
Parameterized Algorithms for

Double Hypergraph Dualization with

Rank Limitation and Maximum Minimal

Vertex Cover

Peter Damaschke
Department of Computer Science and Engineering

Chalmers University, 41296 Göteborg, Sweden
ptr@chalmers.se

Abstract

Motivated by the need for succinct representations of all “small”
transversals (or hitting sets) of a hypergraph of fixed rank, we study the
complexity of computing such a representation. Next, the existence of
a minimal hitting set of at least a given size arises as a subproblem. We
give one algorithm for hypergraphs of any fixed rank, and we largely
improve an earlier algorithm (by H. Fernau, 2005) for the rank-2 case,
i.e., for computing a minimal vertex cover of at least a given size in a
graph. We were led to these questions by combinatorial aspects of the
protein inference problem in shotgun proteomics.

1 Introduction

1.1 Some Terminology

A hypergraph H = (V,E) consists of a set V of vertices and a set E of
edges, each being a subset of V . If not stated otherwise, we consider only
simple hypergraphs H, which means that no edge is subset of another edge.
(Simple hypergraphs are also known as Sperner families.) The support of a
hypergraph is the set of all vertices covered by edges, the remaining vertices
are called isolated. A hitting set (synonymously: transversal) of H is a subset
of V that intersects every edge. A minimal hitting set (minimal transversal)
is a hitting set such that no proper subset is a hitting set, too. Note that
isolated vertices are never contained in a minimal transversal. The rank of H
is the largest number of vertices in an edge of H. Restricting a hypergraph
H to a subset W ⊂ V means to throw out all vertices that are not in W .
Note that a restricted hypergraph is in general not simple even if H was;

1

some edges may even be emptied. Hypergraphs of rank 2 are graphs, and
hitting sets in graphs are also known as vertex covers.

We consider the following two operators on hypergraphs that do not
change the vertex set but the edge set. The edges of the dual hypergraph HD

are the minimal transversals of H. For a positive integer k, the edges of the
rank-limited hypergraph Hk are all edges of H of size at most k. Recall that
we consider only simple hypergraphs. HD is always a simple hypergraph
by definition, and Hk is simple if H was. A well known duality theorem
(see any standard reference like [1]) states HDD = H, and trivially we have
Hkl = Hmin(k,l). However, alternating applications of dualization and rank
limitation can yield new hypergraphs with interesting interpretations, as we
will see below. HD itself describes implicitly the family of all hitting sets of
H, since it is obviously sufficient to know the minimal transversals.

The Hitting Set problem is: Given a hypergraph H and a number k,
find some hitting set of size at most k in H. The Maximum Minimal
Hitting Set (MMHS) problem is: Given a hypergraph H and a number k,
is there some minimal transversal with more than k vertices in H? (In
MMHS we do not attempt to compute the exact size of a maximum minimal
transversal, we only want to figure out whether it is larger than the given k.)
The problems Vertex Cover and Maximum Minimal Vertex Cover
(MMVC) are similarly defined for graphs.

Notice that, by definition and by the duality theorem, the following three
statements are equivalent for simple hypergraphs H: (i) MMHS for H, k has
a negative answer; (ii) HD = HDk; (iii) H = HDkD.

1.2 An Inference Problem from Bioinformatics

In shotgun proteomics, an unknown sample of proteins is digested into pep-
tides which are identified (e.g., by mass spectrometry), and then a database
of candidate proteins is searched for proteins consisting of the peptides
found, in order to infer the proteins in the sample. Instead of peptides
one may use their masses only. Among several technical issues, shotgun
proteomics applied to mixtures of proteins involves a principal combinato-
rial problem: One cannot see which peptides (or masses) come from which
protein. It is implicit in [14] and other work that this leads to the problem
of computing transversals in hypergraphs.

The formalization as a hypergraph H works as follows: V is the set of
candidate proteins (whose peptide sets are contained in the observed set),
and for every observed peptide, an edge represents the set of candidate
proteins containing this peptide. Some upper bound k on the number of
proteins in the sample is known, and a wealth of edges has a size limited by
some small constant r, that is, the corresponding peptide appears in very few
candidate proteins. We consider the hypergraph consisting of these small

2

edges and try to infer the possible protein mixtures. Every edge has to be
“explained” by the presence of some of its vertices in the mixture, hence
the possible solutions are exactly the hitting sets of size at most k. (Thus,
in the following, the term solution refers to hitting sets of size at most
k in H, just for brevity). Note that the hypergraph may be non-simple
in the first place, but any edge containing a smaller edge can be deleted
without changing the solution space. Also, it is sensible to ignore edges
larger than some predefined size r: Peptides occuring in many candidate
proteins are not very informative. The size limitation k on the solutions
easily renders them redundant, namely if every transversal of size at most
k already intersects these large edges. In the worst case, of course, the
removal of some large edges might add extra solutions, but then we trade
specificity for speed: Only the limitation to some fixed rank makes the
problem computationally feasible in terms of parameterized complexity (see
Section 1.3). As an illustration we give a trivial example of the above issues:
If a hypergraph contains r + 1 disjoint edges {ui, vi} (i = 0, . . . , r) and
another edge {u0, . . . , ur}, then ignoring this large edge allows for 2r different
transversals with r vertices in this part, and re-insertion of the large edge
excludes only one of them: {v0, . . . , vr}.

Next, to characterize the solutions it is enough to know the minimal
transversals of size at most k. In other words, we wish to compute HrDk.
We may straight away work only with the rank-limited input hypergraph,
that is, we assume that Hr = H. Now our problem can be formulated as to
compute HDk for H of rank r.

The section “Assembling peptides into proteins” in [14] discusses the
issue of presenting the solution space, HDk in our notation. The concerns
may be summarized as follows. A plain list of all (minimal) transversals is
often long and incomprehensible, as it typically consists of many slight vari-
ations of similar sets. One may select a few representative transversals based
on randomness or heuristics, but this causes information loss and possible
misinterpretation, moreover it is not even clear when a vertex (protein) is
“identified” as being undoubtedly in the mixture. Some ways to overcome
this problem are proposed in [14], but only a few cases are discussed.

Our starting point was the question: Which formats to describe the
complete solution space of a shotgun proteomics experiment is both succinct
and intuitive, if the list itself is too long from a practical point of view?
Secondly, how can we compute such output formats as efficiently as possible
from an experimentally given hypergraph and a size bound k?

Quantitative and probabilistic approaches to the inference of proteins
with shared peptides also take the abundance and detectability of peptides
into account [4], other heuristics only aim at the computation of one most
likely mixture relative to some scoring function [12], but in the present paper
we are concerned with the representation of the set of all possible mixtures

3

(without quantification) once the hypergraph of peptides and candidate pro-
teins is given.

In inference problems like this one in shotgun proteomics, one is primarily
interested in the “identified” proteins that must appear in every solution.
In ambiguous cases one would like to know the sets of s = 2 proteins such
that at least one of these two must be chosen, then the same for s = 3, etc.,
until some maximum s. We argue that HDkDs serves the purpose: From the
properties in Section 1.1 it follows immediately that (HDkD)D = HDkDD =
(HDk)DD = HDk, in words: The family of minimal transversals of HDkD

equals the family of minimal transversals of size at most k in H, i.e., the full
solution space we are interested in. Consequently, HDkDs is the hypergraph
of the choice sets of at most s elements mentioned above. In particular,
HDkD1 contains the identified elements.

Thus we propose HDkD as one possible representation of the solution
space, and we state the following computational problem for any constants
r, s which are thought of as small: Given a hypergraph H of rank r and a
number k, compute HDkDs. Naturally we are also interested in computing
the full HDkD.

Studies on a large set of protein digestion data revealed that HDkD is
typically very small and structurally simple, that is, this object meets the
aforementioned requirements of being succinct and intuitive. (Actually, the
whole idea of computing HDkD and HDkDs was born when doing simulation
experiments with the data and assumed protein mixtures.) We are working
with a subset of nearly 200,000 proteins from Swissprot, digested in silico
by the enzyme trypsin. (As the cleavage sites are known, digestion can be
simulated.) Then we use only the masses of the resulting peptides and try
to reconstruct random mixtures of proteins from their peptide mass spectra.
In a typical run, HDkD consists of 5–50 edges (depending on the mixture
size), where the vast majority has small sizes, just 1–3 vertices, and more
importantly, they are grouped into connected components with single edges
or a few edges. In other words, the various solutions have many independent
alternatives, and this makes HDkD a particularly well suited representation.
(To make the point, consider a toy example where HDkD is merely a graph
of k disjoint edges. A plain list of all minimal vertex covers would have
length 2k whereas it is easy to explain to a user that, independently, one
vertex from every edge must be taken.)

One might object that HDkD represents the solution space in the same
way as input H itself. But there is a crucial difference: One can easily “see”
the solutions. Note that it is in general hard to recognize the hitting sets of a
given maximum size in H (this problem is NP-hard after all!), but everyone
who understands the notion of a hitting set can see the hitting sets in HDkD

(provided that the latter hypergraph is simple) and thus immediately get
a full imagination of the solution space. Otherwise we may drop the large

4

edges and present HDkDs for some s. Edges in HDkD are either subsets of
edges from H, and trivially these have size at most r, or edges that are not
subsets of edges from H and reflect further constraints imposed by the size
limit k. Thus HDkDs may have some more transversals of size at most k
than H, but still the smallest edges are the most informative ones, and we
also do not lose solutions.

The following example (contributed by an anonymous referee) illustrates
the types of edges. To simplify notation we drop the set parantheses and
write edges as “strings” of vertices: Let H = {ace, acf, ade, adf, bce, bcf, bde}
and s = 2. Then HD = {ab, cd, ef, ace}, hence HD2 = {ab, cd, ef}. Now
HD2D also contains the edge bdf that is not found in H.

Taking HDkD one can also count solutions (see [3] for the use of certain
problem kernels for counting transversals), to assess how likely every single
protein is, or use biological background knowledge to figure out the most
likely solution once the alternatives are nicely presented.

One intention of this paper is to propose a useful formal tool for the
application, however, the main technical content is algorithmical. We build
on ideas developed in [3]. Since hypergraph dualization is a fundamental
problem in many areas, the results may also be interesting there. Such
applications are well surveyed in [11] and include: models of formal theo-
ries, diagnosis, classical optimization problems like covering, cut sets in net-
works, phylogeny reconstruction, data mining problems in numerical data,
attacking anonymity, key identification, functional dependencies, and query
processing in databases, channel assignment in communication systems –
to mention some. To avoid an extensive bibliography we refer to [11] for
pointers.

1.3 Summary of Results

Our algorithms are given in the framework of fixed-parameter tractability
(FPT). A problem with input size n and another input parameter k is in FPT
if it can be solved in O(f(k)ṗ(n)) time where f is any computable function
and p is a polynomial. Sometimes we adopt the O∗ notation that empha-
sizes only the superpolynomial and parameterized part of the complexity,
that is, we write O(f(k) · p(n)) = O∗(f(k)). For general introductions to
parameterized algorithms we refer to [5, 15]. We assume familiarity with
search tree algorithms and their analysis, the notions of branching vector,
branching number, etc.

While Hitting Set in arbitrary hypergraphs is unlikely to be in FPT,
Hitting Set is an FPT problem for every fixed rank r. Let t(r) be any
number such that an O∗(t(r)k) time algorithm exists for Hitting Set in
hypergraphs of rank r. Bases t(r) considerably smaller than the trivial
bound r are known for all r ≥ 2, see details below in Section 3.

5

A rather obvious algorithm computes HDkDs in O∗(rk) time (for any
fixed s), this will follow from Proposition 1 below. Our first technical con-
tribution is that we can also compute the same hypergraph in O∗(t(r)k) time
for constant r and s, which reduces the exponential part of the complexity
notably. Basically we show that any algorithm for Hitting Set can be
used as an oracle, and the number of calls is polynomial, as well as the other
auxiliary computations.

Constructing HDkD seems to be intrinsically more difficult. As we will
see, the difficulty is to test for the equation HDkDs = HDkD, if the former
hypergraph is already computed for some s, and this amounts to problem
MMHS. Whereas the parameterized complexity of the minimization prob-
lem Hitting Set for hypergraphs of rank r and the special case Vertex
Cover is well studied, the corresponding max-min problem received much
less attention, probably because motivations are less obvious. In our setting
MMHS comes out naturally as a subproblem.

Using a result from [6] about output-sensitive enumeration of minimal
transversals we can compute HDkD in O∗(t(r)k) time if the result happens
to have a rank smaller than r. For the opposite case it remains open whether
the straightforward algorithm can be improved.

The only parameterized result about MMHS we are aware of is an O∗(2k)
time algorithm for MMVC that was announced in [8]. Here we present as
another main contribution an O∗(1.62k) algorithm for MMVC.

There is much related literature about hypergraph dualization (comput-
ing HD) and its applications, see the survey in [11]. Several parameterized
cases of hypergraph dualization are treated, e.g., in [7, 11]. In the present
work we are obviously interested in enumerations as such, but efficient enu-
merations of solutions are also useful as a computational tool, in FPT al-
gorithms for the decision or optimization versions of several problems, see
[10, 13] for instance.

2 Preliminaries

Let n and h denote the number of vertices and edges, respectively, of our
input hypergraph H, and r its rank.

An obvious branching algorithm computes HDk from H and k in O∗(rk)
time, and explicit enumeration of all minimal transversals cannot be faster
in the worst case since, e.g., the hypergraph with k disjoint edges of size
r has rk minimal transversals. For the sake of completeness we sketch the
simple algorithm here, although it is implicit in other literature:

Proposition 1 If H has rank r then HDk has at most rk edges and can be
computed in O∗(rk) time.

6

Proof. (Sketch.) We generate partial hitting sets P in a search tree. The
root represents P = ∅. If, in a tree node, |P | = k or P is a hitting set, we
abort the search path with P as a leaf. The leaf is either a dead end or a
solution. If |P | < k and P is not a hitting set, we take any edge e of H with
P ∩ e = ∅. For all v ∈ e we generate the children P ∪ {v} of P .

Clearly, the leaves eventually contain at most rk sets, among them re-
peated, partial, and non-minimal hitting sets that can be recognized and
discarded in O∗(rk) time. It remains to show that we did not miss any
minimal transversal P of size at most k. For such P , let Q be a maximal
set with the property that Q ⊆ P and Q was generated in our search tree.
(Such Q exists, since at least ∅ is in the search tree.) Assume that Q is a
proper subset of P . Since Q is not a hitting set, the algorithm picked some
edge e disjoint to Q and generated all Q ∪ {v}, v ∈ e. Moreover, P must
contain some vertex u ∈ e. Hence we have Q ∪ {u} ⊆ P , contradicting the
choice of Q. 2

However, one can find just one (arbitrary) transversal of size at most k
faster: Let t(r) be defined as in Section 1.3. It is known that t(2) ≤ 1.2738
[2], t(3) ≤ 2.076 [18], and t(r) ≤ r − 1 + 1/(r − 1) for all r [16]; the latter
result was further improved in [9], and generalized to the weighted case.
More precisely, the time bounds for Vertex Cover and Hitting Set in
these works are at most O(t(r)k+kn). Further progress in the future is quite
possible, but we can notice that t(r) is more than just marginally smaller
than r, and since bases are taken to the k-th power, this yields considerable
time savings in practice, compared to the simple O∗(rk) algorithm. In the
present paper we achieve the same for our more ambitious double dualization
problem.

In our technical results we will use that t(r) ≥ r − 1 for the t(r) values
known so far. A special case is r = 3. An algorithm using less than O(2k)
time by A. Soleimanfallah and A. Yeo is announced in [17], but there does
not seem to be a published version so far. However, since the t(r) are just
upper bounds, we can still redefine t(3) := 2 if an improvement comes out.

As a prerequisite we also need the following result shown in [3]:

Theorem 2 The union of all minimal transversals of size at most k in a
hypergraph of rank r has at most (1+o(1))kr vertices, and it can be computed
in O(kr−1h + k2rt(r)k) time. 2

Since this union is the support of HDk and HDkD (recall that the support
consists of the vertices covered by edges), the number of non-isolated vertices
there is bounded by (1 + o(1))kr, no matter what the size of H was.

7

3 Algorithms for Double Dualization with Rank
Limitations

Now we study the complexity of computing HDkDs. First we state a naive
algorithm as a benchmark: Using Proposition 1 twice, first compute HDk in
O∗(rk) time, and from this compute HDkDs in O∗(ks) time. The latter time
bound holds because HDk has rank at most k. In total we need O∗(rk + ks)
time which is O∗(rk) since s is constant. In order to improve this to O∗(t(r)k)
we exploit Theorem 2 and the following simple characterization of HDkD:

Lemma 3 A set e of vertices is an edge of HDkD if and only if: e is con-
tained in the support of HDkD, no minimal transversal of H with size at
most k is disjoint to e, and for every vertex v ∈ e, some minimal transver-
sal of H of size at most k is disjoint to e− v.

Proof. By definition, the support is the union of edges. Moreover, edges
e of HDkD are the minimal transversals of HDk, that is, e must intersect
each minimal transversal of H of size at most k, and be minimal with this
property. 2

Theorem 4 HDkDs can be computed in O(kr−1h+krs+1n+krst(r)k) time,
if H has rank r.

Proof. The high-level description of our algorithm is simple: Compute the
support of HDkD. Then test every subset of the support with at most s
vertices for being an edge of HDkD.

By Lemma 3, e is an edge of HDkDs if and only if e fulfills the conditions
stated there, and has at most s vertices. According to Theorem 2, the
support has O(kr) vertices and can be computed in O(kr−1h+k2rt(r)k) time.
Now consider any subset e of the support. We can check in O(t(r)k + kn)
time whether some minimal transversal of H of size at most k is disjoint to
e, simply by seeking a minimal transversal of size at most k, in H restricted
to V − e. The same is done for all e− v.

Thus we have to call an O(t(r)k + kn) time algorithm for Hitting Set
O(krs) times. 2

Computing HDkD looks harder, note the difference to the previous prob-
lem of computing HDkDs with a prescribed s. Here problem MMHS comes
into play. To avoid distraction by the lengthy polynomial-time expressions
we formulate the following results only in O∗ notation.

Lemma 5 If we can solve MMHS in O∗(µ(s)k) time in hypergraphs of
rank s, we can also compute HDkD in O∗(t(r)k+t(s)k+µ(s)k) time, provided
that s is the rank of the result.

8

Proof. We run the algorithm from Theorem 4 for s = 1, 2, 3, . . . and test
in each iteration whether we have already reached HDkDs = HDkD. The
equality we have to test can be rephrased, through the following chain of
equivalent statements:

• HDkDsD = HDkDD (because of the duality theorem).

• Every minimal transversal of HDkDs is also a minimal transversal of
HDkD. (The other direction is, obviously, always true.)

• Every minimal transversal of HDkDs is a transversal of H and has size
at most k.

Finally this is equivalent to the negation of:

• HDkDs has a minimal transversal T such that: either (a) T is disjoint
to some edge e of H and has size at most k, or (b) T has more than k
vertices.

We test the negation of the latter condition. We can exclude the exis-
tence of small transversals of type (a) in O∗(t(s)k) time as earlier, by seeking
a transversal of size at most k in HDkDs restricted to each V − e. Deciding
the existence of minimal transversals of type (b) means precisely to solve
MMHS on HDkDs, which is a hypergraph of rank s. Now Theorem 4 yields
the time bound. 2

We also need a result that was apparently first proven in [6]: For hy-
pergraphs of any fixed rank, the minimal transversals can be enumerated in
incremental polynomial time.

Lemma 6 MMHS for hypergraphs of any constant rank s can be solved
(constructively) in O∗(sk) time.

Proof. Using [6] we enumerate sk +1 minimal transversals in O∗(sk) time, or
we stop earlier when there are fewer minimal transversals. In the latter case
we can check directly in O∗(sk) time whether some of them is larger than k.
If sk + 1 minimal transversals exist then, by Proposition 1, by Proposition
1, at least one of them is larger than k. 2

Note that the result of Lemma 6 cannot be achieved by trivial enumera-
tion of all minimal transversals of size at most k and some further “outlook”
steps, because there may be jumps: The next larger minimal transversal
might be much larger than k.

Theorem 7 For hypergraphs of any constant rank r we can compute HDkD

in O∗(t(r)k) time, provided that the rank of the result is s < r.

9

Proof. Combine Lemma 5 and 6, and note that s ≤ r − 1 < t(r). 2

Note that the straightforward algorithm mentioned in the beginning of
this section can also be used to compute HDkD in O∗(rk +ks) time. But the
algorithm from Theorem 7 has a better time bound in the addressed case
s < r which often appears. As soon as the test in Lemma 5 reveals s ≥ r in
an instance H, we can still switch back to the O∗(rk + ks) time algorithm.
It remains open whether we can do better if s ≥ r. Any improvement of
Lemma 6 would help immediately.

In the next section we address the special case of MMHS with rank 2. We
show that MMVC is solvable in O∗(1.62k) time. Hence, if HDkD happens
to have rank 2, we can verify that HDkD2 = HDkD in O∗(1.62k) time.

4 Maximum Minimal Vertex Cover

An O∗(2k) time algorithm for MMVC was announced in [8], however not
fully explained, and we are not aware of a faster one either. Here we state
a different search tree algorithm for MMVC. It is still simple but improves
the time bound from [8]. We remark that the algorithm in [8] involves a test
whether a partial vertex cover is extendible to some minimal vertex cover,
but it is not said how this test shall be performed efficiently. Luckily, our
algorithm does not even need such a test, since by construction our partial
vertex covers are always extendible (see below).

We use some standard notation: For a vertex u in a graph G, let N(u)
be the set of neighbors of u, and N [u] = N(u) ∪ {u}. For a subset X of
vertices of G, let G−X denote the graph G without the vertices of X and
all incident edges. The degree of a vertex u is the size of N(u).

Theorem 8 MMVC can be solved in O∗(1.62k) time.

Proof. Let C be a variable for a minimal vertex cover in the input graph G,
and u be a vertex. We cannot have N [u] ⊆ C, since u would be redundant
in C, that is, C −u would still be a vertex cover and C not minimal. Hence
we can branch on N [u] as follows: For each v ∈ N [u] we create a branch
where v /∈ C and therefore N(v) ⊆ C. In every branch we are left with the
graph G −N [v], and we subtract from k the size of N(v). It is easy to see
that the minimal vertex covers C of G with N(v) ⊆ C are exactly the sets
C ′ ∪N(v) where C ′ is a minimal vertex cover of G−N [v].

Hence our branching rule has split the given instance of MMVC into
several smaller instances of the same problem, which are then processed
recursively. By an inductive argument it follows that G has a minimal
vertex cover larger than k if and only if, in some branch of the resulting
search tree, k vertices of G are already put in C but some edges remain

10

uncovered (or a total of more than k vertices in C is enforced in the last
branching step). That is, we can abort any search tree path as soon as the
parameter value has dropped to zero.

In the following we use the trivial observation that, if we can split off a
connected component of size O(1), then a maximum minimal vertex cover
therein can be computed in O(1) time, and no branching is needed for that.

So far we have not specified how to pick a vertex u for branching. Note
that the branching vector of the basic rule above is precisely the vector of
degrees of the vertices in N [u]. Let us choose some u with minimum degree
d. Then the branching vector has length d + 1, with all entries being at
least d. The worst case, for fixed d, is a branching vector with d + 1 entries
d, giving the branching number d

√
d + 1. This expression is a monotone

decreasing function of d. Hence the worst case altogether is d = 1, that is,
branching vector (1, 1), and we are back to the old O∗(2k) bound. However,
we can easily improve this bottleneck case: Let u be a vertex of degree 1, and
v its only neighbor. If v has degree 1 as well, then u and v form a connected
component. But if v has at least one more neighbor, the branching vector
is (1, 2) with branching number 1.62.

Now the bottleneck case is d = 2 and branching vector (2, 2, 2), with
branching number 1.74, but we can further improve on this case as well.
Consider a vertex u of degree 2, with neighbors v, w of degree 2. Let x and
y be the other neighbor of v and w, respectively. If x = w and y = v (in
simpler words: vw is an edge) then u, v, w form a connected component of
size O(1) that is processed in time O(1), as said above. If x = y then simple
case inspection in the cycle x, v, u, w shows that we can always decide on
either u /∈ C, v, w ∈ C or v, w /∈ C, u, x ∈ C. (All other cases would insert
a redundant vertex into C.) The branching vector is (2, 2) with branching
number 1.42. If x 6= y then we have a path x, v, u, w, y. Again, simple case
inspection yields that we need to consider only the following four branches;
vertices that are chosen are displayed in bold:

(i) x–v–u–w–y
(ii) x–v–u–w–y
(iii) x–v–u–w–y
(iv) x–v–u–w–y

The branching vector (2, 3, 3, 3) has branching number 1.68, however, at
least one of x, y must have further neighbors (or u, v, w, x, y form a con-
nected component). Hence we must add to C another neighbor of y in
branch (iii), or another neighbor of x in branch (iv). In both cases this im-
proves the branching vector to (2, 3, 3, 4) and the branching number to 1.62.
Note carefully that, for every vertex we put in C, we have also excluded
some neighbor from C. This guarantees that no selected vertex can become

11

redundant by vertices added to C later on.
Above we have achieved, for any neighborhood N [u] with degrees (2, 2, 2),

a branching number 1.62 or better. If the degrees in N [u] are (2, 2, 3) or
larger, we take (2, 2, 3) directly as the worst branching vector and obtain
1.62, too. Finally note that the branching numbers for d ≥ 3 are all better
than 1.59, because the worst case among them is (3, 3, 3, 3). 2

Further refinement of the “1.62 bottleneck cases” seems possible, but we
leave it here. Another conjecture is that the “C-cover” schem used in [13]
may lead to a faster MMVC algorithm. The polynomial term in Theorem
8 is obviously moderate. We skip the tedious analysis and just remark that
a vertex with minimum degree can be found quickly in each step, using a
data structure that updates the degrees and puts vertices of equal degree
in a designated queue. Also note that it is enough to work in graphs with
O(k2) vertices, since in larger graphs MMVC always has a positive answer
[8]. In other words, a problem kernel is immediately given.

A natural question now is whether MMHS for hypergraphs H of rank
s ≥ 3 can be solved in less than O∗(sk) time. This appears difficult even
for s = 3 (as opposed to the minimization problem Hitting Set where
such improvements are easy to obtain). We cannot simply generalize our
approach for MMVC to MMHS, since even for rank 3 we do not have these
enforced decisions in the neighborhood of a decided vertex. Another ap-
proach to this open question comes into mind: Remember that H has no
minimal transversal larger than k if and only if HDkD = H. The latter
equation implies HDkDs = H since H has rank s. Moreover HDkDs is
computable in O∗(t(s)k) time using Theorem 4. However, to turn this ob-
servation into an MMHS algorithm we would also need the reverse direction:
Does HDkDs = H imply that all minimal transversals of H have at most k
vertices?

5 Conclusions and Further Research

We found that alternating applications of the operators dualization (comput-
ing the transversal hypergraph) and rank limitation (erasing all hyperedges
larger than a given threshold) has interesting applications and gives rise
to new algorithmic questions. It is also intimately related to the max-min
version of transversal computation. The algebra of these mixed operators
is not yet fully understood, and some open questions were mentioned. Our
main algorithmic insight was that, for hypergraphs of any constant rank,
computations are only polynomially harder than finding just one minimal
transversal (Theorem 4). Still these polynomial factors can be significant,
they depend on the exact size of the union of all minimal transversals of size
at most k. As we pointed out in [3], this quantity is known only subject

12

to a constant factor that is widely undetermined. Progress on this purely
combinatorial question would give a better idea of the practical runtimes
to expect. Another obvious goal is to improve the complexity bounds for
the other subproblems we considered. In the protein inference application,
more studies of examples may reveal further types of solution spaces where
other succinct representations are better suited.

Acknowledgment

The author would like to thank: Ferdinando Cicalese for providing protein
digestion data, Leonid Molokov for the simulation experiments and discus-
sions that inspired this work, and the anonymuous referees for a number of
helpful comments. Support has been received from the Swedish Research
Council (Vetenskapsr̊adet), grant 2007-6437, “Combinatorial inference algo-
rithms – parameterization and clustering”.

References

[1] C. Berge. Hypergraphs: Combinatorics of Finite Sets, North Holland
Mathematical Library, vol. 45. Elsevier, 1989

[2] J. Chen, I.A. Kanj, G. Xia. Improved parameterized upper bounds for
vertex cover, 31st Symp. on Math. Foundations of Computer Science
MFCS 2006, LNCS 4162, 238-249

[3] P. Damaschke, L. Molokov. The union of minimal hitting sets: Pa-
rameterized combinatorial bounds and counting, Journal of Discrete
Algorithms 7 (2009), 391-401

[4] B. Dost, V. Bafna, N. Bandeira, X. Li, Z. Shen, S. Briggs. Shared
peptides in mass spectrometry based protein quantification, 13th Conf.
on Research in Comp. Molecular Biology RECOMB 2009, LNCS 5541,
356-371

[5] R.G. Downey, M.R. Fellows. Parameterized Complexity, Springer, 1999

[6] T. Eiter, G. Gottlob. Identifying the minimal transversals of a hyper-
graph and related problems, SIAM Journal on Computing 24 (1995),
1278-1304

[7] K.M. Elbassioni, M. Hagen, I. Rauf. Some fixed-parameter tractable
classes of hypergraph duality and related problems, 3rd Int. Workshop
on Parameterized and Exact Computation IWPEC 2008, LNCS 5018,
91-102

13

[8] H. Fernau. Parameterized algorithmics: a graph-theoretic approach,
Habilitation thesis, Univ. Tübingen, 2005

[9] H. Fernau. Parameterized algorithms for hitting set: The weighted case,
6th Italian Conf. on Algorithms and Complexity CIAC 2006, LNCS
3998, 332-343

[10] H. Fernau. Edge dominating set: efficient enumeration-based exact al-
gorithms, 2nd Int. Workshop on Parameterized and Exact Computation
IWPEC 2006, LNCS 4169, 142-153

[11] M. Hagen. Algorithmic and computational complexity issues of
MONET, PhD thesis, Univ. Jena, 2008

[12] Z. He, Ch. Yang, C. Yang, R. Qi, J.P.M. Tam, W. Yu. Optimization-
based peptide mass fingerprinting for protein mixture identification,
13th Conf. on Research in Comp. Molecular Biology RECOMB 2009,
LNCS 5541, 16-30

[13] D. Mölle, S. Richter, P. Rossmanith. Enumerate and expand: New
runtime bounds for vertex cover variants, 12th Conf. on Computing
and Combinatorics COCOON 2006, LNCS 4112, 265-273

[14] A.I. Nesvizhskii, R. Aebersold. Interpretation of shotgun proteomic
data: The protein inference problem, Molecular and Cellular Pro-
teomics 4 (2005), 1419-1440

[15] R. Niedermeier. Invitation to Fixed-Parameter Algorithms, Oxford Lec-
ture Series in Mathematics and Its Applications, Oxford University
Press 2006

[16] R. Niedermeier, P. Rossmanith. An efficient fixed-parameter algorithm
for 3-hitting set, Journal of Discrete Algorithms 1 (2003), 89-102

[17] F. Rosamond (ed.). Parameterized Complexity News 4 (2009)

[18] M. Wahlström. Algorithms, measures, and upper bounds for satisfia-
bility and related problems, PhD Thesis 1079, Linköping Studies in
Science and Technology, 2007

14

