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Abstract. Many algorithms for FPT graph problems are search tree
algorithms with sophisticated local branching rules. But it has also been
noticed that using the global structure of input graphs complements the
the search tree paradigm. Here we prove some new results based on
the global structure of bounded-degree graphs after branching away the
high-degree vertices. Some techniques and structural results are generic
and should find more applications. First, we decompose a graph by
“separating” branchings into cheaper or smaller components wich are
then processed separately. Using this idea we accelerate the O∗(1.3803k)
time algorithm for counting the vertex covers of size k (Mölle, Richter,
and Rossmanith, 2006) to O∗(1.3740k). Next we characterize the graphs
where no edge is in three conflict triples, i.e., triples of vertices with
exactly two edges. This theorem may find interest in graph theory, and
it yields an O∗(1.47k) time algorithm for Cluster Deletion, improv-
ing upon the previous O∗(1.53k) (Gramm, Guo, Hüffner, Niedermeier,
2004). Cluster Deletion is the problem of deleting k edges to destroy
all conflict triples and get a disjoint union of cliques. For graphs where
every edge is in O(1) conflict triples we show a nice dichotomy: The
graph or its complement has degree O(1). This opens the possibility for
future improvements via the above decomposition technique.

1 The Problems and Contributions

A problem is fixed-parameter tractable (FPT) if it can be solved in O(p(n)f(k))
time where p is a polynomial and f any function. We assume familiarity with
the basic notions of FPT algorithms and their analysis [5, 13]. Since we focus
on the f(k) factor, we sometimes adopt the O∗(f(k)) notation that suppresses
polynomial factors. In graphs we usually denote by n the number of vertices.
For brevity we say “component” instead of “connected component” of a graph.
Counting Vertex Covers: A vertex cover is a set of vertices with at least one
vertex from every edge. The problem of counting all vertex covers of size k in
graphs (or more generally, hitting sets of size k in hypergraphs of fixed rank) is
very natural as such, but has also interesting applications in combinatorial infer-
ence, e.g., in computational biology as proposed in [3]. Briefly, the real problem
is to infer a set of substances that produced a given set of indicators, where



an indicator may come from several candidate substances. Substances and indi-
cators are modeled as vertices and edges of a hypergraph. Since many different
solutions of a certain expected size exist, we count the solutions containing every
fixed vertex, in order to evaluate how likely the presence of every substance is.
Many vertex cover variants have been studied as well, see, e.g., [11] for pointers.

The Vertex Cover Counting algorithm in [12] first branches on vertices
of degree 4 or larger. The branching vector (1, 4) has branching number 1.3803,
and vertex covers in the residual graphs of degree 3 can be counted in O∗(1.26k)
time by a nontrivial technique. This gives an overall time bound of O∗(1.3803k),
where the (1, 4)-branching is the bottleneck. In order to take this hurdle we must
avoid the situation that only (1, 4)-branching takes place and cheaper rules are
never invoked. Our idea is to reuse the above algorithm but choose the initial
(1, 4)-branchings in a special way that guarantees a “large and easy” residual
graph. We either retain one large degree-3 component that can be solved in
O∗(1.26k) time (with the residual k), or we can split the residual graph into
several components, process them independently, and finally combine the partial
results in polynomial time. Loosely speaking, due to this quasi-parallelization
of the remaining branchings, only one component with the largest residual k
counts for the exponential term in the complexity. In all cases this drives the
overall branching number below 1.3803. The fact that components of a graph
can be treated independently is usually not even worth mentioning as it cannot
be exploited in a worst-case analysis, but in our approach it becomes essential.
The time analysis is not straightworward either. Upon the (1, 4)-branchings we
deduct not only 1 and 4 from parameter k, but also the number of vertices that
will be added later to the vertex covers in a cheaper way. On the other hand, we
must “charge” the (1, 4)-branchings for these deferred decisions and increase the
size bounds of the search trees after the branching accordingly, as every leaf in
the search tree now represents the deferred decisions. But since they are cheaper,
this pays off in the end.

This global technique of branching away the hardest parts and splitting the
rest into independent pieces seems to be new in this form. The idea is not deep,
but this may be a strength. The conceptual simplicity should make it versatile
and also applicable to other FPT problems that decompose neatly.

The bound for Vertex Cover Counting we can prove so far is O∗(1.3740k).
Seemingly this is marginal progress, however, the weakness is apparently in the
current analysis rather than in the algorithm itself. Our analysis gives something
away, hence the true worst-case bound is likely to be way better. But it is hard
to take advantage of those observations, since different bad cases can appear
mixed throughout the search tree. (Cf. also [6, 7].)
Cluster Modification Problems: A cluster graph is a disjoint union of cliques,
also called clusters. A P3, or conflict triple, is a path of three vertices (and two
edges). Cluster graphs are exactly the graphs without induced P3. In Cluster
Deletion we want to delete at most k edges in a graph G so as to obtain a
cluster graph. That is, deletions must destroy all induced P3. Cluster Editing
is similarly defined with edge deletions and insertions. Both problems are special



cases of Weighted Cluster Editing where pairs of vertices have individual
edits costs. These NP-hard problems [14] have also applications foremost in
computational biology [4, 9, 14]. Cluster Deletion becomes important if only
adjacent vertices (representing similar objects) are tolerated in any cluster.

The parameterized complexity of these problems is well studied. In [2] we give
problem kernels and algorithms for enumerating all solutions to several clustering
problems. In [1], Weighted Cluster Editing has been solved in O(1.82k+n3)
time. This is also the best known time bound for Cluster Editing. The other
special case is still somewhat “easier”: an O(1.53k + n3) time algorithm for
Cluster Deletion is known from [8]. It was an example of an automatically
generated search tree algorithm and improved a “handmade” O(1.77k + n3)
algorithm [9]. It works with branching rules on subgraphs with at most six
vertices. No further progress on Cluster Deletion has been made since then.

Here we come back to handicraft and give an O(1.47k + n3) time algorithm
for Cluster Deletion. It starts from the most obvious rule with branching
number 1.47: If some edge is in three or more P3, then branch on the edge, i.e.,
delete the edge, or delete all edges building a P3 with it. Key to our improvement
is a new theorem showing that graphs where this rule is not applicable have
simple structures, and no other local branching rules are needed. (Only special
cases were already treated in [1, Lemma 4] and in a conference version of [2].)

The result give new indications that local branching rules should be com-
plemented by global structure analysis and techniques. Other global methods
like dynamic programming on subsets, bounded treewidth and pathwidth [6, 7],
and iterative compression [10], have recently shown their great potential. In fact,
the O(1.3803k) algorithm for Weighted Vertex Cover in [6] is close to the
Vertex Cover Counting results, but here we add our separation idea.
Organization of the paper: In Section 2 we state our algorithm for Vertex
Cover Counting. It builds upon [12] and is only slightly more complicated.
The only new features are that we branch on vertices of degree 4 in some breadth-
first order and combine partial results from different components in moderate
polynomial time. (The polynomial factor has not been explicitly specified in [12],
but we can obviously state that it does not blow up by the routines we add.) In
Section 3 we prove a time bound that beats O∗(1.3803k), and we discuss why the
true bound should be even better. Then we turn to some graph theory useful for
clustering. In Section 4 we completely characterize the graphs where no edge is
in three P3. In the proof we tried to avoid too many tiresome case distinctions.
More generally, for graphs where every edge is in an O(1) number of P3 we prove
a dichotomy: the graph or its complement graph has degree O(1). Section 5 deals
with the algorithmic consequences of P3 structure. We solve Cluster Deletion
in O∗(1.47k) time. Improving some details in the polynomial-time parts seems
quite possible, however, the more intriguing question is about improved bases
of the exponential term. We have to leave this for further research, but, using
the above dichotomy we can at least show that the bottleneck case is graphs
with bounded degree, and therefore it may be possible to apply the separation
technique again. We discuss these possibilities also for Cluster Editing. Due



to the page limit, some simpler proofs are omitted, graph-theoretic notions are
only briefly reviewed, and there is no space for figures.

2 Vertex Cover Counting Algorithm

Let c(G, k) be the number of vertex covers with exactly k vertices in graph G.
The degree of a vertex v is the number of vertices adjacent to v. A degree-d ver-
tex has degree exactly d. The degree of a graph is the maximum vertex degree.
A subcubic graph has degree 3. We skip the definition of tree decomposition,
because we use the following result only as a “black box”: Any subcubic graph
has a tree decomposition of width at most (1/6 + ε)n, and such a tree decom-
position is computable in polynomial time for any fixed ε > 0 [7]. By dynamic
programming on this tree decomposition one can count the vertex covers of size
k in O∗(2(1/3+ε)k) = O∗(1.26k) time [12], thus we have:

Lemma 1. In subcubic graphs G one can compute c(G, k) in O∗(1.26k) time.

If G is the disjoint union of graphs G1 and G2 then, obviously, c(G, k) =∑k
j=0 c(G1, j) · c(G2, k − j). From this one easily concludes:

Lemma 2. Once the c(G′, j) are known for all components G′ of G, and for all
j ≤ k, we can compute c(G, k) in polynomial time.

Branching on a vertex v means: Either put v or all neighbors of v in the vertex
cover, remove the chosen vertices, all incident edges, and isolated vertices.

We refer to a series of such branching decisions on different vertices as a
branch. Thus, a branch corresponds to a node of the resulting search tree. The
residual graph in a branch is the graph that remains after the branchings. Note
that branching on a vertex divides the family of vertex covers of the current
residual graph exactly in two subfamilies of the vertex covers of residual graphs
in the two new branches. Hence, when the search tree is completed, we can sum
up the numbers of vertex covers (of the proper size) found in the residual graphs
at the leaves. Now we describe our algorithm.
Phase 1: preparation. First branch, as long as possible, on degree-d vertices
with d ≥ 5. In every branch consider the residual graph of degree 4 and continue
as described below. We will declare certain vertices roots.
Phase 2: separation. If a component without a root exists, then fix any vertex
in this component as the active root and proceed as follows. Layer j contains
the vertices at distance j from the active root. As long as degree-4 vertices exist
in some layer j > 2 of this component, choose one such degree-4 vertex closest
to the active root and branch on it. (Note that these branchings may change
the layers, and even disconnect some vertices from the active root.) This process
stops as soon as no degree-4 vertices remain in the layers j > 2. At this moment,
set the active root passive. – Iterate.
Phase 3: completion. Branch on the remaining degree-4 vertices near the
roots. This results in a subcubic graph. Let m ≤ k be the number of vertices



that remain to be added to the vertex cover. (Note that m depends on the branch
but is exactly known in every branch.) Compute the c(G′, i) in all components
G′ of the residual graph, and for all i ≤ m, using the algorithm in Lemma 1.
Finally combine these results in every residual graph, to compute the number
of vertex covers of size k, using the algorithm in Lemma 2. In the last step, the
counts from all leaves of the search tree are added.
Some refinement: For phase 2 we refine the rule for selecting the next degree-4
vertex to branch on. This is only a technicality that we insert just because we
can prove a better worst-case bound when using it.

Whenever a new layer j for branching is entered (that is, j > 2 is the smallest
index of a layer where still degree-4 vertices exist), pair up some degree-4 vertices
in layer j to siblings: Every degree-4 vertex in layer j is assigned an adjacent
parent vertex in layer j − 1. (If several possible parent vertices exist, then select
any one.) Siblings are degree-4 vertices with the same parent. It is not hard to
see that, for j > 3, every degree-4 vertex gets at most one sibling. Now, whenever
we have branched on a degree-4 vertex v and added v to the vertex cover (this
happens in one branch), and v has a sibling which is still a degree-4 vertex, then
branch on this sibling immediately.

3 Analysis

A simple analysis would show that the residual graph after phase 2 (separation)
always needs a vertex cover of at least yk vertices for some fraction y, giving
a time bound O∗(1.38028k−y1.26y). However y is very small in branches where
often 4 vertices are taken. We got a better result by relating these “cheap”
vertices in phase 3 directly to the number of branchings in phase 2.

Theorem 1. The vertex covers of size k can be counted in O∗(1.3740k) time.

Proof. The branching number for branching on degree-d vertices with d ≥ 5 in
phase 1 is the positive root of x5 = x4 + 1, that is, x < 1.3248.

For phase 2 the following observation is crucial: Since we always pick a degree-
4 vertex in a layer j > 2 closest to the root, and removals can make the distances
in the remaining graph only larger, the current distance j from root, of the
degree-4 vertices we branch on, can only increase during the process. Hence, if
j is the index of the current layer, any vertex being in a layer i ≤ j − 2 at this
moment is never removed later, and it also stays in layer i forever. Accordingly
we call these vertices persistent. Also note that any vertex being in layer j−1 at
this moment can either disappear due to branchings in layer j, or stay in layer
j − 1 forever, but it cannot slide into a layer with higher index later.

Let j be the current layer where we branch on degree-4 vertices. As already
stated in the algorithm, to every degree-4 vertex v in layer j we assign a parent
p(v) which is a neighbor of v in layer j − 1, and a grandparent g(v) which is a
neighbor of p(v) in layer j − 2. Note that g(v) is persistent. Since every vertex
in a layer i > 0 has at least one edge to a neighbor in layer i − 1, and vertex
degrees are at most 3 in the layers i, 2 < i < j, every persistent vertex in a layer



i > 2 can have at most 2 children and at most 4 grandchildren. Recall that any
two degree-4 vertices v, v′ with the same parent are siblings. If v is a degree-4
vertex without a sibling v′ (a degree-4 vertex with the same parent), we still use
the notation v′ and simply say that “v′ does not exist”.

We assign to certain vertices certificates: Consider any vertex v and its sibling
v′ in layer j. Case (1): Either v′ does not exist, or v, v′ are adjacent. Then, when
we branch on v we send a certificate to g(v). The branching vector is (1, 4), and
after the branching no child of p(v) is a degree-4 vertex anymore, since either v′

did not exist, or v′ has been removed now, or v has been removed which reduces
the degree of v′. Case (2): v′ exists and v, v′ are not adjacent. Then, when we
branch on the first sibling v, we send a certificate to g(v). In one branch we have
put the 4 neighbors of v in the vertex cover. Otherwise we have put only v in
the vertex cover, and then, by the refined rule, we branch on v′ which is still a
degree-4 vertex. In total we achieve the branching vector (2, 4, 5). After that, no
child of p(v) is a degree-4 vertex anymore, since p(v) has been removed which
reduces the degree of its children, or v and v′ have been removed.

This way, every persistent vertex in layers i > 2 receives at most 2 certificates
through its (at most 2) children. For each residual graph let r denote the total
number of certificates issued in all components. Hence at least r/2 persistent
vertices exist in layers i > 2. Since every such vertex is incident to an edge to
layer i− 1, at least r/2 edges remain after phase 2.

Let us count the branchings on the remaining degree-4 vertices near the
roots already in phase 2. Since in each residual graph only one search tree for
the components is decisive for the complexity (only the largest one, due to the
polynomial-time combination procedure from Lemma 2) and every component
has only O(1) degree-4 vertices at that moment, this adds only a constant factor
to the complexity. On the other hand, the graphs in phase 3 are now subcubic.

We call the vertices inserted in the vertex cover in phase 2 and 3 expensive
and cheap vertices, respectively. Let T (k, l) be the number of leaves of a search
tree, when it remains to add k + l vertices at most k of which are expensive
and at least l are cheap. Initially, k is the given k, and l = 0. In the following,
fractional numbers of objects make sense because their sum is finally rounded
to the next integer. (They could be avoided by doing an equivalent analysis for
blocks of 6 consecutive branchings.) As seen above, for every branching in phase
2, either on a single vertex or on siblings v, v′ of degree 4, at least 1/2 edges
need to be covered later in phase 3. Since the maximum degree is 3, at least
1/6 cheap vertices will be added later. Thus it is safe to transmit 1/6 from k
to l. This yields T (k, l) ≤ T (k − 1 − 1/6, l + 1/6) + T (k − 4 − 1/6, l + 1/6) and
T (k, l) ≤ T (k−2−1/6, l+1/6)+T (k−4−1/6, l+1/6)+T (k−5−1/6, l+1/6) in
the two cases. Together with T (0, l) ≤ 1.26l from Lemma 1 we obtain recurrences
for T (k) := T (k, 0), the number of leaves in the overall search tree: Since every
branching in phase 2 finally incurs another 1.261/6 factor in all summands, we
have T (k) ≤ (T (k − 1 − 1/6) + T (k − 4 − 1/6))1.261/6 and similarly T (k) ≤
(T (k − 2 − 1/6) + T (k − 4 − 1/6) + T (k − 5 − 1/6))1.261/6, with numerical
solutions 1.3699k and 1.3740k, respectively. ut



Our analysis guarantees the existence of at least one persistent vertex, with
an edge attached, for any two (1, 4)-branchings made. We “certify” only grand-
parents and ignore further persistent edges, especially in the large component
relevant for the complexity. If the analysis could use all persistent vertices, this
would almost double the deduction from the parameter. Refinements of the al-
gorithm itself may give further improvements: The worst case in our analysis
appears if every vertex in the largest component has two children. But then the
component is merely a binary tree, and vertex covers could be counted trivially
there. Finally, some clever measure-and-conquer might yield a simpler analysis.

4 Conflict Triple Structure in Graphs

Pn, Cn,Kn denote a chordless path, cycle, and a clique, respectively, of n vertices,
and Km,n a complete bipartite graph with m and n vertices in the partite sets.
The disjoint union G+H of graphs G and H consists of vertex-disjoint copies of
G and H, and pG is the disjoint union of p copies of G. The join G∗H is obtained
from G+H by inserting all possible edges between the vertices of G and H. The
complement Gc of G is obtained by switching all edges into non-edges and vice
versa. In an obvious sense, a P4 has two inner vertices forming the central edge,
and two outer vertices, and a P5 has a central vertex.

Let the score of an edge be the number of different P3 the edge belongs to.
A graph is score-s if every edge has score at most s. Note that a score-s graph
is also score-(s + 1), and an induced subgraph of a score-s graph is score-s. A
main goal of this section is to characterize the connected score-2 graphs G. We
say that G is spanning score-2 if G has a spanning tree of score-2 edges. To add
a vertex to a connected graph G means to introduce a new vertex adjacent to
at least one vertex of G. A graph is maximal score-2 if we cannot add another
vertex while keeping the graph score-2 and connected.

Lemma 3. Suppose that we add a vertex x to a connected score-2 graph G.
(i) If the extended graph remains score-2, and x is adjacent to vertex u of G,
then x is also adjacent to all vertices reachable from u via score-2 edges in G.
(ii) If G is spanning score-2 and the extended graph remains score-2, then x is
adjacent to all vertices of G.
(iii) If G is spanning score-2 and has a vertex non-adjacent to at least three
other vertices of G, then G is maximal score-2.

Doubling a vertex x of a graph means to insert a new vertex adjacent exactly
to x and its neighbors. The result of doubling several vertices does not depend on
the order. Now we define several special 6-vertex graphs, with the understanding
that only the explicitly mentioned edges exist.

– 3-asterisk: a K3 where each vertex is adjacent to one further vertex.
– 3-sun: a K3 where each two vertices are adjacent to one further vertex.
– fat P4: obtained from a P4 by doubling both inner vertices.
– fat P5: obtained from a P5 by doubling its central vertex.



Theorem 2. The following graphs (with arbitrarily large positive n, q, p) and
their connected induced subgraphs comprise the complete list of connected score-
2 graphs: 3-asterisk, 3-sun, fat P4, fat P5; Cn (n ≥ 4); Kq ∗ C5, Kq ∗ Kc

3,
Kq ∗ (K2 + K2); (qK1 + pK2)c (p ≥ 2).

Proof. It is easy to check that all listed graphs are score-2. All of them except
(qK1 +pK2)c are also spanning score-2. The 3-asterisk, 3-sun, fat P4, fat P5, and
Cn (n ≥ 6) also fulfill the conditions of Lemma 3 (iii), hence they are maximal
score-2. Adding a vertex to any of Kq ∗C5, Kq ∗Kc

3, Kq ∗(K2+K2) while keeping
score 2 yields a graph of the same type, with q increased by 1.

The reasoning for (qK1 + pK2)c is slightly more complicated. Graph (pK2)c

(p ≥ 2) is spanning score-2, hence, by Lemma 3 (ii), every added vertex is
adjacent to all its 2p vertices. Moreover, each of the added vertices must be
adjacent to all other added vertices except at most one. Thus we obtain only
graphs (qK1 + pK2)c. It is also impossible to add further vertices adjacent only
to vertices in the qK1 part, as this would create new edges of score above 2.

Thus we have shown that our list contains only score-2 graphs and is closed
under vertex addition. Next we prove that no further cases exist, that is, any
connected score-2 graph G is mentioned in the Theorem.

Let N(u) denote the set of neighbors of a vertex u in G. In Gc this means,
N(u) is the set of all non-neighbors of u. Let H(u) be the subgraph of Gc (!)
induced by N(u). If some vertex v has degree larger than 2 in H(u), then the
non-edge uv is in three P c

3 in Gc, a contradiction. If H(u) has an induced 2K2

then G has an induced (K1 +2K2)c. The other cases are that H(u) has no edges,
or the edges in H(u) form one of the induced subgraphs K2, P3, C3, P4, C4, C5.
We examine these cases one-by-one.

– If H(u) has an induced C5 then G has an induced K1 ∗ C5.
– If H(u) has an induced C4 then G has an induced K1 ∗ (K2 + K2).
– If H(u) has an induced P4 then G has an induced K1 ∗ P4. Since the two

edges from u to the outer vertices of the P4 and the central edge of the
P4 have score 2, Lemma 3 (i) gives that any added vertex is adjacent to
both inner vertices, or to u and both outer vertices, or to all five vertices.
These cases yield an induced 3-sun, K1 ∗C5, and K2 ∗P4 (induced subgraph
of K2 ∗ C5), respectively. By essentially the same argument, adding further
vertices to Kq ∗ P4 can only lead to Kq+1 ∗ P4 or Kq ∗ C5.

– If H(u) has an induced C3 then G has an induced K1,3 = K1 ∗Kc
3.

The P3 case requires some more work. If H(u) has an induced P3 (but none
of P4, C4, C5) then G has an induced subgraph with vertices x, y, u, z and edges
xy, xu, yu, uz. Since uz has score 2, any new vertices adjacent to u or z are
adjacent to both u and z (Lemma 3 (i)), hence also to x and y and to each
other (as no further edges in H(u)c = N(u) exist by assumption). This yields
only graphs of the form Kq ∗ (K2 +K1). Now let q be maximum, that is, further
vertices that we add are adjacent to x or y only. If some added vertex v is
adjacent to x only, then q = 1. Since vx, xu, uz have score 2, by Lemma 3 (i)
and the assumptions of our case, we can add at most one further vertex, and



this one is adjacent to y only, which yields a 3-asterisk. It remains the case that
v is adjacent to x and y. First observe q ≤ 2. If q = 2, we have a fat P4. For
q = 1, edges xu, yu, uz have score 2, hence any further vertex added is adjacent
to v only, and we get a fat P5.

Now we have settled all cases where H(u) contains more than one edge,
for some u. It remains to study connected score-2 graphs G where, for every
u, the neighborhood N(u) has at most one non-edge. Clearly, such G cannot
have induced K1,3. If G also lacks K3 then the maximum degree in G is 2,
hence G is Pn or Cn. Otherwise consider some maximal clique Kq, q ≥ 3. Any
vertex x added to this Kq has some neighbor u in the Kq, hence x ∈ H(u).
In Gc, vertex x is therefore adjacent to exactly one vertex in the Kc

q . It also
follows that we can add at most one vertex to the considered Kq. This yields an
induced Kq−1 ∗ (2K1). Since the same reasoning applies to the other Kq (where
x replaces u), u is the only vertex that could be added. Hence Kq−1 ∗ (2K1) is
already the entire G in this case. ut

Theorem 2 is best possible in the sense that already score-3 graphs are not
limited to special structures but can be arbitrarily complicated: Subdividing the
edges of any graph of degree 3 by further vertices generates a score-3 graph.
However, we can still prove an interesting dichotomy for graphs of any fixed
score s. Let N i(u) denote the set of vertices at distance exactly i from u.

Theorem 3. Let G be any connected graph of score s graph that has more than
(s + 1)2(2s + 1)2 + 1 ∼ 4s4 vertices. Then G or Gc has degree at most 3s + 1.

Proof. Let u be a vertex of maximum degree d in G, hence N(u) has d vertices.
Since every edge uv, v ∈ N(u) has score at most s, every vertex v ∈ N(u) must
be adjacent to at least d − s − 1 other vertices in N(u). Let x ∈ N2(u), and
let v ∈ N(u) be some neighbor of x. Since vx forms a P3 with uv, it is in at
most s − 1 other P3. It follows that x is adjacent to at least d − 2s − 2 of v’s
d− s− 1 neighbors in N(u), provided that d > 2s− 2. Next, let y ∈ N3(u), and
let x ∈ N2(u) be some neighbor of y. As shown above, x has at least d− 2s− 1
neighbors in N(u), each of which is involved in a P3 with xy, and xy has score
at most s, we get d− 2s− 1 ≤ s. This shows d ≤ 3s + 1 or N3(u) = ∅.

In case d ≤ 3s + 1 we are done, so let N3(u) = ∅. If d ≤ (s + 1)(2s + 1)
then, since d is the maximum degree, we have |N0(u)| + |N1(u)| + |N2(u)| ≤
(s + 1)2(2s + 1)2 + 1. Hence assume d > (s + 1)(2s + 1) in the following. Recall
again that every vertex in N2(u) has at least d− 2s− 1 neighbors in N(u), that
is, at most 2s + 1 non-neighbors in N(u). Thus, if |N2(u)| ≥ s + 1 then some
v ∈ N(u) is still adjacent to s + 1 vertices of N2(u). But uv has score at most
s. This contradiction shows |N2(u)| ≤ s. Now we see that the vertices in N0(u),
N1(u), and N2(u) have, in Gc, degree at most s, 2s + 1, and 3s + 1. ut

5 FPT Algorithms Using the Conflict Triple Structure

As usual, O(1) means “bounded by a certain constant”.



Theorem 4. Cluster Deletion is solvable in O(1.47k + n3) time.

Proof. As long as possible, take an edge e of score larger than 2, and delete e or
all edges forming a P3 with e. The branching number is 1.47. Once the graph is
score-2, every component is one of the graphs from Theorem 2. We show how to
solve Cluster Deletion in polynomial time in these cases. For graphs of size
O(1) and for Cn (and Pn) this is evident.

In (qK1 + pK2)c we take one vertex from each Kc
2 to form a clique of size

p, and the rest is a clique of size p + q. This solution needs p(p + q − 1) edge
deletions, which is optimal: Any two of the p pairs Kc

2 build an induced C4, hence
two edges must be deleted. Since all these C4 are edge-disjoint, no deletion is
counted twice. Thus we must delete at least p(p− 1) edges between these pairs.
Moreover, each combination of the p pairs and the q vertices in the (qK1)c builds
a P3, and all these P3 are edge-disjoint. Thus we must delete pq of these edges.
The sum is p(p + q − 1).

The other graphs in Theorem 2 consist of one clique K of size q, joined with
at most five other vertices. If we first disconnect these extra vertices from K,
we always get a solution with at most 5q + 3 deletions. (Summand 3 is easy to
verify.) Assume that some solution disconnects some r ≤ q/2 vertices from the
other q − r vertices of K. This costs already r(q − r) deletions which cannot be
optimal unless r(q − r) ≤ 5q + 3. Since q − r ≥ q/2, this yields rq/2 ≤ 5q + 3,
hence r ≤ 10 + 6/q and finally r ≤ 10 regardless of q. Since the vertices of K
are undistinguishable, we may select any 10 of them as candidate vertices for
split-off. Thus there exists an optimal solution that deletes edges only between
at most 15 predefined vertices, and we are back to the O(1) size case.

In all cases, the polynomial term in the time bound is dominated by the time
needed to enumerate the P3. Note that, during the process of edge deletions,
every triple of vertices becomes a new P3 at most once. ut

With minor modifications, the algorithm can output a concise enumeration of
all solutions (cf. [2]) within the same time bound. Theorem 3 has some interesting
algorithmic consequences, too:

Corollary 1. Let b > 1.3803 be any fixed base. If we can solve Cluster Dele-
tion in O∗(bk) time for graphs of degree O(1), we can do so for general graphs.

Proof. As long as possible, branch on edges of score 4 or larger. The branching
number is 1.3803. It remains a score-3 graph G. Assume G is connected, otherwise
we consider the components separately. Theorem 3 gives that G or Gc has degree
at most 10 (or G has O(1) size).

In Gc we also observe that the sum of degrees of any two vertices u, v with
distance larger than 2 (in Gc) is at most 3, since non-edge uv belongs to at
most three P c

3 . Consequently, Gc has at most one non-trivial component H with
more than one edge. If the second case of Theorem 3 applies, the degree of Gc

is O(1), thus H has size O(1) (or we get again a forbidden pair u, v as above).
That means, G has the form (qK1 + pK2 + H)c with a graph H of size O(1),



and we can solve this case in polynomial time, similarly as in Theorem 4. If the
first case of Theorem 3 holds, the degree of G is O(1).

Hence, either a rule with branching number at most 1.3803 is available, or
the instance is solvable in polynomial time, or G has degree O(1). ut

Remarkably, Corollary 1 implies that efforts to improve the base 1.47 only
need to consider score-3 graphs of O(1) degree. This also suggests that the
separation technique from Section 2-3 may be applicable. We have to leave the
question how much we can gain in this way for further research. For Cluster
Editing we get a similar “reduction to fixed degree” below.

Lemma 4. For any b > 1.62 there exists s such that, if a graph has an edge of
score larger than s then a branching rule for Cluster Editing with branching
number at most b is available.

Proof. Consider an edge uv with score s + 1, and let S be the set of those s + 1
vertices that form P3 with uv. We branch as follows: Either delete uv or keep it.
If we keep uv, then for each w ∈ S we must edit (insert or delete) one of the edges
uw, vw. Accordingly, we refer to w as an insertion or deletion vertex. Now decide
to make all w ∈ S deletion vertices, or decide on some insertion vertex w ∈ S.
In each of the last s + 1 branches continue as follows. Make every y ∈ S \ {w}
independently an insertion or deletion vertex. In both branches we must edit
one of the edges uy, vy, and in one branch we must also edit wy, because any
insertion (deletion) vertex must be adjacent (non-adjacent) to w. It is easy to
verify that the branching number of this whole branching rule on S, u, v satisfies
x2s+1 ≤ x2s+xs+(s+1)(x+1)s, equivalently x ≤ 1+1/xs+(s+1)((x+1)/x2)s.
For any x > 1.62 we have (x + 1)/x2 < 1, hence the branching number tends to
1.62 as s grows. ut

If the score of G is at most our fixed s, then Theorem 3 applies. The case
that Gc has degree O(1) is easily settled, similarly as in Theorem 4:

Lemma 5. In any class of graphs G where Gc has degree d, Cluster Editing
is solvable in polynomial time.

Corollary 2. Let b > 1.62 be any fixed base. If we can solve Cluster Editing
in O∗(bk) time for graphs of degree O(1) (depending on b), we can also do so for
general graphs.

Proof. Combine Theorem 3 with Lemma 4 and 5. ut

We conclude with another observation supporting the conjecture that the
separation technique is applicable to Cluster Editing:

Proposition 1. In graphs of degree d, all clusters in an optimal solution to
Cluster Editing have at most 2d + 1 vertices.

It is also interesting to notice that an optimal solution to Cluster Editing
in connected graphs of degree O(1) needs k = Θ(n) edits, since the cluster size
is limited (Proposition 1) and links between the clusters must be removed.
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1. Böcker, S., Briesemeister, S., Bui, Q.B.A., Truß, A.: Going Weighted: Parameter-
ized Algorithms for Cluster Editing. In: Yang, B., Du, D.Z., Wang, C.A. (eds.)
COCOA 2008. LNCS, vol. 5165, pp. 1–12. Springer, Heidelberg (2008)

2. Damaschke, P.: Fixed-Parameter Enumerability of Cluster Editing and Related
Problems. Theory Comp. Systems, to appear

3. Damaschke, P., Mololov, L.: The Union of Minimal Hitting Sets: Parameterized
Combinatorial Bounds and Counting. J. Discr. Alg., to appear

4. Dehne, F., Langston, M.A., Luo, X., Pitre, S., Shaw, P., Zhang, Y.: The Clus-
ter Editing Problem: Implementations and Experiments. In: Bodlaender, H.L.,
Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 13–24. Springer, Hei-
delberg (2006)

5. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer (1999)
6. Fomin, F.V., Gaspers, S., Saurabh, S., Stepanov, A.A.: On Two Techniques of

Combining Branching and Treewidth. Algorithmica, to appear
7. Fomin, F.V., Hoie, K.: Pathwidth of Cubic Graphs and Exact Algorithms. Info.

Proc. Letters 97, 191–196 (2006)
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