
Computing Giant Graph Diameters

Peter Damaschke

Department of Computer Science and Engineering
Chalmers University, 41296 Göteborg, Sweden

ptr@chalmers.se

Abstract. This paper is devoted to the fast and exact diameter compu-
tation in graphs with n vertices and m edges, if the diameter is a large
fraction of n. We give an optimal O(m+n) time algorithm for diameters
above n/2. The problem changes its structure at diameter value n/2, as
large cycles may be present. We propose a randomized O(m + n logn)
time algorithm for diameters above (1/3 + ε)n for constant ε > 0.

1 Introduction

Computing distances and shortest paths is one of the fundamental graph prob-
lems. The diameter of an undirected graph is the maximum distance between any
two vertices. In a graph with n vertices and m edges of unit length, all distances
from a single vertex (single-source shortest paths, SSSP) can be computed by
breadth-first-search (BFS) in O(n+m) time, and all pairwise distances (all-pairs
shortest paths, APSP) can therefore be obtained in O(nm) time by solving n
times SSSP. Trivially, this also yields the diameter, but it was a longstanding
open problem whether the diameter can be computed significantly faster than via
APSP, see [1, 14] for results. Many results are also known for diameter computa-
tion in special graph classes [5, 6, 8, 13] and fast approximation of the diameter
[2–4, 11, 13]. This bibliography is certainly far from being complete. Other related
lines of research that we cannot survey here include faster APSP computation
in special graph classes, and experimental studies of diameter computations in
real-world graphs.

Instead of the graph structure one may also restrict the range of diameters.
As discussed in [5], the problem of distinguishing between graphs of diameter
2 and 3, already for the special class of split graphs, is as hard as the disjoint
sets problem (deciding whether a given set family contains two disjoint sets) and
is therefore unlikely to have a subquadratic algorithm. In the present paper we
look at the other end: graphs with “giant” diameters close to the number n of
vertices. (The word is borrowed from the giant components of random graphs.)
Whereas most real-world networks have small diameters, chain-like structures
may appear as well in various contexts (chain molecules, connections between
two fixed sites in a network, etc.).

Contributions. First we give an O(m+ n) time algorithm for diameters above
n/2. One can think of different approaches, e.g., similar to diameter computation

in trees. Our approach is based on separators (articulation points in this case),
and removal of irrelevant subgraphs. Moreover, it is not necessary to know in
advance that the given graph has a large diameter. Admittedly we use quite a
number of lemmas to prepare this result, but we want to point out all single
steps, in the hope that future research can generalize them to larger separators
and smaller diameters. We also show that the O(n+m) time bound cannot be
improved (say, to O(n) time) under plausible assumptions on the graph represen-
tation. While our solution for diameters larger than n/2 works with articulation
points, we observe some “phase transition” just below n/2: A graph with such a
diameter may have a giant geodesic cycle, hence qualitatively different methods
are needed to “choose the correct half cycle” that yields the diameter. For this
purpose we define an auxiliary problem that might be of independent interest. Its
solution is applied in a randomized O(m+n log n) time algorithm for diameters
above n/3. Note that this bound is linear in the graph size if m > n log n.

2 Preliminaries

Our graphs G = (V,E) are undirected, unweighted, and connected, and have n
vertices and m edges. A path joining two vertices u and v is denoted u − v, if
the inner vertices are clear from context or irrelevant. The distance dG(u, v), or
simply d(u, v), is the length, i.e., number of edges, of a shortest u − v path. A
shortcut to a subgraph H of G is a path in G that connects two vertices u and v
from H, but is shorter than dH(u, v). We call H a geodesic subgraph if H has no
shortcuts in G. In particular, a geodesic path P is a shortest path connecting its
end vertices. The diameter of G is diam(G) := max{d(u, v)|u, v ∈ V }. Hence a
longest geodesic path in G is a path of length diam(G). We use the abbreviation
δ := diam(G)/n. Note that a cycle C is geodesic if, for any two vertices u, v ∈ C,
their smaller distance (of at most 1

2 |C|) on C equals d(u, v).
With respect to a root vertex r we refer to the sets Ni(r) := {v| d(u, v) = i}

as layers, and the depth of G is defined by max{d(r, v)| v ∈ V }. Depth and layers
can be computed using breadth-first-search (BFS).

To avoid heavy notation and technicalities we may neglect additive constants
in arithmetic expressions, as well as rounding of fractional numbers to integers,
as long as this does not affect asymptotic statements for large graphs.

For U ⊂ V we denote by G − U the graph that remains when the vertices
of U and all incident edges are removed from G. If U = {u}, we write G − u
for G − U . A separator is a vertex set S ⊂ V such that G − S is disconnected.
An articulation point is just a separator of size 1, that is, a vertex u such that
G− u is disconnected. A block is a biconnected graph, that is, a graph without
articulation points. The block-cut tree of G has a node for every articulation
point, and a node for every block (biconnected component) without the articu-
lation points therein. The block-cut tree has edges between adjacent articulation
points, and between those articulation points and blocks where G has edges.

A hair in a graph is a path H such that one end vertex of H has degree 1,
all inner vertices have degree 2, and the other end vertex has degree larger than

2. We can think of a hair as a simple path that is dangling at the rest of the
graph. In particular, a hair is a geodesic path.

We say that a vertex v is between vertices u and w, in symbols B(u, v, w), if
the triangle inequality degenerates to the equation d(u,w) = d(u, v) + d(v, w).

We tacitly use some elementary properties listed here: Any subpath of a
geodesic path is geodesic. If we replace any subpath of a geodesic path with an-
other geodesic (sub)path between the same two vertices, then the entire path re-
mains geodesic. Any three vertices u, v, w that appear in this order on a geodesic
path satisfy B(u, v, w). Conversely, if B(u, v, w) holds true, then any concatena-
tion of two geodesic u− v and v − w paths is a geodesic u− w path.

3 Diameters Larger than Half the Size

First we study the largest diameters, more precisely, the case δ > 1/2. We show
that this case can be solved in linear time. Our approach works with articulation
points, and (in Lemma 3) pruning of irrelevant vertices. Lemma 2 below also
holds for general graphs.

Lemma 1. Suppose that δ = 1/2 + h, and let P be any longest geodesic path.
Then there exists a vertex u ∈ P which is an articulation point of G and divides
P in two subpaths of length at least hn each.

Proof. Let v be an end vertex of P . Clearly, the number of vertices not in P
is (1/2 − h)n. Hence at least 2hn of the layers Ni(v) contain a single vertex.
Since edges cannot skip layers, every such single vertex u (except for i = 0 and
possibly the last layer) is an articulation point of G and an inner vertex of P .

Specifically, consider an articulation point u that belongs to P and is as close
as possible to the center of P . In the worst case, only 2hn articulation points
are on P , and they form two subpaths of equal lengths at the ends of P . Still,
an innermost articulation point u divides P in two paths the shorter of which
has length at least hn. ut

Lemma 2. Consider an articulation point u of G, a connected component C of
G − u, and a longest geodesic path P in G. Define Cu := C ∪ {u}. Then one
of these three cases applies: (a) P does not intersect C. (b) P intersects both C
and G− Cu. (c) P is entirely in Cu.
In case (b), the subpath Pu of P in Cu is a geodesic path connecting u with some
vertex of C at maximum distance from u. Moreover, any such geodesic path in
Cu may replace Pu in P , and the resulting path is again a longest geodesic path
in G. Case (c) can be true only if Cu has at least δn vertices.

Proof. The case distinction is evident, as well as the assertion about case (c).
The assertion about case (b) follows from two facts: P has maximum length,
and no edges join any vertices of C and G−Cu. Hence the new subpath cannot
lead to shortcuts to vertices outside C. ut

Lemma 3. Consider an articulation point u of G, a connected component C of
G − u, and a longest geodesic path P in G. Suppose that P is not entirely in
C (for instance, because C has fewer than δn vertices). Then it is safe to keep
only one geodesic path from u to a farthest vertex v (with maximum d(u, v)) in
C and remove all other vertices of C. That is, this removal retains some longest
geodesic path in G.

Proof. By assumption, case (c) of Lemma 2 does not apply to C. If case (a)
applies, then the assertion is vacuously true. If case (b) applies, then the assertion
follows from the property mentioned in Lemma 2: Since any geodesic path from
u to a farthest vertex v can be used, we need to keep only one. ut

As a consequence of the previous lemmas we can already settle one case:

Lemma 4. Suppose that δ > 1/2. Let u be an articulation point of G such
that every connected component of G − u has fewer than n/2 vertices. Then G
has a longest geodesic path P composed of two subpaths that connect u with the
farthest vertices in two distinct connected components of G − u with the two
largest depths. (Here, depth is understood with respect to the root u, and ties are
broken arbitrarily if some depths are equal.)

Proof. P has the claimed shape due to Lemma 3. Since P has the maximum
length among all geodesic paths, the two connected components that intersect
P must also have the largest depths. ut

The next lemma addresses some routine preprocessing.

Lemma 5. Given a graph G, we can determine, in O(n+m) time, the set A of
all articulation points u, the block-cut tree of G, and the vertex numbers of all
connected components of all graphs G− u (u ∈ A).

Proof. In O(n + m) time one can find all articulation points of G [9, 12], and
furthermore construct the block-cut tree T straightforwardly. We declare an
arbitrary node of T the root and compute, by bottom-up summation in the
rooted tree T , the number of vertices (that is, original vertices of G) below
every edge of T . From these numbers we get the vertex numbers of all connected
components of G − u, for all articulation points u, in O(n + m) time in total:
In particular, note that one edge from any articulation point u except the root
goes upwards in the rooted tree, and the size of the corresponding component is
n− 1 minus the sum of sizes of all other connected components of G− u being
below u in the rooted tree. ut

Now we can either reduce an instance of our problem in linear time to an
equivalent instance with a simple structure, or solve the problem.

Lemma 6. In a graph G with δ > 1/2 we can, in O(n + m) time, either com-
pute a longest geodesic path of G, or extract an induced subgraph of G that still
contains a longest geodesic path of G and consists of only one block with hairs.

Proof. We do computations as in Lemma 5. If, for an articulation point u, every
connected component of G−u has fewer than n/2 vertices, then we find a longest
geodesic path by Lemma 4 in O(n+m) time, by using BFS with root u.

The other case is that, for every articulation point u, one connected compo-
nent of G − u has at least n/2 vertices. Assume that the block-cut tree T has
two or more blocks. Then there exists an articulation point u on the path of T
between any two blocks. But now Lemma 3 applies to the connected components
of G− u except the largest one. Thus we can replace them all with one longest
geodesic path from u into these components, ending now in a new leaf of T . In
particular, we get rid of at least one block.

We repeat this procedure until only one block with hairs remains. The depths
and hairs are computed by BFS, where we can append any previously computed
hair as a whole, if BFS reaches its (non-leaf) start vertex. Thus all changes affect
pairwise disjoint parts of T , thus the process costs O(n+m) time in total. ut

In order to compute a longest geodesic path in arbitrary graphs with δ > 1/2
it remains to treat the graphs as produced in Lemma 6, consisting of one block
with hairs. Note that still δ > 1/2, since the number of vertices has not increased.
Now we also use the quantitative part of Lemma 1.

Lemma 7. In a graph G with δ > 1/2 consisting of one block with hairs, some
longest geodesic path begins at one of the two longest hairs (where ties are broken
arbitrarily if some hair lengths are equal).

Proof. Lemma 1 implies for this special type of graph that any longest geodesic
path P must begin with a hair of length at least hn. We define factors hi such
that h1n ≥ h2n ≥ . . . are the hair lengths in descending order, and we let
H1, H2 . . . denote the hairs in this order (not including their last articulation
points that belong to the block).

If P does not begin with H1, then P is a longest geodesic path in the graph
G1 := G−H1, thus in a graph with n1 := (1− h1)n vertices and with diameter
(1
2 +h)n = (1

2 −
1
2h1 + 1

2h1 +h)n = 1
2n1 + (1

2h1 +h)n. Since Lemma 1 also holds
for G1, we conclude that P must begin with a hair of length at least (1

2h1 +h)n,
thus 1

2h1 + h ≤ h2. If P does not begin with H2 either, then P is a longest
geodesic path in G2 := G1 − H2, thus in a graph with n2 := (1 − h1 − h2)n
vertices and, by a similar calculation, with diameter 1

2n2 + (1
2 (h1 + h2) + h)n.

The same reasoning as above implies 1
2 (h1 + h2) + h ≤ h3. This contradicts

h1 ≥ h2 ≥ h3. Thus, P must begin with H1 or H2. ut

This yields the final result of the section.

Theorem 1. In a graph G with δ > 1/2 we can find some longest geodesic path,
and thus compute diam(G), in O(n+m) time.

Proof. We run the procedure from Lemma 6. If it yields a subgraph of the special
form mentioned there, we start BFS from the two longest hairs and output the
longest of the two geodesic paths, which is correct by Lemma 7. ut

Corollary 1. In a graph G we can decide whether δ > 1/2, and in that case we
can find some longest geodesic path, and thus compute diam(G), altogether in
O(n+m) time.

Proof. First we run an algorithm as in Theorem 1. (We remark that the following
reasoning does not depend on the particular algorithm.) If it does not output a
result, then δ ≤ 1/2. Otherwise, we test in O(n + m) time whether the output
path actually has a length above n/2 and is a geodesic path. This can be done by
BFS from one end vertex, since BFS yields the distances from the root vertex.
If the output passes the test, then δ > 1/2. Conversely, if δ > 1/2, then the test
confirms it. ut

4 Optimality of Linear Time (in the Number of Edges)

Graphs with δ > 1/2 can still have a quadratic number m = O(n2) of edges.
For instance, consider a path of length δn with a clique of (1 − δ)n vertices
attached somewhere. One may suspect that we need not read all edges in dense
subgraphs in order to compute diam(G), since most of them cannot belong to
a longest geodesic path. Therefore it is not obvious whether the time O(n+m)
is optimal. Perhaps one could solve the problem in O(n) time? However, we
will argue that O(n + m) time is actually needed in the worst case, even for a
good approximation, provided that graphs are given by adjacency lists where the
vertices appear in no particular order. The idea is that diam(G) can depend on
the presence of single edges creating shortcuts, but they are hard to find between
dense subgraphs. The crucial subproblem in pure form looks as follows.

Crossing Edge: Given is a graph on a vertex set X ∪ Y , where X ∩ Y = ∅.
The graph is given by adjacency lists, where the vertices appear in no particular
order, and the partitioning into X and Y is known. Find some edge xy with
x ∈ X, y ∈ Y , or report that no such edge exist.

Note that the following lemma hinges on the cardinalities. It would not hold
if, for instance, |X| = k and |Y | = 1.

Lemma 8. Any algorithm that solves Crossing Edge with |X| = |Y | = k
needs Ω(k2) time in the worst case.

Proof. We can think of any algorithm as a player that can only look up en-
tries in the adjacency lists, whereas an adversary provides all information. This
translates the problem into a game with the following rules. In each step, the
player may choose an arbitrary vertex u, and the adversary returns one vertex
v adjacent to u (meaning that the player reads v in u’s adjacency list).

As we are proving a lower bound, we can give the player extra information:
The adversary tells in advance that either none or two edges exist between X
and Y , and all other edges are inside X or Y . The player also gets to know
the degrees of all vertices, that is, the lengths of all adjacency lists. Now the
player can examine the adjacency lists, thus learn the edges. After each step of

the game, the adversary is even more helpful and removes not only v from u’s
adjacency list, but also u from v’s adjacency list. Only the undetected edges are
kept, and the degrees of u and v are reduced by 1.

It remains to specify an adversary strategy. Remember that the player’s
instantaneous knowledge is the degrees of all vertices of X and Y , respectively.
We call a degree sequence (multiset of degrees) valid, if there exists a graph with
that degree sequence. The adversary does not reveal the graph, but only valid
degree sequences in both X and Y . Initially let all degrees be k − 1, thus we
have roughly k2 edges, and the degree sequences are valid, as both subgraphs
can be cliques. As long as there remains at least one edge in both X and Y ,
the player cannot distinguish whether these edges in X and Y exist, or instead
two edges between X and Y joining the same four vertices. Whenever the player
has chosen a vertex u, the adversary takes a vertex v from the same set (v ∈ X
if u ∈ X, and v ∈ Y if u ∈ Y) such that the resulting degree sequence after
subtracting 1 remains valid. Such a vertex v does always exist: Since the current
degree sequence is valid, there exists a graph realizing it, and in such a graph
there exists an edge uv that can be removed.

This shows that the player must empty one of X and Y , and therefore see
Ω(k2) edges, in order to decide whether some edges join X and Y . ut

Proposition 1. Any algorithm that approximates the diameter of graphs with
any fixed δ > 1/2 within a factor better than 2 needs Ω(n+m) time in the worst
case.

Proof. We construct a special graph G: We take a simple path P of length δn
and attach two subgraphs with vertex sets X and Y at the ends of P , |X| =
|Y | = k := 1

2 (1 − δ)n. They are chosen as in Lemma 8; in particular, we have
m = δn+Θ(k2) = Θ(n2) edges. If X and Y are connected directly by some edge,
then diam(G) = 1

2δn rather than diam(G) = δn “as expected”. By Lemma 8,
a shortcut between X and Y cannot be recognized or excluded without reading
Ω(k2) = Ω(n+m) edges, as this problem is an instance of Crossing Edge. ut

5 An Auxiliary Problem: Largest Mixed Sum

For δ ≤ 1/2, diameter computation cannot be based on articulation points any
more, for the trivial reason that there exist graphs with diameter about n/2
but without any articulation points, such as the chordless cycle. We argue that
δ = 1/2 is a barrier in the sense that already for δ slightly below 1/2, due to
the possibility of long geodesic cycles and the lack of articulation points, it is
inevitable for diameter calculation to solve a specific new subproblem.

To introduce and motivate this problem, consider the following special case
of graphs. Let H = (V,E) and H ′ = (V ′, E′) be two vertex-disjoint graphs with
distinguished vertices u, v ∈ V and u′, v′ ∈ V ′. We connect u and u′ by a path
of some length ` larger than the diameters of H and H ′. Similarly we connect v
and v′ by another path of length `, being vertex-disjoint to the first path. The
graph G constructed in this way is, roughly speaking, a geodesic cycle with two

subgraphs H and H ′ attached at diametral positions. For any two vertices w ∈ V
and w′ ∈ V ′ we have d(w,w′) = `+ min{d(w, u) + d(w′, u′), d(w, v) + d(w′v′)},
since one of the paths u−u′ or v−v′ must be chosen. (Distances are meant with
respect to G.) Define s := d(u, v) and s′ := d(u′, v′). Note that G has a longest
geodesic cycle (in general not uniquely determined) of length 2` + s + s′. Any
geodesic path that starts outside V ∪ V ′ is a subpath of some longest geodesic
cycle and has therefore a length at most ` + 1

2 (s + s′). Some geodesic path
connecting H and H ′ can be longer, since a distance d(w,w′), as above, can be
as large as ` + 1

2 (d(w, u) + d(w′, u′) + d(w, v) + d(w′v′)) ≥ ` + 1
2 (s + s′). (The

two terms under “min” might be equal, and the triangle inequality holds.) Then
we must find the maximum d(w,w′) to get the correct diameter. By abstracting
from the graph problem and using the symbols

x := d(w, u), y := d(w, v), y′ := d(w′, u′), x′ := d(w′, v′),

we arrive at the following problem statement.

Largest Mixed Sum: We are given h pairs of numbers (xi, yi) and h′ pairs of
numbers (x′j , y

′
j), find two indices i and j so as to maximize min{xi+y′j , yi+x′j}.

We refer to the given pairs as h red and h′ blue pairs, and we refer to the given
numbers as coordinates. We can assume h′ ≤ h.

Observe that these values x, y and x′, y′ for all vertices w and w′, respectively,
can together be computed by four runs of BFS, in linear time in the number of
edges of H and H ′. From any identical pairs we keep only one copy. We say that
a pair of numbers (a, b) is dominated by a pair (c, d) if a ≤ c and b ≤ d. Within
a given set of pairs, we call a pair non-dominated if that pair is not dominated
by other pairs in the set.

Proposition 2. Largest Mixed Sum is solvable in O(h log h) time.

Proof. The subset of the non-dominated pairs in a set of h pairs, sorted by
strictly ascending first coordinates (and thus by strictly descending second co-
ordinates) can be computed in O(h log h) time: Sort the pairs by their first
coordinates, scan this sequence, and maintain the sorted sequence of pairs being
non-dominated so far. Since the second coordinates are decreasing there, for ev-
ery new pair (a, b) we only have to find the correct place of b in the sequence by
binary search, and then delete the current end of the sequence containing those
pairs with second coordinates smaller than b.

An optimal solution to Largest Mixed Sum can always be formed by a
red pair and a blue pair which are non-dominated in the set of red pairs and
blue pairs, respectively. This is true by an obvious exchange argument. Thus,
in order to solve the problem it suffices to take each red pair (x, y) and find an
optimal partner (x′, y′) in the sorted sequence U of non-dominated blue pairs.
Finally we take the best solution, with maximum z := min{x+ y′, y + x′}.

We distinguish six cases regarding the relationships between the coordinates.
In cases of equations, the equality signs = can be arbitrarily replaced with the
strict signs < or >. (See the Figure.)

(1) x′ < x and y′ > y
(2) x′ < x and y′ < y and x− x′ > y − y′
(3) x′ > x and y′ > y and x′ − x < y′ − y
(4) x′ < x and y′ < y and x− x′ < y − y′
(5) x′ > x and y′ > y and x′ − x > y′ − y
(6) x′ > x and y′ < y

Checking these cases one by one, we see that, if both x′ increases y′ decreases,
then the objective z strictly increases in the regions (1)–(3) and strictly decreases
in the regions (4)–(6). Moreover, the sorted sequence U first passes the regions
(1)–(3) and then continues in the regions (4)–(6). Hence z is a unimodal discrete
function on U , that is, z has only one local maximum which is therefore the
global maximum. The maximum can be found by O(log h′) look-ups of function
values, by golden section search [10]. Since we have to do this at most h times
(for every red pair), the time bound follows. ut

-

6

x′ − x

y′ − y

�
�
�
�
�
�
�
�
�
��

1

2

3

4

5

6

Fig. 1. These are the cases in the proof of Proposition 2.

Remark 1: Due to the search procedures, the log factor in Proposition 2 might
be necessary for Largest Mixed Sum in general. Our particular objective
function z is actually a “↔l unimodal 2D function” in the sense of [7], but we
have used unimodality in only one direction. However, it is apparently unknown
[7] whether this stronger property allows to find the global maximum in linear
time. On another front, we have not established a linear-time reduction from
Largest Mixed Sum to the diameter problem. The Largest Mixed Sum
instances that can be realized by distances in graphs may have further properties
that allow for linear time. We leave these questions open.

6 Diameters Larger than One Third of the Size

Generalizing Lemma 1 we can state, not surprisingly, that graphs with large
diameter possess many small separators. We will use this version of the principle:

Lemma 9. Suppose that δ = 1
2 − h, where 0 ≤ h < 1

6 . Let P be any longest
geodesic path, with r as one of its end vertices. Then at least (1

4 −
3
2h)n of the

layers Ni(r) consist of at most two vertices.

Proof. The (1
2 − h)n layers contain together all n vertices. Define x such that

x + 3(1
2 − h − x) = 1. Then at least xn layers have less than three vertices.

Resolving the equation yields the claimed x = 1
4 −

3
2h. ut

Based on this observation and the result of the previous section we will now
propose a randomized algorithm.

Theorem 2. For every fixed δ > 1/3, a longest geodesic path can be computed
with high probability in O(m+ n log n) time.

Proof. We attempt to construct a longest geodesic path by the following ran-
domized procedure that we call a trial.

Trial, preparation: Choosing separator vertices.
We choose independently three random vertices u, v, w. The following hap-

pens with some guaranteed constant probability: (i) Each of u, v, w is in a layer
of size at most 2, say u ∈ Ni(r), v ∈ Nj(r), w ∈ Nk(r), where i < j < k,
moreover, (ii) P goes through u and w. Note that constant probability for (i)
holds due to Lemma 9, and for (ii) it follows from (i).

We can replace the subpath from u to w with any geodesic path Q between
these vertices (if this geodesic path is not unique), as this yields another geodesic
path between the end vertices of P . Thus, without loss of generality we may
assume that some particular Q is a subpath of P .

Trial, main phase: Choosing a geodesic path. Observe the following:
(1) If |Nj(r)| = 1, then v is an articulation point, moreover, P also goes through
v and intersects two different connected components of G− v.
(2) If |Nj(r)| = 2, then v is not on Q, with constant probability (since both
vertices in Nj(r) are proclaimed v with the same probability).

Now we “speculate” that our random u, v, w have properties (i) and (ii)
above. Since we do not know which subcase appeared, we proceed as follows.

If v happens to be an articulation point, then situation (1) may be true. In
order to capture this possible case, we apply Lemma 2 in order to determine, in
O(n+m) time, the longest geodesic path that intersects two different connected
components of G − v. Since, in particular, P has this property in case (1), we
find P or another longest geodesic path in this trial.

If v is not an articulation point, then we know that |Nj(r)| = 2, and we
speculate that (2) is true. Since Q contains the other vertex of Nj(r), and every
layer is a separator S such that P intersects two connected components of G−S,
we conclude that P also intersects two connected components of G− (Q∪ {v}).
Furthermore, all vertices c and d of P in these two components satisfy B(c, u, w)
and B(u,w, d), respectively. Defining the vertex sets C := {c|B(c, u, w)} and
D := {d|B(u,w, d)}, we can therefore set up an instance of Largest Mixed
Sum, where the numbers x, x′, y, y′ are the distances of vertices in C and D to

v and to some fixed reference vertex on Q. All these distances are computed by
two runs of BFS, with roots u and v, in O(n+m) time.

Largest Mixed Sum returns a path P ′ with the following properties: P ′

has its end vertices in C and D, its subpaths in C and D are geodesic, and either
P ′ goes through Q and avoids v, or P ′ goes through v. (More precisely, only the
end vertices of P ′ are returned, and the information whether P ′ uses Q or v,
but this suffices to finally reconstruct a geodesic path between these ends.) If P ′

goes through Q (and hence is at most as long as the alternative path through
v), we output P ′ in this trial, otherwise the trial has no output.

Analysis of a trial. In case (1) we have already seen that a longest geodesic
path is produced. In case (2), if P actually goes through Q as assumed, then
we claim that the trial returns P (or another longest geodesic path). Assume
for contradiction that some shorter path P ′ going through Q is returned. Let us
divide P ′ in three subpaths: (A,Q,B). Since A ⊆ C, that is, A contains only
vertices c with B(c, u, w), it follows that the subpath (A,Q) is geodesic. By the
symmetric argument, (Q,B) is geodesic. Hence, any shortcut on P ′ must connect
A and B jumping over Q, and this is possible only by going through v, since
Q∪ {v} is a separator. However, by construction the alternative path through v
was not shorter, hence P ′ has no shortcut at all, in other words, P ′ is geodesic.
But since Largest Mixed Sum maximizes the minimum of the two lengths (of
the paths through Q and v), it cannot yield a geodesic path shorter than P .

Conclusion. As shown above, our speculative assumptions are true with some
guaranteed constant probability, and if they are, the path returned in the trial
is in fact a longest geodesic path in the graph. As usual, one can amplify the
probability of a correct result to any desired constant close to 1, by repeating
the trial O(1) times independently. ut

7 Further Research

Does a deterministic algorithm with the same time bound as in Theorem 2 exist?
The difficulty is to hit a separator of two vertices that divides some (unknown!)
longest geodesic path P . Alternatively we might use a version of Lemma 9 that
guarantees a decrease of the largest connected component by a constant factor
and thus enables divide-and-conquer, but now the catch is that a separator
S = {u, v} may have a large d(u, v), and the long subpath u − v of a solution
may be in another connected component of G − S, such that the size of an
instance to be solved recursively does not decrease enough.

The algorithm in Theorem 2 is Monte Carlo. It might be possible to turn it
into a Las Vegas algorithm by verifying that the obtained geodesic path P is the
longest one. This might be done by a technique as in Theorem 2, but now using
the fact that P is already given. (Of course, the question becomes obsolete if a
deterministic algorithm can be devised.)

Despite the mentioned difficulties we conjecture that the diameter can be
found in nearly linear time for every fixed δ, by some smart use of O(1/δ) sized

separators. By arguments similar to the case δ < 1/2, this would also require a
multi-dimensional generalization of Largest Mixed Sum.

Acknowledgment

The author would like to thank the anonymous referees for careful remarks which
helped erase a number of small inaccuracies.

References

1. Abboud, A., Grandoni, F., Vassilevska Williams, V.: Subcubic Equivalences Be-
tween Graph Centrality Problems, APSP and Diameter. In: Indyk, P. (Ed.) SODA
2015, pp. 1681–1697, ACM-SIAM (2015)

2. Abboud, A., Vassilevska Williams, V., Wang, J.R.: Approximation and Fixed Pa-
rameter Subquadratic Algorithms for Radius and Diameter in Sparse Graphs. In:
Krauthgamer, R. (Ed.) SODA 2016, pp. 377–391, ACM-SIAM (2016)

3. Boitmanis, K., Freivalds, K., Ledins, P., Opmanis, R.: Fast and Simple Approxi-
mation of the Diameter and Radius of a Graph. In: Alvarez, C., Serna, M.J. (Eds.)
WEA 2006. LNCS, vol. 4007, pp. 98–108, Springer, Heidelberg (2006)

4. Chechik, Sh., Larkin, D.H., Roditty, L. Schoenebeck, G., Tarjan, R.E., Vassilevska
Williams, V.: Better Approximation Algorithms for the Graph Diameter. In:
Chekuri, Ch. (Ed.) SODA 2014, pp. 1041–1052, ACM-SIAM (2014)

5. Corneil, D.G., Dragan, F.F., Habib, M., Paul, Ch.: Diameter Determination on
Restricted Graph Families. Discr. Appl. Math. 113, 143–166 (2001)

6. Corneil, D.G., Dragan, F.F., Köhler, E.: On the Power of BFS to Determine a
Graph’s Diameter. Networks 42, 209–222 (2003)

7. Demaine, E.D., Langerman, S.: Optimizing a 2D Function Satisfying Unimodality
Properties. In: Brodal, G.S., Leonardi, S. (Eds.) ESA 2005. LNCS, vol. 3669, pp.
887–898, Springer, Heidelberg (2005)

8. Dragan, F.F.: Almost Diameter of a House-hole-free Graph in Linear Time Via
LexBFS. Discr. Appl. Math. 95, 223–239 (1999)

9. Hopcroft, J., Tarjan, R.E.: Algorithm 447: Efficient Algorithms for Graph Manip-
ulation. Comm. ACM 16, 372–378 (1973)

10. Kiefer, J.: Sequential Minimax Search for a Maximum. Proc. Amer. Math. Soc. 4,
502–506 (1953)

11. Roditty, L., Vassilevska Williams, V.: Fast Approximation Algorithms for the Di-
ameter and Radius of Sparse Graphs. In: Boneh, D., Roughgarden, T., Feigenbaum,
J. (Eds.) STOC 2013, pp. 515–524, ACM (2013)

12. Schmidt, J.M.: A Simple Test on 2-Vertex- and 2-Edge-Connectivity. Info. Proc.
Letters. 113, 241–244 (2013)

13. Weimann, O., Yuster, R.: Approximating the Diameter of Planar Graphs in Near
Linear Time. ACM Trans. Algor. 12, paper 12 (2016)

14. Yuster, R.: Computing the Diameter Polynomially Faster than APSP. CoRR
abs/1011.6181 (2010)

