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Abstract. We study the additive errors in solutions to systems Ax = b
of linear equations where vector b is corrupted, with a focus on systems
where A is a 0,1-matrix with very sparse rows. We give a worst-case error
bound in terms of an auxiliary LP, as well as graph-theoretic character-
izations of the optimum of this error bound in the case of two variables
per row. The LP solution indicates which measurements should be com-
bined to minimize the additive error of any chosen variable. The results
are applied to the problem of inferring the amounts of proteins in a mix-
ture, given inaccurate measurements of the amounts of peptides after
enzymatic digestion. Results on simulated data (but from real proteins
split by trypsin) suggest that the errors of most variables blow up by
very small factors only.
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1 Introduction

Suppose that we are given an analytical chemistry problem that obeys the fol-
lowing informal “axioms”.

– An unknown mixture of compounds is given.
– The compounds can be split into constituents by a certain chemical reaction

triggered by an external compound E.
– The compounds react only with E and decay independently of each other.

No other chemical reactions take place.
– We have a database telling which constituents result from the splitting of

each compound.
– The compounds are hard to measure directly.
– The amount of each constituent can be measured directly.

Now we would like to infer which compounds are in the mixture, along with
the amount of each one. Obviously this problem can be formulated as a system
Ax = b of linear equations, where A is the incidence matrix of constituents (one



per row) and compounds (one per column), vector b is the measured mixture of
constituents, and x is the unknown vector of compounds.

Only nonnegative vectors make sense here: b ≥ 0 and x ≥ 0. Therefore we
can immediately set to zero all variables that appear in rows j where bj = 0, thus
leaving a system Ax = b with a (perhaps) smaller matrix A where all entries of
b are strictly positive.

However, reality dictates that we have to take noise in account. We cannot
measure b exactly. In the following we adopt the assumption that all entries of
b have an additive error of at most some parameter value ε. Instead of the true
bj we therefore measure some amount between bj − ε and bj + ε. This involves
a certain simplification because one may be able to measure some constituents
more accurately than others, however the assumption is not too artificial and
allows for nice mathematical analysis, as we will see. Note also that one may
disregard entries known to be unreliable right from the beginning and restrict
the linear system to selected rows.

We may observe bj = 0 instead of some true bj ≤ ε, thus discarding some
variables that should actually be positive. But since we have x ≥ 0, affected
variables are in this case bounded by ε, too, hence it is not a bad mistake to
ignore them. In the following we are aim for upper bounds on the additive errors
of the variables in general. Note that only the structure of matrix A matters.

Our aim is to classify variables by error bounds in a specific application where
A has only entries 0 and 1, and A is sparse, i.e., has very few 1 entries: We are
particularly interested in the question of absolute quantification of proteins in a
protein mixture by means of shotgun proteomics. The general idea of shotgun
proteomics is to split large protein molecules into smaller peptides, which later
can be observed by mass spectrometry. That is, the compounds are proteins,
and constituents are peptides after enzymatic digestion. The problem of just
inferring which proteins are present leads to the combinatorial problem of Set
Cover or, equivalently, Hitting Set. But we may also want to quantify proteins,
e.g., in order to detect changes of protein expression. See, e.g., [11, 2, 13, 9] for
more background.

Evidence of protein presence is established through analysis of peptide ob-
servations, as each protein is believed to be generating consistent peptide obser-
vations. Many proteins contain unique peptides, what means that after splitting
they will produce some peptide that other proteins would not. Current quantifi-
cation procedures use this fact and attempt to quantify proteins expression by
measuring unique peptides’ quantities with one or another lab technique, e.g.,
iTRAQ. In the system described in [3], relative or absolute quantification is done
by mass spectrometry. Also error propagation is addressed. However it is said
that for “protein quantification, only unique peptides are taken into consider-
ation, whereas peptides belonging to more than one protein sequence are only
used for proving the identification of the corresponding proteins” although they
are ubiquitous.

A natural question is whether the linear system of equations could be used
to include also ambiguous peptides directly in the inference process (assuming



bounded errors), and how measurement errors would then propagate. Intuitively,
unique peptides’ quantities will not affect noise level, while the more shared a
peptide is, the more noisy are the inferred protein quantities. We stress that
error propagation solely depends on the incidence matrices, and the present
paper focuses on this aspect. In particular, this work is not concerned with
measurement technologies but only with the structure of the protein-peptide
incidence matrices. We observe that many peptides appear in only two candidate
proteins, which also allows a graph-theoretic view of the problem.

Apparently the work most related to ours is “the first attempt to use shared
peptides in protein quantification” made in [6]. Non-unique peptides can also
contribute to quantification, specifically to quantify those proteins which either
lack unique peptides themselves or unique peptide observations. The suggested
LP model incorporates shared peptides’ relative quantities and attempts to ex-
plain them by minimizing some error measure. Different detectability of peptides
can be modelled by individual scaling factors applied to the entries of vector b
before giving it to the linear system, whereas matrix A is not affected. While
error minimization is quite natural, it might still not yield the proper prediction
of actual quantitites. Despite similarities to [6], the present paper explicitly fo-
cuses on the aspect of controlled errors and their propagation and also makes
some graph-theoretic contributions.

Not surprisingly, error bounds in linear systems is an extensively studied
subject, see e.g. [1, 4, 12]. However, here we want elementary, easily applicable
bounds for the case of 0, 1-matrices A with sparse rows and perturbations limited
to b, and we aim at conclusions for the protein inference problem (using simulated
digestion and mixture data, however from a real protein database.) A related
problem is to explain the measurements by minimal mixtures (following the
parsimony principle), or algebraically, finding and enumerating the solutions
with minimal sets of nonzero variables in linear systems. In [5] we proved fixed-
parameter tractability of that problem, parameterized by the solution size and
the number of variables per equation. Another, less related problem with data
mining applications is the reconstruction of a low-rank factorization of a given
matrix under extra assumptions, as in [8] where an MILP formulation is used to
attack the problem.

The paper is organized as follows. Section 2 gives the necessary definitions
and basic facts. The central definition is a measure of error propagation as the
solution to some linear program (LP). A relevant special case is linear systems
where A is the incidence matrix of a graph. In Section 3 we obtain a complete
characterization of the optimal error measure in this case. Section 4 briefly dis-
cusses the sparsity of optimal combinations of measures, and a method to obtain
optimality certificates. After perturbation of vector b, a system Ax = b may have
no solution at all, and then we would like to satisfy all equations as good as pos-
sible. Section 5 gives a combinatorial characterization of the optimal solution in
the case of bipartite graphs. (Due to space limitations we could not insert figures
to illustrate the graph-theoretic results and proofs.) In Section 6 we report some
simulation results and draw conclusions.



2 Error Bounds Through Linear Programming

Vectors x are always understood to be column vectors, therefore the transposed
xT is always a row vector. For two vectors x and y of equal lengths we mean by
x ≤ y that xi ≤ yi for all i, similarly x < y means that xi < yi for all i. Symbol
|x| denotes a vector that consists of the entries |xi| for all i. The notation should
not be confused with any norm of x. Instead, by ||.||1 we mean the `1-norm, i.e.,
the sum of absolute values of all entries of a vector. Symbol 1̄ denotes a vector
where all entries are 1, with a length that will always be clear from context.
Observe that the `1-norm can be written as the inner product ||xT ||1 = |x|T 1̄.
The incidence vector of a subset V of variables is the vector where all variables
in V are set to 1, and all others are 0. A unit vector is an incidence vector of a
single variable: (0, . . . , 0, 1, 0, . . . , 0).

The following is the central concept of the paper. We first state it formally
and discuss it later after having proved some properties.

Definition 1. Let A be a fixed m× n-matrix and zT an n-vector. With respect
to A we define e(zT ) := min{||yT ||1 : yTA = zT }. If no such yT exists, e(zT )
remains undefined.

Theorem 1. Consider an admissible linear system Ax = b with m × n-matrix
A. We also denote by x a specific solution vector. Let zT be any n-vector for
which e(zT ) is defined, and ε > 0 some scalar. Furthermore let b′ be an m-vector
with |b−b′| ≤ ε1̄. Then there exists an n-vector x′ with |Ax′−b′| ≤ ε1̄. Moreover,
any such x′ satisfies |zTx′ − zTx| ≤ 2e(zT )ε. If Ax′ = b′ is admissible, too, i.e.,
has an exact solution x′ then |zTx′ − zTx| ≤ e(zT )ε.

Proof. The first assertion is trivial: In particular, x′ := x yields

|Ax′ − b′| = |Ax− b′| ≤ |b− b′| ≤ ε1̄.

To show the second assertion, let yT be a vector as in the definition of e(zT ),
that is, yTA = zT and e(zT ) = ||yT ||1. Then we get:

|zTx′ − zTx| = |yTAx′ − yT b| = |yT (Ax′ − b)| = |yT (Ax′ − b′ + b′ − b)|

≤ |yT (Ax′ − b′)|+ |yT (b′ − b)| ≤ |y|T |Ax′ − b′|+ |y|T |b′ − b|

≤ 2|y|T ε1̄ = 2ε|y|T 1̄ = 2ε||yT ||1 = 2e(zT )ε.

The third assertion follows from the same analysis, since one term disappears.
ut

In particular, if zT is the incidence vector of a set V , Theorem 1 says that the
uncertainty in the inferred total amount of compounds in V is, at most, propor-
tional to the uncertainty of measured values and proportional to e(zT ). Hence
e(zT ), which depends only on A, serves as an important measure of accuracy of
the inferred results. If zT ist the unit vector with the ith entry being 1, then
e(zT )ε bounds the deviation of the value of the ith variable, since zTx = xi.



Here some discussion is in order. In the mentioned application the uncorr-
puted system Ax = b always has a solution, for trivial reasons. System Ax = b
may lack a unique solution, but in our examples this is often the case only due
to undistinguishable variables that always appear together. We can merge such
variables (declare their sum a new variable). That is, subsets of variables may
still have uniquely determined sums. Moreover, Definition 1 and Theorem 1 ob-
viously do not become more complicated for general vectors zT , therefore we
consider also subsets of variables, even though we primarily want the values of
single variables. The disturbed system Ax′ = b′ usually becomes inconsistent,
because some rows of A are linearly dependent, but the errors in b′ are “uncor-
related”.

We refer to the problem in Definition 1 as Bound Minimization. By a well-
known standard trick, minimizing an `1-norm

∑
i |yi| under linear constraints

can be written as an LP, hence we can compute e(zT ) for any given zT by an
LP solver. (Introduce a new variable si for each |yi| and new constraints si ≥ yi

and si ≥ −yi, then minimize
∑

i si. Then any optimal solution satisfies si = |yi|
for all i.) However in relevant special cases we can apply simpler combinatorial
methods to Bound Minimization, as we will see.

For non-zero vectors zT we always have e(zT ) ≥ 1, and e(zT ) = 1 holds if
and only if zT is a row of A. We omit the proof of this simple observation.

3 Unit Vectors and Rows with Two Variables

In the following, all matrices A have only entries 0 and 1. In this section we
consider the speical case of Bound Minimization when all rows of A have at
most two entries 1. (Experimental results suggest that this case is of particular
interest in our application, see the example later on.) We define a graph G such
that A is the incidence matrix of G, that is, columns and rows of A correspond
to vertices and edges, respectively, of G, and an entry 1 means that the vertex
belongs to the edge. In particular, a row with exactly one entry 1 corresponds
to a loop. Therefore, when zT is a unit vector, we can obviosuly reformulate
Bound Minimization as an edge labeling problem in graphs.

Edge Labeling: We are given a graph G, possibly with loops, and a dis-
tinguished vertex v. The problem is to label the edges (including the loops) of
G with real numbers, thereby minimizing the sum of absolute values of all edge
labels, under the following constraint: Let S(u) denote the sum of labels of all
edges incident to vertex u. Then S(v) = 1, and S(u) = 0 for all u 6= v.

If several edge labelings satisfy the above constraints, then any convex linear
combination of them, i.e., linear combination with positive coefficients that sum
up to 1, is also a feasible solution to Edge Labeling.

Assume that Ax = b has a solution x. Also assume that G is connected,
otherwise the following reasoning holds in every connected component. It is
folklore in linear algebra that x is uniquely determined if G has a loop or an odd



cycle. Otherwise G is bipartite, and Ax = b has a 1-dimensional solution space.
In the following we extend this result to error propagation, in the sense that we
characterize the optimal solutions to Bound Minimization. Here, a tour is a
path in a graph, where edges may be traversed several times in any direction.

Theorem 2. If graph G has neither loops nor odd cycles (bipartite graph), then
Edge Labeling has no solution. Otherwise there exists a labeling. Furthermore,
there exists an optimal labeling of one of the following two types, where edges
not mentioned get label 0:
(i) Take a shortest path from v to some loop, and assign labels +1 and −1
alternatingly to its edges, including this loop.
(ii) Take a shortest tour of odd length, and without loops, from v to itself, thereby
adding alternatingly +1/2 and −1/2 to the labels of traversed edges.
Moreover, a tour of type (ii) consists of a path P (maybe empty), followed by an
odd cycle C and the reverse of P .

Proof. For the moment we relax the constraint in Edge Labeling and call
a labeling valid if S(v) > 0, and S(u) = 0 for all u 6= v. Denote by s > 0
the smallest absolute value in a given labeling. Any valid labeling can then
be changed into a correct labeling by dividing all labels by S(v). We shall see
that successive subtraction of type (i) and (ii) labelings from a given labeling
eventually produces a zero labeling, i.e., where all labels are zero.

So, consider a given optimal labeling. We start at v a tour T through, alter-
natingly, positively and negatively labeled edges. At the same time we subtract
s from the absolute value of the label of every traversed edge. Observe that
there cannot exist an even cycle where positive and negative labels alternate,
since then subtraction would not alter any S(u), contradicting optimality of the
initial labeling. Hence a tour T with the following properties exists:

– T terminates at a loop or at v.
– In the former case, T has no other loops.
– in the latter case, T is free of loops and has odd length.
– Subtraction of labels (as described) leaves a new valid labeling.

Hence we find another tour in the graph equipped with a new valid labeling,
and so on, until we get the zero labeling. In the event that v gets isolated, that
is, all edges incident to v have labels reduced to 0, property S(u) = 0 for all
u 6= v implies that all labels in the graph are already 0 as well, since otherwise
the initial labeling was not optimal. It follows that any given optimal labeling
is a convex linear combination of labelings of type (i) or (ii). It also follows that
loop-free bipartite graphs have no labeling at all.

In the set of valid labelings obtained in the above construction, every edge
has a fixed sign: either positive or negative or zero. Moreover the sum of absolute
values of labels is a linear function on the restricted set of labelings with those
fixed signs. Since a linear function on a convex polytope achieves its optimum
at some extremal point, it follows that some optimal labeling is of type (i) or
(ii). Now, s = 1 in case (i) and s = 1/2 in case (ii) is enforced by the constraint



in the problem statement. Finally, optimality yields that T is a shortest tour of
the respective type.

Consider type (ii). If a vertex w appears at least twice in T and the subtour
between two copies of w has even length, we can delete this subtour from T ,
which contradicts optimality. If w appears at least three times in T , then some
subtour between two of the copies has even length, which was already excluded.
Thus w appears at most twice in T . Now let w be any vertex that actually
appears twice. Such w exists, since at least v appears twice. Now we choose w
such that all vertices on the subtour between the two copies of w are distinct;
note that such w exists. Let P,C,Q denote the subtours from v to w, w to w,
and w to v. Then C is an odd cycle. Since T has odd length, P and Q are both
even or both odd. If P is no longer than Q, we can replace Q with the reverse of
P without increasing the length of T , while keeping the total length odd. The
case where P is longer than Q is symmetric. ut

In the case of bipartite graphs, e(zT ) for a unit vector zT is undefined, how-
ever: Consider any two vertices u and v from different partite sets of G, and let
zT be the incidence vector of {u, v}. Then e(zT ) exists and is the distance of u
and v. More generally we have in any graph G, not necessarily bipartite:

Theorem 3. Let u and v be any two vertices of G, and let zT be the incidence
vector of {u, v}. Then e(zT ) is the minimum length of an odd path between u
and v, and e(zT ) is undefined if no such odd path exists.

We omit the proof which is very similar to Theorem 2. Optimal tours in The-
orems 2 and 3 can be found by adaptations of standard algorithms for shortest
paths.

We conclude the section with a few remarks.
We can get upper bounds on errors also by elimination: In the following

we use e(xi) as a shorthand for e(zT ) where zT is the indicator vector of xi.
As observed earlier, e(xi) = 1 if xi appears as the only variable in some row.
By induction and the triangle inequality we obtain: If some row has the form
xi +

∑
k∈K xk, where

∑
k∈K e(xk) ≤ t, then e(xi) ≤ t+ 1. This can be extended

straightforwardly to subsets of variables.
We emphasize that our results give worst-case upper bounds, while the ac-

tual error propagation should be much better. We illustrate this for case (i) of
Theorem 2 (which is responsible for the error bounds of most variables in our
simulation examples). The worst case appears only if the edges on the path are
alternatingly labeled +1 and −1. To be specific, consider the following sequence
of edge labels (beginning with the loop): +1,−1,+1,−1,+1,−1 . . . Then Gaus-
sian elimination along this path yields the following error factors of variables:
+1,−2,+3,−4,+5,−6, . . . (i.e., these are the factors in front of ε). Now the point
is that, in real data, the errors in vector b which yield the edge labels will barely
form such alternating paths. Assuming, for instance, that measurement errors
are random and independent, the sequence of error factors will be a random walk
that is unlikely to move very far away from 0.



4 Properties of Optimal Combinations of Rows

We come back to Bound Minimization in general, that is, the computation of
e(zT ) = min{||yT ||1 : yTA = zT }for a given matrix A and vector zT . In our
sparse matrices we observe that optimal linear combinations are almost always
built from a few rows, and often by just applying Theorem 2 (i). Hence optimal
y are easier to obtain than by running an LP solver on relatively large matrices.
The sparsity of optimal vectors y is partly explained by the fact that rows of
A are sparse, and there always exists an optimal y where the set of rows of A
with nonzero coefficients is linearly independent. (The latter claim follows by
standard arguments from LP theory that we omit.)

On the other hand, the possible numerical values of e(zT ) are dense, e.g.,
they can be arbitrarily close to 1. As an example that gives the idea, consider
an n×n matrix with one row of only 1s, and n− 1 other rows where x1 appears
together with any one of the variables x2, . . . , xn. Then e(1, 0, . . . , 0) = 1 + 2

n−2 .
In general matrices A this means that linear combinations of rows that yield
e(zT ) (as in Definition 1) may involve rows with arbitrarily many 1 entries.

Therefore it would be nice to confirm optimality of a vector y obtained by
a combinatorial method, without actually solving an LP. The natural idea to
get an optimality certificate is to dualize the LP for Bound Minimization.
Straightforward calculation and algebraic manipulation yields the following dual
problem: max zT r, such that −1̄ ≤ Ar ≤ 1̄ (where entries of r may be negative).
To confirm a value e(zT ) in the case of unit vectors zT , we only have to set
the corresponding entry of r to the alleged value and choose other entries so as
to keep all entries of Ar in the range from −1 to +1. Since y usually involves
only a few rows, some sparse r is often quickly found in an ad-hoc way, without
running an LP solver on the entire dual problem.

5 Approximate Solutions with Two Variables per Row

Theorem 1 and the subsequent discussion suggests a problem of independent
interest. Given a 0, 1-matrix A and a vector b, we actually want to compute x
such that ε is minimized in |Ax− b| ≤ ε1̄.

If A has at most two entries 1 per row, this yields another graph labeling
problem, on the incidence graph G of A:

Vertex Labeling: Given a graph with edges labeled by real numbers, label
the vertices by real numbers such that the label of every edge differs from the
sum of labels of its vertices by at most ε.

The problem can be transformed into an LP, but again we would like to have
simpler combinatorial algorithms and structural insights.

The case of bipartite incidence graphs G is of special interest, since already
the exact problem has no unique solution. In the following we give a combina-
torial characterization of an optimal vertex labeling. Given a solution, i.e., some



vertex labeling, where the maximum deviation is ε, we call an edge high (low) if
the sum of its vertex labels equals the edge label plus (minus) ε.

Theorem 4. For Vertex Labeling in a bipartite graph we have: If there exists
an alternating cycle of high and low edges, then the vertex labeling is optimal.
Otherwise there exists a vertex incident with some high edge but not incident
with any low edge, or vice versa.

Proof. Let C be an alternating cycle. In order to improve the labeling we must
get rid of all high and low edges, in particular those in C. Let e be any high
edge in C. We must decrease the label of some vertex v of e by some δ > 0.
But since v is also incident with a low edge, we must increase the label of its
other vertex by more than δ, and so on. In this way we go round the cycle and
eventually arrive at v whose label must be decreased, but now by more than δ,
a contradiction.

By definition, there always exists some high or low edge. If every vertex
incident with some high (low) edge is also incident with some low (high) edge,
we can obviously form an alternating cycle. Now both assertions are proved. ut

Theorem 4 suggests a simple algorithm for Vertex Labeling in bipartite
graphs: Take a vertex incident with some high (low) edge but no low (high) edge
and decrease (increase) its label. This removes some high or low edge, or improves
ε. This is repeated until an alternating cycle appears. Of course, worst-case time
analysis would require some more work, along the lines of similar algorithms for
flow problems.

6 Some Experimental Results and Conclusions

Remember from Theorem 1 that e(zT ) of a unit vector z gives an error bound
for the corresponding variable. To get an idea of the actual distribution of these
errors we studied 100 matrices obtained from mixtures of 20 proteins randomly
picked from Swissprot database, with trypsin digestion simulated in silico. In-
put matrices A are then constructed as explained in the Introduction. Instead
of peptide identities (sequences) we distinghuished them only by their masses.
Clearly, peptide identity information would have further improved the results.

We evaluated the e(zT ) values for each variable by using both Edge Label-
ing (Theorem 2) and the LP considering all rows of the matrix, and it seems
that in almost all cases where Edge Labeling manages to find a bound, these
results strongly agree. In spite that for few variables e(zT ) are undefined or
bounds are scaringly high, the average values are quite reassuring. For the ma-
jority of variables e(zT ) is still small, taking values at most 4, with an average
below 3. The low e(zT ) values persist also for larger mixtures; we tried some
with 50 proteins in the mixture, and with further candidate proteins inserted to
account for undetected peptide masses.

As a more detailed illustration we report one typical example. To simplify
notation we write i for xi, every row is written as the set of variables appearing



there, without parantheses, and separated by commas. We use symbol e to de-
note the error bound. Sets of variables with e = 1 are the given rows sorted by
the number of variables. In particular, single variables with e = 1 are the pro-
teins identified from unique peptides. Then we list the variables for every bound
e > 1 that occured. The example contains 42 variables (candidate proteins).
After merging of variables that appear only together, and therefore cannot have
uniquely determined individual values, there remain 40 distinct variables.

e=1: 1, 2, 10, 14, 15, 16, 21, 22, 27, 28, 29, 32, 33, 34, 35, 38, 40, 41, 42,
1 21, 1 28, 2 15, 2 22, 2 24, 2 29, 3 21, 4 15, 5 28, 7 29, 8 33, 9 21, 9 27, 12 27,
12 28, 12 42, 13 17, 14 17, 14 22, 14 27, 15 17, 15 35, 16 30, 16 31, 20 28, 22 36,
23 29, 26 29, 27 29, 29 34, 29 40, 33 35, 37 41,
1 6 23, 1 11 37, 2 18 19, 2 28 41, 9 29 41, 10 29 41, 18 19 41, 23 24 41, 25 28 31,
27 33 40, 1 23 24 42, 23 24 35 41,
14 27 28 35 36, 15 23 25 26 42, 23 25 27 41 42,
20 21 24 25 27 37, 11 14 24 25 27 35 41,
1 2 10 12 14 21 23 24 27 29 33 34 35 41 42,
1 2 14 15 16 22 23 24 27 28 29 31 35 37 38 39 40 41 42

e=2: 3, 4, 5, 7, 8, 9, 12, 17, 18, 20, 23, 24, 26, 30, 31, 36, 37

e=3: 13; e=3.67: 11; e=3.83: 25; e=4: 6

The solution to this system turns out to be uniquely determined, subject
to the few merged variables. (By elementary linear algebra, this fact depends
only on A but not on b.) Remarkably, almost half of them have e = 1 and
e = 2, respectively, and only a small rest have e ≤ 4. We emphasize that many
rows consist of one or two variables, and the optimal linear combinations almost
exclusively use these graph edges and loops. The graph also exhibits some cycles,
but only case (i) from Theorem 2 takes effect in this example, because loops
are abound. Only a few optimal error factors are “hidden more deeply”. For
instance, e ≤ 4 for variables 11 and 25 is easy to find without computer help,
but the optimal result detected by GLPK is slightly better: e = 3.67 for variable
11 is a result of the following rows:
1, 21, 28, 35, 20 28, 37 41, 1 11 37, 20 21 24 25 27 37, 11 14 24 25 27 35 41,
with coefficients -2,+1,-1,-1,+1,-1,+2,-1,+1, all divided by 3.

We observe that the matrix structure is rich enough to give almost all vari-
ables uniquely determined values (where the only exceptions we found were sets
of proteins with equal peptide mass spectrum), and at the same time their accu-
mulated errors are small. Moreover, optimal combinations of measurements are
mostly built from very sparse equations using a bit of elementary graph theory.
(Thus the restriction to rows with at most two 1s is not as narrow as it may
seem.) In some cases the LP gave somewhat better combinations, but this degree
of accuracy does not seem to be very important, as the e(zT ) merely have the
role of pessimistic worst-case bounds; see the earlier remark.



We conclude that quantitative mixture reconstruction is possible when suf-
ficiently accurate measures are available. At least this does not fail already for
intrinsic mathematical reasons, i.e., by the structure of the incidence matrices.
Although we could test, at this stage, only simulated (i.e., random) mixtures,
we expect similar matrix structures also for real mixtures. It must be admitted
that our simulations did not take undetectable peptides into account, i.e., the set
of available rows in the matrices may be more limited. However we also notice
that most unit vectors have several alternative representations as “small” linear
combinations of rows, and it suffices that some of these row sets is present. It was
also pointed out in [6] that improved accuracy of the measurement technology
will increase the power of mathematical inference methods. Another type of er-
rors not considered here is that some proteins could very well be in the mixture
but are ignored because their masses are not listed among the observed ones,
although some of the masses they share with other proteins are detected. We are
planning to address this issue in the future by extending the selection of columns
included in the input matrix A. However, current quantification procedures con-
sider only unique peptides, and thus the first results for shared peptides are a
step forward.

Other directions of further work include: to examine larger simulated mix-
tures and real mixtures, to derive both simple upper bounds and combinatorial
optimality criteria for Bound Minimization also when rows have some more 1s
entries (however the resulting hypergraph problems could be intrinsically more
complicated), to give a theoretical explanation of the observed limited error
propagation by “helpful” properties of the matrices, and to study probabilistic
error models. In our study we adopted a simple error model to start with, as-
suming a uniform error bound ε in b. Due to practical considerations we may
want to allow for different errors of the bi, a “vector-ε” so to speak, which may
be known or unknown in advance. On the other hand, our exact systems Ax = b
typically have uniquely solutions (after removal of duplicate columns) and are
even largely overdetermined. These two points give rise to the following type of
problem:

Given a matrix A with full column rank, and a corrupted vector b′ coming
from an unknown b = Ax, can we efficiently compute x′ such that in Ax′ most
entries are close to the given ones in b′, with only few outliers? In particular,
can we recognize which bi had small and large errors in a particular instance?
What global error assumptions on b are sufficient to enable such an approximate
reconstruction of x? It is clear that some error assumptions must be made.
Also, this is not a single clear-cut problem but rather a research direction. The
work in [6] belongs to this direction and proposes some error norm, but can
also think of alternative ones. For an m× n matrix A this problem amounts to
a geometric one: reporting and clustering the intersection points of subsets of
n linearly independent hyperplanes in an arrangement of m > n hyperplanes
in n dimensions, perhaps under additional assumptions how the arrangement
was obtained. The problem can also be formulated as finding maximal feasible



subsystems of linear equations. Negative complexity results as in [7, 10] do not
rule out the possibility of efficient parameterizations.
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