests.
Learning hidden structures in graphs has been intensively studied for many structures and
query models, we refer to [1, 2, 4] for recent results and a survey. Learning a hidden star [1]
is a related but quite different problem.

Note that the vertex cover problem, where the graphs is given and known from the
beginning, is NP-complete, on the other hand, it is a classical example of a fixed-parameter
tractable (FPT) problem: It can be solved in O(bkp(n)) time, with some constant base b and
some fixed polynomial p. In a sense we will extend the classical FPT result and show that
hidden vertex covers can be learned efficiently and nonadaptively if k is small.

2 A Classification of Search Strategies and our Results

We discuss both deterministic and randomized strategies. Traditionally, a randomized al-
gorithm is called Monte Carlo if its output is correct with positive probability (that can be
boosted close to 1), and called Las Vegas if its output is always correct but the complexity is
randomized. Since we are concerned with queries and stages we need a finer classification that
may be interesting also for other, similar search problems. Regarding the output reliability
we distinghuish the following types of strategies, with increasing demands:

PC (probably correct): The output is correct with a given probability 1− ε.
PCV (probably correct and verified): Like PC but, additionally, the searcher always knows
whether the output is correct or the algorithm has failed this time.
C (correct): The output is always correct.
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Note that an attribute CV would be meaningless, since C includes by definition that the
output is verified. Regarding complexity bounds we distighuish:

EQ: The given number of queries is an expected number.
GQ: The given number of queries is a guaranteed upper bound.
ES, GS: similarly defined, for the number of stages.

We denote types of strategies by these symbols, separated by hyphens. Deterministic
strategies is a special case, with characterization GS-GQ-C. (But conversely, the definition
allows also randomized GS-GQ-C strategies.)

For competitive group testing with O(d log n) queries (i.e., pools), we show the following
results in this paper:

• For strategies with strict demands we give a lower bound tradeoff for pools vs. stages.
In particular, we show that Ω(log d/ log log d) stages are needed to achieve O(d log n)
queries. First we prove this for deterministic GS-GQ-C strategies, using a counting
argument. (Whereas the technique is fairly standard, the details of the adversary
strategy and counting process are not obvious. We explore a hypergraph representation
of the query results. Also, there remains a log log d gap between our current bounds.
We conjecture that our proof can be refined to give a matching Ω(log d) lower bound.)

• Then we extend the result to GS-GQ-C strategies. Here the additional idea is to let
an adversary speculate on some sequence of pooling designs that appears with positive
probability, and apply the “deterministic” proof. It remains open whether the lower
bound still holds for GS-EQ-C and ES-GQ-C.

• If we relax some demands, the number of stages goes down to a constant. By estimating
the unknown number d of defectives in stage 1 and then using a 2-stage strategy, we
obtain a GS-EQ-PCV strategy with 3 stages, or alternatively, an ES-EQ-C strategy
with 3 + δ stages, where δ can be made arbitrarily small, at cost of the constant factor
in the query number O(d log(n/d)).

• The same idea, but combined with randomized 1-stage group testing, yields a GS-EQ-
PCV strategy that works in only 2 stages but has a few disadvantages (see details later
on). The complexity of ES-GQ strategies remains open.

• Next we show that competitive group testing with a trivial 2-stage GS-EQ-PCV strategy
is impossible (where “trivial” is meant in the above sense).

• If we keep GS-GQ but relax C, we need a non-constant number of stages again, but it is
slightly better than the GS-GQ-C lower bound: We give a GS-GQ-PCV strategy with
2 log d/ log log n stages, based on random partitions. At first glance it might appear
strange to see n in the denominator, but note that a large n can help the stage number
because n appears in the query number O(d log n) as well.

We also highlight some results that came out as byproducts:
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• From the hypergraph characterization in our lower bound proof we get that determining
the exact number d of defectives by group tests is not easier than actually identifying the
defectives. (Note that in applications like environmental testing we may only be inter-
ested in the amount of contamination of samples, rather than in individual items.) This
contrasts to the result that we can approximate d efficiently by randomized strategies
(see above).

• As another special case of our pools vs. stages tradeoff, we show that the number of
pools in deterministic strategies with constantly many stages cannot be limited to any
function f(d) log n.

Our result for finding hidden vertex covers by edge group tests is only loosely tied to the
rest and not listed here.

3 A Lower Bound for Adaptivity in Competitive Determinis-
tic Group Testing

In this section we give an adversarial answer strategy that forces a certain minimum number
of stages upon a searcher who wants to keep the number of pools restricted. Consider a set
X containing an unknown subset of defectives.

Definition 1 Given a set P of pools, the response vector t assigns every positive (negative)
pool the value 1 (0). Let P+ and P− be the set of positive and negative pools, respectively.
The response hypergraph RH(P, t) has the vertex set V := X \

⋃
Q∈P− Q, and every Q ∈ P+

is turned into a hyperedge Q ∩ V of RH(P, t).

The response vector simply describes the outcome of a group testing experiment using
the set P of pools. The vertices of RH(P, t) are all elements that appear in no negative pool.
The hyperedges of RH(P, t) are the positive pools restricted to these vertices, that is, all
elements recognized as negative are removed.

A hitting set of a hypergraph is a set of vertices that intersects every hyperedge. Note that
a superset of a hitting set is a hitting set, too. From the definitions it follows immediately:

Lemma 2 Let t be a given response vector. Then a subset of X is a candidate for being the
set of defectives if and only if it is a hitting set of RH(P, t). �

Before we state our adversary strategy in detail, we outline the ideas. Consider any
deterministic group testing strategy that works in stages. Our adversary answers the queries
in every stage in such a way that RH(P, t) has some hitting set that is much smaller than the
vertex set. This leaves the searcher uncertain about the status (positive or negative) of all the
other vertices in RH(P, t). (Note that an adversary working against a deterministic searcher
can hide defectives after having seen the pools.) Next, we use a standard trick to simplify
the analysis: The adversary may cautiously reveal some extra information. Specifically, our
adversary tells the searcher a subset of defectives that forms already a hitting set of RH(P, t).
The effect is that all hyperedges of RH(P, t) are now “explained” by the revealed defectives,
thus RH(P, t) does not contain any further useful information for the searcher. Hence the
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searcher can totally forget the hypergraph, and the searcher’s knowledge is merely represented
by two sets: the already known defectives, and the elements whose status is yet unknown.
Each of the latter elements can be (independently!) positive or negative. We will play around
with the cardinalities of these two sets and make the searcher’s life as hard as possible. In
the following we specify our adversary strategy in detail.

Let f be any monotone increasing function and d the true number of defectives. Recall
that d is unknown to the searcher. Suppose that the searcher is aiming for at most f(d) log n
queries in total. Let us consider the moment prior to any stage. Suppose that k defectives
are already known and u elements are yet undecided. As we might have d = k, the searcher
can prepare a set P of at most f(k) log n pools for the next stage. (Actually, the number of
pools already used up in earlier stages must be subtracted, which makes the limit even lower,
but our analysis does not take advantage of this fact.) These queries in P can generate at
most 2f(k) log n = nf(k) different response vectors. The adversary chooses some number h ≤ u
and announces that at least h of the u undecided elements are also defective. In particular,
there exist

(u
h

)
possible sets of exactly h further defectives. By the pigeonhole principle, some

family T of at least
(u
h

)
/nf(k) of these candidate sets of size h generate the same consistent

response vector t. Now the adversary answers with just this response vector t. Let Y denote
the union of all sets in T .

Lemma 3 Y is entirely in the vertex set of RH(P, t).

Proof. Assume that some q ∈ Y is in some pool Q which is negative in t, that means,
t(Q) = 0. By the definition of Y , element q also belongs to some Z ⊆ Y such that response
vector t is generated if Z is the actual set of defectives. This contradicts Q ∩ Z = ∅. �

Define y = |Y |. Finally, the adversary actually names a set H of h new defectives in Y ,
in compliance with t. By Lemma 2, H is a hitting set in RH(P, t). Since arbitrary supersets
of H are hitting sets, too, and Y is included in RH(P, t) by Lemma 3, it follows that H plus
any of the y−h elements of Y \H build a hitting set of RH(P, t). Using Lemma 2 again, we
conclude that the y − h elements of Y \H are still undecided, that is, they may be defective
or not, independently of each other.

Since Y must contain at least
(u
h

)
/nf(k) different subsets of size h, we get the following

chain of inequalities:
yh

h!
>

(
y

h

)
≥

(u
h

)
nf(k)

>
(u− h)h

h!nf(k)
.

Multiplication with h! and taking the h-th root yields y > (u− h)/nf(k)/h.
In summary, after the considered stage the searcher knows k + h defectives, and at least

y − h > (u− h)/nf(k)/h − h = u((1− h/u)/nf(k)/h − h/u) elements remain undecided. Thus
we update k, u by k := k + h and u := y− h. This concludes the discussion of any one stage.

In the following, s denotes the number of stages the adversary wants to enforce, ki and ui

indicates the value of k and u, respectively, before stage i, and hi is the value of h in stage i.
The adversary will choose the hi in such a way that us is still positive. Her choice of numbers
hi > f(ki) will be based on f(ki) only.

Remember that the function f is fixed. This allows us to neglect some minor terms in
the expression for the updated u without affecting the asymptotics: Since k ≤ d holds at any
time, the largest possible f(k) depends on d only. Furthermore, since our adversary chooses
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in every stage h > f(k) depending on f(k) only, the ratios h/u in the above expression
for y − h remains bounded by an arbitrarily small constant all the time, when we start at
large enough n. Therefore we can assume for simplicity that at least u/nf(k)/h elements are
undecided after the considered stage. The relative error becomes arbitarily small as n grows.

Let k1 = 1, that is, one defective is revealed in the beginning. We let our adversary choose
the hi such that

∑
i f(ki)/hi ≤ 1 after any number i ≤ s of stages. Since u1 = n − 1 and

ui+1 ≥ ui/nf(ki)/hi , we have that ui remains positive for i ≤ s, as desired.
Specifically, let hi := sf(ki) for all i, hence f(ki)/hi = 1/s and ki+1 = ki+hi = ki+sf(ki).

Now we can formulate a somewhat technical but general result:

Theorem 4 Let f be any monotone increasing function with f(d) ≥ d for all d. Any deter-
ministic group testing strategy that uses, for arbitrary combinations d, n, at most f(d) log n
pools for finding a previously unknown number d of defectives out of n elements, needs at
least s(d) stages in the worst case, where s(d) is defined as the minimum number with the
following property: If the operator k := k + sf(k) is iterated s := s(d) times starting from
k = 1, then k ≥ d is reached. �

Theorem 4 in this general form looks bulky, but for the most important cases of functions
f we get some interesting results from it. First we look at f(d) = d. Due to the information-
theoretic lower bound for group testing, this is the smallest meaningful function f in our
context.

Corollary 5 Any deterministic group testing strategy that uses, for arbitrary combinations
d, n, only O(d log n) pools for finding a previously unknown number d of defectives out of n
elements needs Ω(log d/ log log d) stages in the worst case.

Proof. With the previous denotations, f(k) = k yields ki+1 = (s + 1)ki, hence d = ks+1 =
(s + 1)s, and s > log d/ log log d. �

We remark that raising the number of pools by a constant factor a does not help very
much: Since now f(k) = ak, our adversary chooses k := (as + 1)k and still achieves s =
Θ(log d/ log log d), although with a smaller constant factor.

Next it is interesting to consider f(d) = d2, because this number of pools would allow a
1-stage strategy if d were known beforehand (see Section 1). However, our adversary strategy
for unknown d essentially squares k in every iteration, leading to s = Ω(log log d). Finally,
consider an arbitrary but fixed function f that may be rapidly growing.

Corollary 6 Let f be any monotone increasing function. No deterministic group testing
strategy that uses at most f(d) log n pools for finding a previously unknown number d of
defectives out of n elements can succeed in constantly many stages.

Proof. It suffices to notice in Theorem 4 that the number s of iterations needed to reach
k ≥ d depends on d. �

This contrasts sharply to our result in the next section where we give randomized strate-
gies with constantly many stages, based on a randomized estimate of d. A simple but inter-
esting observation in this context is that finding the exact number of defectives is not easier
than solving the whole group testing problem:
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Theorem 7 Any group testing strategy that exactly determines the previously unknown num-
ber of defectives must also identify the set of defectives.

Proof. Assume that a searcher has applied any group testing strategy to some set of elements
containing d defectives, and afterwards the searcher knows d. Let P be the set of pools ever
used, and t the response vector. By Lemma 2, the possible sets of defectives are exactly the
hitting sets of RH(P, t). Hence, by assumption, all hitting sets of RH(P, t) have the same
cardinality. This is possible only if RH(P, t) has only the trivial hitting set consisting of all
vertices. Using Lemma 2 again, it follows that the searcher knows the defectives. �

So far we have studied only deterministic strategies. Recall that they are of type GS-GQ-
C. Next we show that the general Theorem 4 (and hence the subsequent results) still holds
for randomized strategies of this type. Note that the adversary has to be “oblivious”, i.e.,
she must fix the set of defectives before seeing the searcher’s random decisions.

Theorem 8 Let f be any monotone increasing function with f(d) ≥ d for all d. Any GS-
GQ-C group testing strategy that uses, for arbitrary combinations d, n, at most f(d) log n
pools for finding a previously unknown number d of defectives out of n elements, needs at
least s(d) stages, with s(d) defined as in Theorem 4.

Proof. Consider any randomized strategy. We let our adversary from Theorem 4 play against
the strategy. The possible outcomes can be viewed as a tree, in an obvious way: In every tree
node the searcher decides on the set of pools for the next round, with probabilities specified
by the strategy, and then our adversary reacts as above. Now, if the strategy is GS-GQ-C, it
must succeed on any path of the tree, i.e., identify the defectives correctly within the specified
bounds for stages and pools.

The above procedure describes an adaptive adversary that can decide on further defectives
step by step according to the searcher’s choices. However, an oblivious adversary can choose
any path p of the tree and speculate that the searcher will behave as on p (which happens with
positive probability), and choose the set of defectives according to the result of p. Then the
sequence of pools used on p can be seen as a deterministic strategy (applied by the searcher
with some positive probability), and Theorem 4 shows that, on p, the searcher cannot work
correctly and stick to both complexity bounds at the same time. Hence one of the constraints
is violated with positive probability, thus a GS-GQ-C strategy with f(d) log n pools and less
than s(d) stages cannot exist. �

We conjecture that the same lower-bound tradeoff still holds for each of the weaker de-
mands GS-EQ-C and ES-GQ-C. It is tempting to argue as follows: If a strategy respects an
expected value of one complexity bound (and the other bound is strict), then the concrete
value on some tree path p must not exceed the expectation, and Theorem 4 shows again that
the strategy cannot work correctly on p. However, the catch is that the expectation in EQ
or ES refers to the searcher’s behaviour on any set of defectives fixed beforehand, hence the
adversary cannot simply speculate on p as in the GS-GQ-C case.

4 Randomized Estimation of the Number of Defectives

In this section we show that a “conservative bound” d̂ on the number d of defectives in a
set of n elements can be determined by O(log n) randomized nonadaptive group tests. What
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the above phrase means is that we get d̂ < d with an arbitrarily small prescribed failure
probability, but d̂ overestimates d only by a constant expected factor. Thus, d̂ can be further
used in any group testing strategy that needs an upper bound on d: Such a strategy fails
only with a small probability due to d̂ < d, but it is also unlikely to waste too many tests
due to a large d̂/d.

Let b > 1 be a fixed positive real number. We prepare a sequence of pools indexed by
integers i as follows. We put every element independently with probability 1 − (1 − 1/n)bi

in the ith pool. The ith pool is negative with probability qi := (1 − 1/n)dbi
, since this is

the probability that all d defectives are outside the pool. The test outcomes of all pools are
independent, as we have chosen the elements of the pools independently. Also note that,
regardless of the unknown value of d, our sequence qi is doubly exponential: Every number
is the bth power of the previous number and the bth root of the next number. This is a nice
invariant that enables a “uniform” analysis for all possible values of d.

Let e denote Euler’s number and k := blogb nc. We have q0 = (1− 1/n)n ≈ 1/e if d = n,
and qk ≈ (1 − 1/n)n ≈ 1/e if d = 1. That means, q0 is “away from” 0 even if d = n, and
qk is “away from” 1 even if d = 1. Now let i range from some constant negative index to k
plus some positive constant. Then group testing on this sequence of pools yields, with high
probability, some negative pools in the beginning, even if d = n, and some positive pools in
the end, even if d = 1. Notice that we prepare roughly logb n = log n/ log b pools.

We propose a simple algorithm to get d̂ from the test outcomes. It is equivalent to estimate
the index j of a pool with some fixed value qj . Our algorithm will “assume” qj = 1/2 for a
certain j based on the test outcomes, and output the corresponding number of defectives d̂
that would lead to qj = 1/2. In order to distinguish this assumed probability value from the
true (and unknown) qj we denote it q̂j . Our algorithm uses yet another positive parameter
s (integer) that we discuss later. The subsequent lemmas are meant with respect to the
algorithm. Here it is:

Let i be the largest index of a negative pool; we will refer
to i as the main index. Then let q̂i−s := 1/2 and set d̂
accordingly, that is, d̂ := −1/(bi−s log(1− 1/n)).

(Clearly d̂ must be rounded to an integer, for simplicity we omit ceiling brackets.) Re-
member that b > 1 is some fixed base. We choose s large enough to make 1/2bs

“small”, see
the details below. With these presumptions we get:

Lemma 9 The probability of d̂ < d is O(1/2bs
log b).

Proof. The event d̂ < d is equivalent to qi−s < 1/2 for the main index i. In this case, i is one
of the indices with qi < 1/2bs+j

, j ≥ 0. Hence the probability of this failure is bounded by∑
j≥0 1/2bs+j

. Since 1/2bs
is already small due to the choice of s, and every term is the bth

power of the previous one, the sequence then decreases rapidly: After every logb 2 = 1/ log b
indices it is reduced to the square. Thus we get a failure probability as claimed, with a small
hidden constant. �
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In order to express the expected competitive ratio we define a function F with argument
b > 1 by:

F (b) := max
0≤θ<1

∞∑
i=−∞

b−i+θ

2bi−θ

∞∏
k=1

(
1− 1

2bi−θ+k

)
.

Although the expression for F (b) looks complicated, it is not hard to prove that F (b) is
monotone in b, and to get good simple bounds for F (b). However, we do not further analyze
F , as these issues affect only the constant factors in our final results below. Instead, some
numerical values may illustrate the behaviour of F :

#pools 1 log n 2 log n 4 log n 8 log n 16 log n 32 log n

b 2.000 1.414 1.190 1.091 1.045 1.022
F (b) 1.466 0.830 0.549 0.397 0.307 0.247

Lemma 10 The expectation of d̂/d is at most F (b) · bs.

Proof. We (arbitrarily) shift our indices such that 1/2b−1
> q0 ≥ 1/2b0 and define θ such

that 0 ≤ θ < 1 and q0 = 1/2b−θ
. If the main index is i, the algorithm yields q̂i−s = 1/2

whereas qi−s := 1/2bi−s−θ
, hence d̂/d = b−i+θ · bs. From qi = 1/2bi−θ

and the definition of the
main index, the assertion follows. �

Altogether we have shown:

Theorem 11 Consider a set of n elements including an unknown number d of defectives.
For any b > 1 and any positive integer s, there is a randomized 1-stage group testing strategy
with log n/ log b pools that outputs a number d̂ such that d̂ < d holds only with probability
O(1/2bs

log b), and d̂/d < F (b) · bs in expectation. �

5 Randomized Competitive Group Testing in Two or Three
Stages

From the result of the previous section we can easily conclude:

Theorem 12 Consider a set of n elements including an unknown number d of defectives.
(i) There is a GS-EQ-PCV group testing strategy that finds all defectives in 3 stages using
O(d log(n/d)) pools.
(ii) For any fixed δ > 0 there is a ES-EQ-C group testing strategy that finds all defectives in
3 + δ stages using O(d log(n/d)) pools.

Proof. Fix any desired failure probability bound ε > 0. By Theorem 11 we can get in stage 1
some d̂ that exceeds d with probability at least 1− ε, keeping the expected ratio d̂/d constant
at the same time, and O(log n) pools are used for that, where the constant factor depends
on ε. Then we apply one of the established 2-stage group testing strategies for a maximum
number d̂ of defectives. As mentioned in Section 1, there are 2-stage strategies that first
determine O(d) candidate elements including all defectives, and test them individually in the
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final stage. We add one more pool in this final stage, consisting of the complement of the
candidates. If this extra pool is negative, the searcher knows that all defectives are found,
hence the strategy is PCV. (But it can still fail if d̂ < d.) This shows (i). Assertion (ii) is a
simple extension: If failure is detected in stage 3, the strategy is repeated until success. We
achieve any desired δ by chosing ε small enough. �

Some practical remarks are in order here: Since the probability of a too generous d̂
decreases rapidly as the ratio d̂/d grows, large deviations from the expected number of pools
are very unlikely. On the other hand, note that d̂/d is not necessarily close to 1. The best
choice of the method parameters b, s that minimize, e.g., the hidden factor in O(d log(n/d))
depends on ε and the largest relevant d. This needs to be further explored. We did some
numerical experiments adopting the 1.44 d log(n/d) bound for 2-stage group testing [8]. With
bases 1.2 < b < 1.5 we get factors from 3 + 1/d log b to 6 + 1/d log b, for ε from 0.1 down to
0.02.

Next we show that even two stages are enough if we randomize the further tests as well.
In Theorem 10 of [8] it is shown that up to d defectives can be identified correctly, with
any desired constant probability, in one stage using O(d log n) pools. Inspection of the proof
shows that their random set of pools has, with constant probability, the following property:
Let P be the set of positive elements. If actually |P | ≤ d then, (i) for every v /∈ P there exists
a negative pool that contains v but is disjoint to P . The same analysis in [8] also shows that,
(ii) for every v ∈ P , there exists a positive pool Q that contains v but is disjoint to P \ {v}.
The strategy outputs all elements that appear in positive pools only. The above properties
imply that, with constant probability, every negative element v is recognized as negative due
to (i), and every positive element v is recognized as positive due to (ii). The latter statement
holds since Q is a positive pool but all elements in Q \ {v} are recognized as negative. In
other words, the output set O is exactly P in this event. From the searcher’s point of view
we have: If O (in the role of P ) satisfies (i) and (ii) then the searcher is sure about O = P .
Hence this strategy is PCV.

Theorem 13 Consider a set of n elements including an unknown number d of defectives.
There is a GS-EQ-PCV group testing strategy that finds all defectives in 2 stages using
O(d log n) pools.

Proof. As before, fix any desired failure probability bound ε > 0 and determine in stage 1
some d̂ that is smaller than d with probability at most ε/2, and with constant expected ratio
d̂/d. In stage 2, apply a the 1-stage PCV strategy for d̂ defectives and failure probability ε/2.
Thus the strategy fails with probability at most ε, and if it succeeds, the searcher knows that
exactly the set of positive elements has been returned. �

Thus we have saved one stage, but we conjecture that the hidden constant factor in
O(d log n) will be considerably larger than for 3 stages, mainly since the error probability ε
must be divided between two stages (whereas in Theorem 12 only stage 1 could potentially
fail). We must leave the constant factors, depending on the prescribed ε, as an open question.
Obviously, the 2-stage strategy also needs a larger amount of randomness.

A clear disadvantage of the 2-stage strategy is in the verification step. While the proposed
3-stage strategy really ends after the tests in stage 3, the 2-stage strategy needs quite some
computational postprocessing to confirm the result: It guarantees a correct result only if the
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output set O has the above properties (i) and (ii), that is, we have to revisit the pool set and
find the required pools for every element v. A natural question is whether a trivial 2-stage
strategy exists with the same performance. Remember that a 2-stage group testing strategy
is called trivial if stage 2 consists of individual tests of candidate positives only, hence no
decoding or verification is needed at all. However we can show:

Theorem 14 There exists no trivial 2-stage GS-EQ-PCV strategy for group testing with
previously unknown d, using O(d log n) pools.

Proof. Since such a strategy has to test all candidates from stage 1 individually in stage 2,
the total number of pools is at least the number of candidates from stage 1.

First we prove the assertion for GS-GQ-PCV strategies. Suppose that the searcher wants
to use at most cd log n pools, for some constant c. Regardless of her random choices the
searcher may use only c log n pools in stage 1, since otherwise the adversary may simply
fix d = 1. It remains to show that the number of candidates remains too large after these
c log n nonadaptive group tests. As the pooling design may be randomized, we use Yao’s
technique to derive a lower bound on the expected number of candidates. We say that a
negative pool discards the elements in this pool. First consider any deterministic, i.e., fixed
pooling design in stage 1. Our adversary fixes some number d (we discuss the choice of
d below) and decides d defectives at random. Thus, any pool of size xn is negative with
probability (1 − x)d, that is, the pool discards an expected number of x(1 − x)dn elements.
By a standard calculation, this expectation is maximized if x = 1/(d+1), hence the expected
number of elements discarded by any one pool is at most n/e(d+1), where e denotes Euler’s
number. By linearity of expectation, c log n pools discard an expected number of at most
(cn log n)/(e(d + 1)) elements. (Actually this number is smaller if the pools overlap.) If d is
chosen larger than (c/e) log n, there remain Ω(n) expected candidates when any deterministic
strategy is applied in stage 1. Any randomized pooling design using a fixed number of c log n
pools in stage 1 is a probability distribution on the deterministic pooling designs of that size.
Hence, with d > (c/e) log n random defectives, Ω(n) expected candidates are left, also if such
a randomized design is applied. It follows that some specific set of d > (c/e) log n defectives
exists that fools the given randomized strategy.

Finally we consider GS-EQ-PCV strategies. Now the searcher may also randomize over
the number of pools to be used in stage 1, but still their expected number must not exceed
c log n, for the same reason as above. For any fixed ε > 0, Markov’s inequality yields that
the strategy must choose the actual number of pools below (1 + ε)c log n with some constant
positive probability. Applying the previous result to this event we see that the expected
number of candidates remains Ω(εn) there. Thus, with constant positive probability the
searcher is faced with Ω(εn) candidates to test in stage 2, which in total enforces a linear
expected number of pools. �

Note that this proof uses that possibly d = Ω(log n). If d is smaller compared to log n,
we can again succeed with O(d log n) pools in 2 stages, even with a GS-GQ-PCV strategy.
However, we prove a more general result below.

Lemma 15 Consider a set of m elements. There exists a GS-GQ-C strategy using O(log m)
pools in 1 stage, that finds the defective if d = 1, and otherwise recognizes that d = 0 or d > 1.
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Proof. Let n be a power of 2, otherwise we create dummy elements, which doubles m in the
worst case. We arrange the elements in a log m dimensional hypercube and query its 2 log m
maximal subhypercubes. If actually d = 1, the answers obviously determine the defective
uniquely. If d = 0 then all pools are negative. If d > 1 then at least two complementary
pools are positive. These cases are recognized by the searcher. �

Theorem 16 Consider a set of n elements including an unknown number d of defectives.
There exists a GS-GQ-PCV strategy using O(d log n) pools in O(log d/ log log n) stages.

Proof. Every stage works as follows: If h is a currently known lower bound for d (where
h = 1 is assumed in the beginning), we partition the elements randomly into some Θ(h log n)
disjoint pools of equal size and query them. For the next stage we update h as the number
of positive pools.

Using simple standard results from probability theory, the following two things happen
with high probability: As long as h log n < d, at least a constant fraction of pools answers
positively, thus h is multiplied by Θ(log n) in every stage. As soon as h log n > d2, the
defectives are separated, that is, no two defectives get into the same pool.

In the latter case the searcher recognizes that fewer than
√

h log n pools are positive and
conjectures that the defectives are in fact separated. Finally, in one further round the searcher
applies Lemma 15 to each positive pool from the previous stage, to find the defective and
confirm that it is the only one.

As for the stage number, note that s = log d/ log log n is the solution to (log n)s = d, and
constant factors are captured by the O-notation. �

In particular, this algorithm uses only 2 stages if d = O(
√

log n). It would be interesting
to explore the case when

√
log n < d < log n.

6 Learning Hidden Vertex Covers by Edge Group Tests

In this section we study the problem of learning all minimal vertex covers of size at most k,
in an initially unknown graph, from edge group tests. Note that, in general, this does not
uniquely determine the graph, because there may exist further minimal vertex covers with
more than k vertices.

Definition 17 A set of pools is (2, k)-disjunct if, for any k + 2 vertices w1, . . . , wk and u, v,
there exists a pool that includes u, v and excludes w1, . . . , wk.

There exist (2, k)-disjunct matrices with O(k3 log n) pools: The simplest randomized
construction is to put every vertex in a pool independently with probability 2/k. Bounds on
the size of a more general type of disjunct matrices can be found in [5].

Let V C(n, k) denote the time for enumerating the minimal vertex covers of size at most
k in a (known!) graph of n vertices. The time depends on the state-of-the-art of FPT vertex
cover algorithms, which is beyond the scope of this work. However, we have V C(n, k) =
O(bkp(n)) where b < 2 is some fixed base and p some fixed polynomial, see [12] for more
details. If only one vertex cover is sought, one can apply faster algorithms such as the one in
[7].
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Theorem 18 We can learn all (minimal) vertex covers of size at most k in one stage using
O(k3 log n) edge group tests and O(V C(n, k)) time for auxiliary computations. The strategy
is of type GS-GQ-C.

Proof. We take a set of pools that forms a (2, k)-disjunct matrix. Consider any pair of
vertices {u, v}. Clearly, if {u, v} belongs to some negative pool then uv is a non-edge. The
other case is that {u, v} belongs to positive pools only. Assume that u, v /∈ C for some vertex
cover C with |C| ≤ k. Due to (2, k)-disjunctness, some pool includes u, v and excludes C.
This pool must be positive, as it contains u, v. On the other hand, the pool must be negative,
as every edge intersects C. This contradiction shows that every vertex cover C with |C| ≤ k
contains u or v. Hence, for the purpose of learning these small vertex covers, we may simply
assume that uv is an edge if {u, v} appears in positive pools only. This might be wrong in
the unknown graph, but the family of vertex covers of size at most k is preserved.

This reasoning also yields the following parameterized decoding algorithm that actually
generates the family of vertex covers of size at most k from the test outcomes: Construct
an auxiliary graph where uv is an edge if and only if {u, v} belongs to positive pools only.
This can be done in O(k3n2 log n) time, which is dominated by the time for the final step:
Compute the minimal vertex covers of size at most k in this graph. �

On the other hand, the trivial information-theoretic lower bound gives:

Proposition 19 Any strategy (which may even be adaptive) for learning hidden vertex covers
of size at most k needs Θ(k log(n/k)) edge group tests. �

An obvious question is what is the best exponent of k in the query number O(kO(1) log n),
depending on the number of stages and the type of strategy. In Theorem 18 we did not use
prior knowledge of the size of a smallest vertex cover. If our k is too small, we just obtain an
empty result which is correct. However, if we want some vertex cover, we have to determine
the minimum size k of a vertex cover first. Here, an O(log k)-stage deterministic strategy or
a randomized 1-stage method similar to Section 4 should work. Note that the complements
of vertex covers in a graph are exactly the independent sets, which in turn corresponds to
negative pools. Hence we could again use a randomized sequence of pools of exponentially
growing size to estimate k. We have to leave these questions for further research.

7 Some Discussion and Experimental Findings

Besides the open problems regarding strategy types and asymptotic complexity results (men-
tioned at several places), more research is needed on the practical side:

Our current lower bounds in Section 3 do not say too much about realistic problem sizes,
but we conjecture that they can be further raised. An obvious weakness in the analysis
in Section 3 is that the searcher is allowed to use the maximum number of pools in every
new stage, not counting the pools used up earlier. Asymptotically this is negligible, but
for moderate d our adversary gives away some power by this simplification. One may also
think of more sophisticated adversary strategies that exploit more structure of the response
hypergraphs.
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Our d̂ in Section 4 is, for the sake of simplicity, based on the “main index” i only, which
is the index of the largest negative pool. This strategy is very sensitive to the position of the
main index which may easily be an outlier. In order to get more robust estimates we have
empirically tried different rules of combining the responses of pools around the main index.
Here we summarize a comparison with two other natural rules that show significantly better
performance. The rules differ in the choice of pool j for which we assume q̂j := 1/2.

Rule 1: the simple algorithm analyzed in Section 4, with j = i− s for some previously fixed
s that depends on the desired failure probability bound.
Rule 2: like Rule 1, but j is the index of the s-th negative pool before i, jumping over the
positive pools.
Rule 3: Let k be the index of the smallest positive pool, m = b(i + k)/2c, and finally, j be
the index of the s-th negative pool before m.

The rationale behind Rule 2 is that it suppresses a too large main index i (an outlier)
by straight going to the previous negative pools, and the averaging in Rule 3 should have a
smoothing effect as well.

We implemented these rules in Matlab and performed extensive simulations with inde-
pendent random choices of d defective elements. Recall from Section 4 that b > 1 is some
fixed base used in the sequence of pool sizes. We considered all values of b in the range
1.1 to 1.9 with an increment of 0.1. For fixed n we selected d as 0.01n to 0.10n with 0.01n
increments. Now for different b we separately organized simulation results over the range of
s values. Then we computed average values for failure probability, competitive ratio, and
variance in competitive ratio values. To compare the performance of the three rules, we have
drawn graphs of competitive ratios and variances against failure probability (smaller than
0.1) for each b. For this purpose, in every rule only those s values are considered where the
average failure probability lies within the desired range. Here we display competitive ratios
(Figure 1–3) and variances (Figure 4–6) for b values 1.1, 1.3, and 1.5. Symbols ×,+, and ∗
are used to draw points for rules 1,2, and 3, respectively. Integers besides the points indicate
the values of s. The measured points are joined using the logarithmic curve fitting just for
better visualization of the behaviour, this is not meant to be interpolation.

The following conclusions can be drawn. Rule 2 has shown consistently better performance
both in competitive ratio and variance compared to the other two rules. It decreases the
average competitive ratio by 20% and the variance by 50% or more compared to Rule 1, for
any given failure probability, whereas a significant improvement over Rule 3 is also achieved.
For both Rule 2 and 3, the improvement in the competitive ratio compared to Rule 1 increases
as the failure probability approaches zero. A close look at the entire simulation data also
reveals that Rule 3 has consistently gained failure probability less than 0.08 with competitive
ratio in the range 2 to 3 already for s = 0, in contrast to Rule 1 that requires large jumps s to
achieve small failure probabilities. Overall these simulations suggest that the new rules offer
a better performance. An obvious plan is to analyze and understand them also in theory and
to figure out the best hidden constants we can achieve in Theorem 12.

Some other ideas for further research on this topic came up:
We invented Rule 2 and 3 by ad-hoc considerations and then tested them. In principle

it is also possible to formulate our problem of minimizing the competitive ratio, for a given
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failure probability, approximately as a linear program that returns probabilities of chosing
pool j (see notations above). If this experimental approach is feasible, it may even guide us
to a conjecture for the optimal randomized rule.

A 2-stage estimator where stage 1 roughly determines the magnitude of d such that stage
2 can focus on the range of the most likely d may save many pools.

We studied the problem of estimating the unknown d ≤ n independently, and then we just
applied the result to competitive group testing. For this purpose however, we may restrict d
straightaway to O(n/ log n) (since otherwise trivial individual testing is anyhow better), and
thus further reduce the total number of pools in Theorem 12 and 13.

Acknowledgments

This article was inspired by the first author’s participation in the wonderful Dagstuhl Sem-
inars 08301 “Group Testing in the Life Sciences” (2008) and 09281 “Search Methodologies”
(2009). The work has been supported by the Swedish Research Council (Vetenskapsr̊adet),
grant no. 2007-6437, “Combinatorial inference algorithms – parameterization and cluster-
ing”. We are indebted to an anonymous referee who pointed out a flaw in an earlier version
of Section 5.

References

[1] N. Alon, V. Asodi, Learning a hidden subgraph, SIAM J. Discr. Math. 18 (2005) 697–
712.

[2] D. Angluin, J. Chen, Learning a hidden graph using O(log n) queries per edge, J. Com-
puter and System Science 74 (2008) 546–556.

[3] A. Bar-Noy, F.K. Hwang, H. Kessler, S. Kutten, A new competitive algorithm for group
testing, Discr. Appl. Math. 52 (1994) 29–38.

[4] M. Bouvel, V. Grebinski, G. Kucherov, Combinatorial search on graphs motivated by
bioinformatics applications, in Proc. 31st Workshop on Graph-Theoretic Concepts in
Computer Science WG 2005, LNCS 3787, ed. D. Kratsch (Springer, 2005), pp. 17–27.

[5] H.B. Chen, H.L. Fu, F.K. Hwang, An upper bound on the number of tests in pooling
designs for the error-tolerant complex model, Optim. Letters 2 (2008) 425–431.

[6] H.B. Chen, F.K. Hwang, Exploring the missing link among d-separable, d̄-separable and
d-disjunct matrices, Discr. Appl. Math. 155 (2007) 662–664.

[7] J. Chen, I.A., Kanj, G., Xia, Improved parameterized upper bounds for vertex cover,
31st Symp. on Math. Foundations of Computer Science MFCS 2006, LNCS 4162, ed. R.
Kralovic, P. Urzyczyn (Springer, 2006), pp. 238–249.

[8] Y. Cheng, D.Z. Du, New constructions of one- and two-stage pooling designs, J. Comp.
Biol. 15 (2008) 195–205.

16



[9] A.E.F. Clementi, A. Monti, R. Silvestri, Selective families, superimposed codes, and
broadcasting on unknown radio networks, 12th Symposium on Discrete Algorithms
SODA 2001, 709–718.

[10] G. Cormode, S. Muthukrishnan, What’s hot and what’s not: Tracking most frequent
items dynamically, ACM Trans. Database Systems 30 (2005) 249–278.

[11] P. Damaschke, On parallel attribute-efficient learning, J. Computer and System Science
67 (2003) 46–62.

[12] P. Damaschke, Parameterized enumeration, transversals, and imperfect phylogeny re-
construction, Theor. Computer Science 351 (2006) 337–350.

[13] P. Damaschke, Finding hidden hubs and dominating sets in sparse graphs by randomized
neighborhood queries, Networks, to appear.

[14] A. De Bonis, L. Gasieniec, U. Vaccaro, Optimal two-stage algorithms for group testing
problems, SIAM J. Comp. 34 (2005) 1253–1270.

[15] D.Z. Du, F.K. Hwang, Pooling Designs and Nonadaptive Group Testing, World Scientific
(2006)

[16] D.Z. Du, H. Park, On competitive group testing, SIAM J. Comp. 23 (1994) 1019–1025.

[17] D.Z. Du, G. Xue, S.Z. Sun, S.W. Cheng, Modifications of competitive group testing,
SIAM J. Comp. 23 (1994) 82–96.

[18] A.G. Dyachkov, V.V. Rykov, Bounds on the length of disjunctive codes, Problems of
Information Transmission (Russian) 18 (1982), 7–13.

[19] D. Eppstein, M.T. Goodrich, D.S. Hirschberg, Improved combinatorial group testing
algorithms for real-world problem sizes, SIAM J. Comp. 36 (2007) 1360–1375.

[20] A.C. Gilbert, M.A. Iwen, M.J. Strauss, Group testing and sparse signal recovery, 42nd
Asilomar Conf. on Signals, Systems, and Computers 2008 1059–1063.

[21] M.T. Goodrich, D.S. Hirschberg, Improved adaptive group testing algorithms with ap-
plications to multiple access channels and dead sensor diagnosis, J. Comb. Optim. 15
(2008) 95–121.

[22] A.B. Kahng, S. Reda: New and improved BIST diagnosis methods from combinatorial
group testing theory, IEEE Trans. CAD of Integr. Circuits and Systems 25 (2006) 533–
543.

[23] M. Lappe, L. Holm, Unraveling protein interaction networks with near-optimal efficiency,
Nature Biotech. 22 (2003) 98–103.
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Figure 1: Competitive ratios for b=1.1

Figure 2: Competitive ratios for b=1.3
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Figure 3: Competitive ratios for b=1.5

Figure 4: Variances for b=1.1

19



Figure 5: Variances for b=1.3

Figure 6: Variances for b=1.5
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