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Abstract

Cluster Editing is transforming a graph by at most k edge
insertions or deletions into a disjoint union of cliques. This prob-
lem is fixed-parameter tractable (FPT). Here we compute con-
cise enumerations of all minimal solutions in O(2.27k + k2n + m)
time. Such enumerations support efficient inference procedures,
but also the optimization of further objectives such as minimizing
the number of clusters. In an extended problem version, target
graphs may have a limited number of overlaps of cliques, measured
by the number t of edges that remain when the twin vertices are
merged. This problem is still in FPT, with respect to the com-
bined parameter k and t. The result is based on a property of
twin-free graphs. We also give FPT results for problem versions
avoiding certain artificial clusterings. Furthermore, we prove that
all solutions with minimal edit sequences differ on a so-called full
kernel with at most k2/4 + O(k) vertices, that can be found in
polynomial time. The size bound is tight. We also get a bound
for the number of edges in the full kernel, which is optimal up to a
(large) constant factor. Numerous open problems are mentioned.

Keywords: cluster graphs, soft clustering, fixed-parameter tractability,
enumeration problems, true twins
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CIAC 2006 (Rome), Lecture Notes in Computer Science (Springer) vol. 3787, pp.
283–294 and vol. 3998, pp. 344–355, respectively. Compared to the preliminary
versions, some results have been added or improved, and some proofs simplified.

1



1 Introduction

1.1 Cluster editing in graphs

A cluster graph is a disjoint union of cliques, or equivalently, a graph free
of induced P3 (paths of three vertices). An edit step in graph G = (V,E)
inserts or deletes an edge, where V remains fixed. We define n := |V |
and m := |E|. The Cluster Editing problem asks to turn G = (V,E)
by at most k edit steps into a cluster graph. In Cluster Deletion,
only edge deletions are allowed. These problems arise in computational
biology, e.g., in phylogeny reconstruction and classification of gene ex-
pression data [1, 2, 24, 25, 23]. In the latter application, edges join co-
regulated genes (vertices) belonging to the same functional group. Gen-
erally speaking, G describes pairwise similarities of items, and we seek a
hidden clustering close to these empirical data. G may deviate from a
cluster graph due to experimental errors, noisy data, or a non-transitive
similarity relation.

In some applications, vertices may belong to several clusters, e.g., in
text document clustering by subjects [8] and in biology: Genes may be
involved in several functional groups. In such cases, disjoint clusters give
artificial and meaningless classifications. Recent research addresses the
identification of functional groups of proteins from known pairwise inter-
actions. These groups are relatively few cliques that may overlap [22].
Since experiments yield many false negative and positive edges, some
graph editing as postprocessing may be able to infer the real clusters.
We will define a generalization of Cluster Editing that allows some
limited amount of overlaps.

1.2 Parameterized enumeration

For both Cluster Editing and Cluster Deletion, computing the
smallest possible k given G is NP-hard [1, 2, 15, 23], even if the num-
ber of clusters is prescribed [23]. Since usually k ≪ n, the framework
of fixed-parameter tractability (FPT) can be applied. Some efficient
FPT algorithms for Cluster Editing and Cluster Deletion run in
O(2.27k + n3) and O(1.77k + n3) time, respectively [9]. The Cluster
Editing result has been further reduced to O(1.92k + n3), using a com-
puter program for search tree construction [10]. A problem kernel for
Cluster Editing with 4k vertices is computable in O(n3) time [11].

In the present paper we seek an enumeration of all possible solutions
for given G and k. A particular optimal solution is by no means guar-
anteed to explain the data properly [6, 3]. It is safer to consider all
solutions for some parameter value k, and to judge them afterwards by
other criteria specific to the application: Pairs of vertices may be in a
cluster with different prior probabilities, which allows discrimination of
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solutions by some Bayesian inference rule or by informed decisions of
an expert, e.g., a biologist who examines gene expression data using his
knowledge about gene functions and plausible clusterings. An enumera-
tion is a version space [17], i.e., the set of hypotheses consistent with the
data and assumptions. In our case, hypotheses are clusterings, and the
observed graph is assumed to be at most k edit steps away from the true
clustering. The version space is used as a basis for inference. If all con-
sistent solutions are equally likely a priori, probabilities are calculated
by counting. For example, the probablity that two vertices u, v are in the
same cluster is the number of clusterings with this property, divided by
the size of the version space.

For counting and inference purposes, concise enumerations save space
and time. A concise enumeration may state certain “simple” parts of the
solution space by set-theoretic expressions, thus making the descriptions
much smaller than linear in the number of solutions. Concise enumera-
tion is not a formal technical term, but a general idea. Ad hoc definitions
saying which expressions are allowed can be introduced for any problem.
Earlier we proposed one for the Vertex Cover problem [3]. In the
present paper we give FPT algorithms that generate a concise enumera-
tion of all solutions to Cluster Editing in a given graph.

Concise enumerations are also useful algorithmically, for solving mul-
ticriteria optimization problems that are in FPT in some parameter: In
our case, we study Cluster Editing with the extra demand to min-
imize the number of clusters. For optimizing a further objective func-
tion like this, we only need one optimal solution from every “simple”
part of the solution space. Provided that we can get them in polyno-
mial time, the upper bound for the concise enumeration translates into
an upper bound for the FPT optimization problem. This scheme has
been discovered independently and used for improved FPT algorithms
for vertex covers with additional demands [18, 19]. (Actually, we had an
earlier result about concise enumerations of vertex covers [3], but with a
larger base because we considered repetition-free enumerations.) Other
enumeration-based FPT algorithms are known for edge dominating sets
[7] and feedback vertex sets [12].

We assume basic knowledge about the analysis of FPT algorithms
working with reduction rules, branching rules, and search trees, and fa-
miliarity with the notions of branching vector, characteristic equation,
and branching number [5].

In general, we cannot simply translate an optimization algorithm into
an enumeration or counting algorithm with the same complexity, for
several reasons: FPT optimization algorithms may discard branches that
cannot lead to optimal solutions anymore. Such reductions are no longer
possible in search trees for enumeration problems. Every branching has to
be exhaustive. Moreover, branching can stop when the residual problem
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instance belongs to a polynomial-time solvable special case, but counting
problems can still be hard albeit the corresponding optimization problem
is easy. Yet another issue is that branchings should be disjoint, so that
the enumerations are repetition-free, i.e., no solution occurs twice. Then,
we can sum up the numbers of solution represented by all leaves. In
conclusion, even though many known branching rules can be recycled,
we have to develop enumeration and counting algorithms from scratch.

In graph modification problems like Cluster Editing, a simple way
to make branching rules disjoint is blocking. Selected items (here: vertex
pairs) not edited in the current branching are blocked, which prohibits
later editing. All edited items are blocked as well, since forth-and-back
changes are useless. With carefully chosen blockings, no solution gets
lost, and different branches lead to mutually distinct solutions. Later
applications of branching rules that involve already blocked items are
simply disabled.

We introduce a notion of problem kernels for FPT enumeration prob-
lems, called full kernels [3], that “include” all possible minimal solutions,
rather than only some optimal solution. Disagreements between any two
solutions are restricted to a small kernel. For example, for Cluster
Editing we will show that any two clusterings reachable by k edit steps
differ only on edges in the full kernel, and in small clusters whose sizes
depend on k only. (We will also prove an optimal bound for the full
kernel size.) Then, for any two vertices outside these small sets we can
safely conclude whether they are in one cluster or not, provided that our
k is at least the true edit distance. Full kernels are of twofold use: They
contain all possible ambiguities between solutions, and enumeration and
counting problems can be reduced to them.

1.3 Graph-theoretic definitions and preliminaries

A clique is a complete subgraph of G = (V,E), not necessarily maximal.
G − X is graph G with X ⊆ V and all incident edges removed. If
X = {x}, we write G−x. For an induced subgraph H of G, and a vertex
w /∈ V (H), we denote by H + w the subgraph induced by V (H) ∪ {w}.
The open neighborhood N(X) of X ⊂ V is the set of vertices being not
in X but incident to some vertex of X. If X = {x}, we write N(x).
Vertex x is isolated if N(x) = ∅. Two sets of vertices that share at most
one vertex are pair-disjoint. M ⊆ V is a module if every vertex outside
M is adjacent to no or all vertices in M . Symbols Pn, Cn, Kn denote
a chordless path, chordless cycle, and complete graph, respectively, of
n vertices. Star graph K1,s has one central vertex adjacent to s other
vertices, and no further edges. A (connected) component of G is an
inclusion-maximal connected subgraph.

Let G′ and G′′ be any two solutions to an instance G, k of Cluster
Editing. G′′ contains G′ if the edit steps leading from G to G′ form a
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subset of those leading from G to G′′. (The notion should not be confused
with containment of the graphs.) A solution not containing any other
solution is minimal. The Cluster Editing enumeration problem can
be split in two parts: The nontrivial part is to enumerate all minimal
solutions G′. Once we know them, it is pretty easy to characterize all
solutions G′′ reachable from G by at most k edit steps: The only way
to obtain further solutions G′′ from a minimal solution G′ is to divide
or merge clusters of G′, by at most k − d edit steps, where d is the edit
distance of G′ and G. Note that these changes can affect only clusters of
size at most k − d, in any G′. Hence, if k is close to the optimal number
of edit steps, these changes are very limited. From now on we consider
the nontrivial part only:

Cluster Editing (enumeration version)
Given G and k, enumerate all minimal sets of at most k edit steps that
transform G into a cluster graph. Let k0 denote the minimum number
of edit steps in any solution.

Note that an enumeration of all minimal solutions in a search tree may
be “polluted” by some non-minimal solutions, even if the enumeration
is repetition-free. Some edit steps may turn out to be redundant only
later. But, these non-mimimal solutions can be recognized directly.

We extend the Cluster Editing problem to tolerate some overlap-
ping cliques. An obvious idea is to control the number of intersections
of maximal cliques in the target graph by a second parameter. Below
we propose a parameterization based on the notion of twins. Vertices
u, v in G are (true) twins if uv is an edge and N(u) \ {v} = N(v) \ {u}.
The true-twin relation is symmetric and transitive, thus we get equiva-
lence classes of true twins, which are both cliques and modules. The twin
graph T (G) has one vertex for each equivalence class of twins in G, and
joins two vertices by an edge iff edges exist between the corresponding
equivalence classes in G. Note that T (G) is isomorphic to any induced
subgraph of G with of one representative from each equivalence class.
Twin graphs are also known as critical clique graphs [16]. False twins
u, v are defined similarly, but uv is not an edge. The false-twin relation
gives rise to equivalence classes, too.

Twin Graph Editing
Given a graph G and parameters k and t, can we obtain by at most k
edit steps a graph whose twin graph has at most t edges?

Cluster Editing is the special case when t = 0. Alternative pa-
rameters would be the number of non-isolated vertices in T (G), which
is polynomially equivalent to t, or the number c of maximal cliques in-
volved in overlaps. But since c overlapping cliques can generate at most
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2c equivalence classes of true twins being non-isolated in T (G), these
parameters are already captured by our smoother parameter t.

The problem also arises naturally in computational biology: In an
evolution model for gene interaction networks [26], gene duplications pro-
duce twins. Thus, Twin Graph Editing may be used to estimate the
rate of creation or loss of single interactions, compared to the duplica-
tion rate. Overlapping clusters are also of interest in the analysis of gene
expression experiments [4].

A graph G without true twins (T (G) = G) is twin-free. Vertex x
is a discriminator of edge yz if exactly one of the edges xy, xz exists.
Two adjacent vertices are no true twins iff they have a discriminator.
Predicate D(x, y, z) means that x is the only discriminator of edge yz,
and xy is an edge. Note that D(x, y, z) excludes the existence of some v
with D(v, z, y).

Vertices u, v form an ambiguous pair if uv is an edge in some but not
all minimal solutions to Cluster Editing (given G, k). Ambiguous
vertices are vertices in ambiguous pairs. A full kernel is a set of vertices
containing all ambiguous vertices.

1.4 Overview of results

In Section 2 we give an algorithm with branching number 2.27 that com-
putes some concise enumeration of all minimal solutions to Cluster
Editing. In Section 3 we prove that Twin Graph Editing is in FPT,
with combined parameters k, t. Membership in FPT is no longer triv-
ial. We need a lemma that provides some elimination order for twin-free
graphs and a branching rule. We achieve a branching number O(t).

In Section 4 we study problem variants where also the total number
c of clusters shall be minimized. Clearly, c is monotone decreasing in
k, and c can properly decrease: For instance, a P4 can be split in two
clusters by one deletion, but also be completed to one clique by three
insertions. Cluster Editing with at most k edit steps and the smallest
possible number of clusters remains in FPT. By exploiting our concise
enumerations we can solve the problems within the same time bounds.

However, just minimizing the number of clusters can force unmo-
tivated merging of small clusters. This undesirable effect is avoided by
our proposed “natural clusterings” that satisfy two modest requirements.
They are equivalent to the minimal solutions of Cluster Editing. It
follows that natural clusterings with a minimum number of clusters can
be found within the same time bounds as before.

In Section 5 we prove for Cluster Editing that a full kernel with
roughly k2/4 vertices is computable in O(k2n + m) time, and 1/4 is the
optimal constant factor. For the number of ambiguous pairs of vertices
we get the bound Θ(k4), however with a coarse estimate of the constant
factor. Section 6 points out some further research directions.
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2 Cluster Editing: Enumerating the Mini-

mal Solutions

A trivial branching algorithm for Cluster Editing (enumeration ver-
sion) would choose some induced P3, and delete one of the two edges or
insert the missing edge. The branching number is obviously 3, and Ω(3k)
time is needed in the worst case to enumerate all minimal solutions. For
instance, the disjoint union of k copies of P3 has 3k solutions. However,
this solution space can be simply described as the Cartesian product of k
sets of three vertex pairs. In this section we give a faster algorithm that
generates a concise enumeration of minimal solutions for any G.

Lemma 2.1 G contains induced K3 only in components which are cliques,
or a branching rule is available with branching number 2.27.

Proof. Consider a K3 in G with vertices u, v, w, and another vertex z.
If z is adjacent to exactly one vertex of the K3, say zu is an edge, we
branch as follows. Either we remove edge zu (1 edit step), or we block
it. In the latter case, either none of v, w, or only v, or only w, or v and w
are put in the same cluster as z, u. This results in the branching vector
(1,2,3,3,2). The characteristic equation x3 = x2 +2x+2 yields branching
number 2.27. If z is adjacent to exactly two vertices of the K3, say zu
and zv are edges, we branch as follows. Either we insert edge zw (1
edit step), or we block this pair. In the latter case, z and w belong to
different clusters. If we block edge uv, then both edges connecting u, v to
either z or w must be deleted. These are two branches with 2 edit steps.
If we delete edge uv, we obtain a C4 and are forced to delete another 2
non-incident edges. This can be done in two ways, giving two branches
with 3 edit steps. Thus we obtain the same branching vector. 2

Lemma 2.2 G contains no induced K1,4, or a branching rule is available
with branching number 2.17.

Proof. Consider an induced subgraph K1,4 with central vertex u and
leaves v, r, s, t. We branch as follows. Either we delete edge uv (1 edit
step) or we block it. In the latter case we decide which of r, s, t shall
belong to the same cluster as u, v. In each of the eight cases we have
to insert or delete exactly 3 edges between r, s, t on one side and u, v on
the other side. If exactly two of r, s, t join the cluster (three different
branches), we must insert a 4th edge, namely one of rs, rt, st. If all of
r, s, t join the cluster, we must insert all 3 edges rs, rt, st, altogether these
are 6 edit steps. This guarantees the branching vector (1,3,3,3,3,4,4,4,6).
The characteristic equation x6 = x5 + 4x3 + 3x2 + 1 yields x < 2.17. 2

By Lemma 2.1 and 2.2, we can assume in the following that our
graphs have no induced K3 and K1,4. (Note that edit steps affecting
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vertices from isolated cliques are redundant.) In particular, no vertex of
degree 4 or more can appear.

Lemma 2.3 A connected graph without induced K3, where every edge
belongs to at most two P3, is Pn, Cn, or K1,3.

Proof. The only connected graphs with maximum vertex degree 2 are
Pn and Cn. Now let u be a vertex of degree 3. With its neighbors it
forms an induced K1,3. Since any edge uv of this K1,3 is already in two
P3, any further neighbor of v must be adjacent to u, but this gives a K3,
contradicting the assumption that G has no K3. It follows that no vertex
of our K1,3 can possess further neighbors. 2

By the preceding lemmas, we can assume in the following that our
graphs have no induced K3 and K1,4, and some edge uv belongs to three
different P3. Let r, s, t be three vertices, each building a P3 together with
u, v. Not all of r, s, t are adjacent to u (this would give an induced K1,4

or K3). Hence u is adjacent to exactly r and s, while v is adjacent to
exactly t. (Other cases are identical up to renaming.) Note that rs is
not an edge, whereas rt, st may be edges or not.

Now we branch as follows. Either we delete edge uv (1 edit step), or
we block it. In the latter case, we must insert or delete one edge in each
of the three P3 that include edge uv. This yields eight branches with at
least 3 edit steps each. On top of that we study how many edges need
to be edited between r, s, t. The rows of the table indicate which edges
exist (the case that only st exists is symmetric and therefore omitted),
the columns indicate which of r, s, t shall be in the same cluster C as u, v.
We count the missing edges in C that must be inserted, and the edges
between C and the rest that must be deleted.

- r s t r,s r,t s,t r,s,t
- 0 0 0 0 1 1 1 3
rt 0 1 0 1 2 0 2 2
rt,st 0 1 1 2 3 1 1 1

Together with the 3 edit steps between u, v and r, s, t and the sin-
gle edit step from the branch where uv is deleted, we obtain branching
vectors (1,3,3,3,3,4,4,4,6) and (1,3,3,3,4,4,5,5,5) in the first two cases,
and the third case is superior to the first. The characteristic equations
x6 = x5+4x3+3x2+1 and x5 = x4+3x2+2x+3 give branching numbers
2.17 and 2.08, respectively.

Our worst branching number was 2.27 from Lemma 2.1. Now we get
a concise enumeration of all minimal solutions to Cluster Editing by
applying the branching rules repeatedly in any order. Every leaf of the
resulting search tree represents a graph whose components are cliques
(which need not be edited further), chordless paths and cycles or K1,3.
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Given the “residual” k for the leaf, these paths and cycles must be of
length O(k), otherwise this leaf is a dead end, without solution. Char-
acterizing all minimal solutions in chordless paths and cycles is trivial,
due to their highly regular structure. For the other components we can
explicitly list their constantly many minimal solutions. Finally we take
the disjoint unions of edit steps in the components, observing the allowed
total number of these remaining edit steps. Details are straightforward.

Prior to branching we can compute a full kernel with O(k2) vertices
in O(k2n + m) time (as we will show in Section 5). This gives:

Theorem 2.4 A concise enumeration of all minimal solutions of Clus-
ter Editing is computable in O(2.27k + k2n + m) time. 2

Since each of our branching rules is disjoint, and the number of solu-
tions in chordless paths and cycles may be expressed by closed formulae,
we also get a counting algorithm of the same complexity. A result similar
to Theorem 2.4, but with base 1.47, exists for Cluster Deletion [20].

3 Twin Graph Editing is in FPT

3.1 The basic scheme of the algorithm

Let G, k, t be an instance of Twin Graph Editing. We seek an induced
subgraph H, with s size limited by some function of the parameters, and
where at least one edit step is forced. Then we can branch on the possible
edit steps in H. Thus we refer to H as the branching graph.

Lemma 3.1 If H is a twin-free induced subgraph of G with more than t
edges, then any solution to Twin Graph Editing must insert or delete
an edge in H.

Proof. Since H is twin-free, every edge in H has a discriminator in
H. If we do not edit H, it retains this property in the edited graph G′,
thus we get no true twins in H. Hence, T (G′) still contains T (H) as
induced subgraph and has therefore more than t edges, contradicting the
specification of the Twin Graph Editing problem. 2

While this choice of a branching graph is fairly obvious, the difficulty
is to find a small enough branching graph efficiently, without exhaustive
search in G. We accomplish this by an elimination process based on:

Lemma 3.2 A twin-free graph H always has a vertex r such that D(r, s, t)
does not hold for any edge st in H. We call r a non-critical vertex.

We defer the proof to the next subsection. Due to Lemma 3.2 we can
remove r and all incident edges from H, and no remaining edge will lose
all its discriminators, hence H − r is twin-free again. Now we can prove:
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Theorem 3.3 Twin Graph Editing is fixed-parameter tractable in
combined parameters k and t.

Proof. Given G, we first compute for every edge of G the list of dis-
criminators, trivially in O(mn) time. Now we easily obtain a (twin-free!)
induced subgraph H of G isomorphic to T (G) in O(m) time: Edges
with empty discriminator lists build disjoint cliques, and from every such
clique we keep one vertex and remove the others and all their incident
edges. (Actually, linear time would be sufficient for this part [13], but
this does not help the overall time bound.)

If H has at most t edges, we are done. Otherwise we remove a non-
critical r from H (see Lemma 3.2) and also all isolated vertices in H −
r. Since H − r is still twin-free, so is the smaller induced subgraph.
Thus we can continue the process and never get stuck, and in every step
we can select an arbitrary vertex r which does not occur alone in any
discriminator list. Non-critical vertices are held in a separate set NC. In
every step we update the data structure by removing the edges incident
with r, their discriminator lists, all occurrences of r in the lists of other
edges, and the isolated vertices. From NC we remove r and the vertices
that grew lonely in a list. All this is done in O(mn) time in total.

We stop as soon as an induced subgraph H ′ has at most t edges,
whereas the previous H had more than t edges. This H is our branching
graph. Clearly, H ′ has at most 2t vertices. The vertices of H that became
isolated in this step are all adjacent to r, since they were not isolated in
H. Together with r they induce a star graph which is twin-free. If more
than t such vertices exist, we obviously get a twin-free induced subgraph
with only t + 2 vertices. Otherwise H has at most 3t + 1 vertices. We
have to edit one of the at most 3t(3t + 1)/2 vertex pairs in H, which
gives an O(t2) bound on the branching number. 2

3.2 Twin-free graphs have non-critical vertices

Lemma 3.4 Suppose that D(x, v, u) holds. Then:
(i) D(v, t, y) implies t = x, and (y, x, v, u) is an induced P4.
(ii) D(u, t, y) implies y = x, and t, v are identical or adjacent.

Proof. First assume that {x, v, u} ∩ {t, y} = ∅. Since v and u are
adjacent to exactly the same vertices except x, either of D(v, t, y) and
D(u, t, y) implies the other relation, contradicting the definition of D.
Thus we have t = x or t = u in (i). But if D(v, u, y) then y is another
discriminator of vu. There remains t = x, hence D(v, x, y). If yu is an
edge then y is again another discriminator of vu. In (ii) it must be t = v
or y = x. But if t = v then y is another discriminator of vu, unless
y = x. Finally, if t, v are distinct but not adjacent then t is another
discriminator of vu. 2
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Using this building block we will now prove Lemma 3.2. First we
give the idea. Consider any vertex x. If x is critical then D(x, v, u) for
some edge vu. If both v and u are critical, there must exist edges they
are unique discriminators of, and so on. The difficulty is that such edges
can in fact be established, and they can involve new vertices. (Hence
the construction shows by itself that the argument cannot be simplified.)
On the other hand, Lemma 3.4 imposes strong enough restrictions that
enforce some repeated pattern. Since the graph is finite, we must abort
the construction at some point and are then left with some non-critical
vertex. Now the detailed exposition follows.

Consider a graph H where each vertex is the unique discriminator
of some edge. We show by induction that H must contain pairwise
distinct vertices uj, vj, xj, yj for all j ≥ 1 that have certain properties
listed below. It follows that such a finite H cannot exist. Let Wj be the
set of all ui, vi, xi, yi with i ≤ j, in particular W0 = ∅. The properties are
the following.
(1) (uj, vj, xj, yj) in this order form an induced P4.
(2) vj, xj are adjacent to all vertices in Wj−1.
(3) uj is adjacent to all ui, vi in Wj−1, but not to the xi, yi. Similarly, yj

is adjacent to all xi, yi in Wj−1, but not to the ui, vi.
(4) D(vj, s, yj) holds for some s ∈ Wj. Similarly, D(xj, s, uj) holds for
another s ∈ Wj.
(5) All ui, vi with i ≤ j have the same neighbors outside Wj. Similarly,
all xi, yi with i ≤ j have the same neighbors outside Wj.
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Figure 1. Two consecutive layers of the graph used in the proof.

Induction base (j = 1): Let x1 be any vertex. By assumption on H
there exist u1, v1 so that D(x1, v1, u1), and v1 is also the only discrimina-
tor of some edge. Lemma 3.4 (i) allows only D(v1, x1, y1) for some new
vertex y1 and also implies (1) and (4) for j = 1. Conditions (2),(3) are
vacuously true, and (5) follows from D(x1, v1, u1) and D(v1, x1, y1).

Induction step: Suppose that (1)–(5) are true for some j. By assump-
tion on H, uj is the only discriminator of some edge, and (4) for j says
that D(xj, s, uj) for some s ∈ Wj. Lemma 3.4 (ii) yields D(uj, t, xj) for
some t identical or adjacent to s. Case t = vj is impossible, since by (1),
vjxj has already another discriminator yj, contradicting D(uj, vj, xj). If
t ∈ Wj−1 then, by (3), t is one of the ui or vi. But then, due to (1),(2), yi
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with the same i is another discriminator of txj, contradicting D(uj, t, xj).
This shows t /∈ Wj. Define xj+1 := t. Since xj+1 has neighbors uj and
xj, property (5) yields that xj+1 is adjacent to all of Wj. Thus we have
shown (2) for xj+1. By symmetry there also exists vj+1 satisfying (2).
Recall that D(uj, xj+1, xj) and, symmetrically, D(yj, vj+1, vj). Assume
vj+1 = xj+1. Then we also have D(yj, xj+1, vj). By Lemma 3.4 (i), any
edge with unique discriminator xj+1 contains both uj and yj, which is
obviously impossible. Thus vj+1 6= xj+1. Furthermore, these two ver-
tices are adjacent, since otherwise vj+1 would be another discriminator
of xjxj+1, besides uj. (Note that vj+1xj is an edge by (2).)

Applying Lemma 3.4 (i) again to D(yj, vj+1, vj), we see D(vj+1, yj, z)
for some z being not adjacent to vj+1, hence z /∈ Wj due to (2). Since
(5) holds for j, and vj, vj+1 have the same neighbors except yj, vertex
z is adjacent to all the xi, yi in Wj, but to none of the ui, vi in Wj.
Defining yj+1 := z we get D(vj+1, yj, yj+1). Altogether, yj+1 satisfies (3),
and also (4) holds, with j + 1 in the role of j, and yj is the role of s.
By symmetry we also get a vertex uj+1 which satisfies the other half of
(3) and (4), respectively. In particular we have D(xj+1, uj, uj+1). Since
the new vertices uj+1 and yj+1 have distinct neighborhoods in Wj, they
are distinct. Moreover they are not adjacent, otherwise uj+1 would be
another discriminator of yjyj+1. Edges uj+1vj+1 and xj+1yj+1 do exist,
since without them, vj+1 and xj+1 would be another discriminator of
ujuj+1 and yjyj+1, respectively. This shows (1) for j + 1.

Finally we recover (5) for j + 1. By the induction hypothesis and
D(xj+1, uj, uj+1), D(yj, vj+1, vj), both uj+1 and vj+1 have outside Wj+1

the same neighbors as all other ui, vi have. Once more, the argument
holds symmetrically for xj+1 and yj+1. This completes the induction
step and the proof.

3.3 Making the base linear in parameter t

Theorem 3.3 established that Twin Graph Editing is in FPT. Finally
we improve the base to O(t). Note that t ≥ 2 in the following. Case
t = 0 is Cluster Editing, and t = 1 is meaningless.

Lemma 3.5 If, in a twin-free graph other than P3, several vertices of
degree 1 have the same neighbor, then either of them is non-critical.

Proof. Let x, x′ be any two vertices of degree 1 with common neighbor
v. We remove x. If x was a discriminator of some edge other than vx′,
then x′ is still discriminator of that edge. Since our graph is not P3, v
has yet another neighbor, which is a discriminator of vx′. Hence no edge
loses its unique discriminator. 2

Lemma 3.6 Suppose that t ≥ 3, and H a minimal twin-free graph with
more than t edges (minimal in the sense that removing any non-critical
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vertex would leave at most t edges). Then H has at most 3

2
t + 2 vertices

and 5

2
t edges. For t = 2, H has at most 5 vertices and 6 edges.

Proof. Lemma 3.2 says that a non-critical r exists in H. Since H − r is
twin-free, no edge in H − r is isolated. Hence the t edges in H − r can
span at most 3

2
t vertices. (The worst case is a union of disjoint copies of

P3.) Note that H − r may contain further, isolated vertices, i.e., vertices
with the only neighbor r in H. Since H has at least three edges, H is not
P3, and Lemma 3.5 applies. If several vertices of degree 1 are adjacent
to r, any of them is non-critical. Let x be one of them. In this case H
has exactly t + 1 edges. Moreover, since the observation above holds for
any non-critical vertex and H−x has no isolated vertices, H has at most
3

2
t + 1 vertices. The other case is that at most one vertex x exists with

r as the only neighbor. Then H has at most 3

2
t + 2 vertices.

Suppose there is at least one neighbor x of r with degree 1. If x
is non-critical, we are back to the previous case. Otherwise there exist
u, v such that D(x, v, u). Clearly, v = r. Recall that u, v have the same
neighbors apart from x. Furthermore, since H − v has at most t edges,
the degree of u is bounded by t + 1, which limits the degree of v to t + 2.
Since uv is an edge, it follows that H has at most 2t + 2 edges.

Finally, if r has no neighbors of degree 1 in H, then the edge number
of H is maximized if H − r has 3

2
t vertices, all adjacent to r. This gives

t + 3

2
t = 5

2
t edges. 2

Theorem 3.7 Twin Graph Editing can be solved in O(mn ·bk) time,
where b = 6.12t + O(

√
t).

Proof. The elimination process in our FPT algorithm (Theorem 3.3)
provides a branching graph with size bounds as in Lemma 3.6, in O(mn)
time. In H, either we remove one of the at most 5

2
t edges, or we block all

edges of H and insert new edges. In the following we discuss the latter
case. Our edge insertions must destroy twin-free induced subgraphs with
more than t edges. Since the edge number in H can only grow, our
insertions must produce at least one new pair u, v of twins. Some u, v
have to become twins in the entire graph G, not only in H. (Otherwise
all vertices in H would, in the final T (G), still represent pairwise distinct
equivalence classes of twins, so that a twin-free induced subgraph with
more than t edges remains.) In the following we branch on H by choosing
the pair u, v and doing the enforced edit steps.

We have at most 5

2
t choices of vertices u, v that were already adjacent

in H. Since u, v are not twins in H, some x discriminates uv, thus we
must insert the unique missing edge between x and u or v.

It remains the case that u, v were not adjacent. Since H has at most
3

2
t + 2 vertices, no more than 9

8
t2 + 9

4
t + 1 such pairs u, v exist. To

achieve branching number O(t) we have to identify two edges that must
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be inserted to make u, v twins. One is obviously uv. If u, v have different
neighborhoods in H, we are also forced to insert one more edge in H.
Suppose that u, v have the same neighbors in H. But if some x outside
H discriminates the new edge uv, we must either insert or delete an edge
between x and u or v, in order to make u, v twins in G. The case that u, v
are false twins is treated differently. For branching, it suffices to choose
from each equivalence class of false twins only one pair u, v and to insert
edge uv, because all other choices are isomorphic. In the worst case, H
consists of 3

4
t + 1 classes of two false twins.

Reviewing all these cases we find that one edit step is enforced in at
most 5

2
t + 5

2
t + 3

4
t + 1 = 23

4
t + 1 different ways, and two edit steps in at

most 9

4
t2 + 9

2
t+2 different ways. Solving the characteristic equation gives

the claimed branching number. 2

The current bound is practical only for very small t, but it seems
possible to improve the factor 6.12, and to derive smaller bases for t =
2, 3, 4, . . .

4 Minimizing the Number of Clusters

4.1 Unrestricted clusterings

In Twin Graph Editing we measured the complexity of the target
graph by the number of edges in its twin graph. Alternatively we may
aim at a minimum number of vertices in the twin graph. We define the
Twin Graph Editing (V) problem accordingly: Given G and k, t, can
we obtain by at most k edit steps some G′ so that T (G′) has at most t
vertices? We can see that Twin Graph Editing (V) is in FPT, with
combined parameters k, t, in very much the same way as in Theorem
3.3. Our branching graph H has exactly t + 1 vertices; we do not need a
complicated argument to bound the size of H. This implies the branching
number t(t + 1)/2. However, we could not achieve an O(t) base, since
the number of edges in T (G) can be quadratic in t.

We define the problem Cluster Editing (Min): Given G and k,
turn G by most k edit steps into a cluster graph with minimum number
of clusters. Cluster Editing (Min) is in FPT in parameter k alone,
as there is a trivial enumeration algorithm with branching number 3. In
order to improve the branching number, we use our concise enumerations.
The following lemma is just Theorem 2.4 rephrased, but we have to stress
some technical details needed in the following.

Lemma 4.1 A concise enumeration of all minimal solutions to an in-
stance of Cluster Editing can be computed by a search tree algorithm
that uses only branching rules with branching numbers no larger than
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2.27. All leaves of the resulting search tree represent graphs which may
contain, besides cliques, also K1,3 and chordless paths and cycles as com-
ponents. All minimal solutions are reached by further, independent edit
steps inside these non-clique components.

For solving Cluster Editing (Min) we compute a concise enumer-
ation as in Lemma 4.1 and then further expand the paths of the search
tree, starting from the current leaves. For every leaf it suffices to find
some optimal solution below this leaf. Finally we take the best. In the
following we consider any leaf. Let L denote the graph represented by
this leaf, and k the number of edit steps still allowed for L (not to confuse
with the initial k).

If L is already a cluster graph, we may further reduce the number of
clusters by at most k further edit steps. The following lemma restricts
the edit steps we have to take into account. The lemma is not surprising,
we omit its simple proof.

Lemma 4.2 Let L be a cluster graph that can be transformed by at most
k edit steps into a cluster graph H with at most c clusters. Then we can
do the transformation in such a way that clusters of L are only merged
but never split. 2

Due to Lemma 4.2, if L leads to an optimal solution at all, we can
obtain some by successive merging of clusters. Moreover, we have:

Lemma 4.3 In every merging step we can take a cluster C of currently
minimum size and merge it with one of the other clusters.

Proof. If C participates in further merge operations at all, we can merge
C right now with another cluster. If not, then C becomes a separate
cluster in the target graph H. But then we can switch the roles of C
and some larger cluster, this only reduces the number of edge insertions.
Hence it is safe to merge a smallest cluster C with some other cluster. 2

However, the greedy strategy that successively merges two small-
est clusters fails. Counterexamples are easy to find. Instead we use a
branching rule based on Lemma 4.3: Merge a smallest cluster C with
another cluster. Every possible cardinality of the merging partner gives
one branch. If |C| = x, and the different sizes of the other clusters are
x1 < x2 · · · < xd, we get the branching vector (xx1, xx2, . . . , xxd). Thus,
the inverse y of the branching number fulfills the characteristic equation
∑d

i=1 yxxi = 1. For any d, the worst case (y minimal) appears if x = 1
and xi = i for all i, that is,

∑d
i=1 yi = 1. Now we see y > 1/2, hence the

branching number is always smaller than 2. (As a side remark, we do
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not know whether Cluster Editing (Min) is polynomial or NP-hard
on cluster graphs.)

It remains to consider the components in L which are not cliques,
see Lemma 4.1. Any transformation of L into a cluster graph can be
rearranged so that we first reach a cluster graph through a minimal edit
sequence (and then perhaps reduce the number of clusters). But we
get all minimal solutions by turning the components independently into
cluster graphs. It suffices to have one branch for every multiset of cardi-
nalities. A K1,3 can be divided into clusters of size 4, 3+1, 2+2, 2+1+1,
or 1+1+1+1. The branching vector indicating the necessary number of
edit steps is (3, 2, 3, 2, 3), which gives a branching number below 2. The
remaining components in L are chordless paths or cycles. In a P3 compo-
nent we need to consider only two branches, leading to clusters of size 3
or 2+1. The branching vector is (1, 1), hence the branching number is 2.
(Case 1+1+1 is not a minimal solution.) On a component Ps with s ≥ 4
we branch as follows. Either we split Ps into s singleton clusters by s− 1
deletions, or we decide on the size i, 2 ≤ i < s, of some subpath that
we cut off and complete to a cluster, or we make the entire component

a cluster. The middle case needs one deletion and
(

i

2

)

− (i − 1) =
(

i−1

2

)

insertions, and the last case needs
(

s−1

2

)

insertions. Hence the branch-

ing vector is (s − 1,
(

1

2

)

+ 1,
(

2

2

)

+ 1,
(

3

2

)

+ 1, . . . ,
(

s−2

2

)

+ 1,
(

s−1

2

)

). This

vector is almost sorted, and if we put s − 1 at the proper place in the
increasing sequence, we easily see that our branching vector dominates
(1, 2, 3, . . . , s) which yields a branching number below 2. For Cs we ap-
ply the same branching rule, but we need an extra deletion to get s
singleton clusters or to split off the first subpath, and one insertion less
if the whole cycle becomes a cluster. Hence, the branching vector be-

comes (s,
(

1

2

)

+ 2,
(

2

2

)

+ 2,
(

3

2

)

+ 2, . . . ,
(

s−2

2

)

+ 2,
(

s−1

2

)

− 1). Using the

same argument, the branching number is smaller than 2, for every s. It
follows:

Theorem 4.4 Cluster Editing (Min) can be solved in O(2.27k +
k2n + m) time.

Proof. Prior to branching we can compute a full kernel with O(k2)
vertices in O(k2n+m) time (as we will show in Section 5). Furthermore,
the worst branching number was 2.27. 2

4.2 Natural clusterings

Clusterings with a forced small number of clusters tend to merge small
clusters just because this is “cheap” in terms of edge insertions, but they
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need not be “really” related. Thus one may argue that Cluster Edit-
ing (Min) is somewhat ill-posed. To overcome this effect, we propose
to prohibit unmotivated mergings and splittings as follows:

Definition 4.5 Given a graph G = (V,E), a cluster graph H on vertex
set V is a natural clustering of G if:
(1) The vertices of each cluster in H induce a connected subgraph of G.
(2) For any two clusters C and C ′ in H, not all possible edges between
C and C ′ exist in E.

We define the problem Cluster Editing (Min,Nat): Given G
and k, turn G into a natural clustering of G with a minimum number
of clusters, by at most k edit steps (if possible). Neatly, the following
equivalence holds:

Theorem 4.6 The natural clusterings of a graph are exactly the minimal
solutions to Cluster Editing.

Proof. Let H be a natural clustering of G, and τ the set of edit steps
turning G into H. We claim that any σ ⊂ τ cannot lead to a cluster
graph, hence H is a minimal solution. If σ omits some of the edge
deletions in τ , then at least two clusters of H, say C and C ′, fall into
the same component of G. Since σ cannot delete more edges than τ , it
follows that C and C ′ remain connected after σ. But then σ must insert
all missing edges between C and C ′ (due to (2) there are some), whereas
τ does not insert such edges. This contradicts σ ⊂ τ . We conclude
that all edges deleted by τ are deleted by σ, too. After the deletions,
σ must complete the components to cliques. Hence σ must insert all
missing edges in the clusters of H (unless some cluster of H is not a
connected subgraph of G, which is excluded by (1)). This implies σ = τ ,
a contradiction. The claim is proved.

Conversely, let H be a minimal solution to Cluster Editing, and
τ defined as above. By minimality, any σ ⊂ τ cannot produce a clus-
ter graph. Assume that (1) is violated, i.e., some cluster C of H is a
disconnected subgraph of G. If we fail to insert the edges between the
components of C, we get a proper subset of τ generating a cluster graph
(with C divided in several clusters), a contradiction. Assume that (2) is
violated, so that E contains all possible edges between two of the clus-
ters, say C and C ′. Since C and C ′ are clusters in H, τ has deleted
all these edges. If we do not delete them, we get a proper subset of τ
producing a cluster graph (with cluster C ∪C ′ rather than C and C ′), a
contradiction. 2

Theorem 4.7 Cluster Editing (Min,Nat) can be solved in O(2.27k+
k2n + m) time.
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Proof. Prior to branching we can compute a full kernel with O(k2) ver-
tices in O(k2n+m) time (as we will show in Section 5). The exponential
part follows directly from Theorem 4.6 and the result for Cluster Edit-
ing (Min). Note that only the non-clique components must be turned
into cluster graphs, while the entire cluster merging phase is rendered
superfluous in this problem version. 2

5 Cluster Editing: The Full Kernel

5.1 The cluster decomposition

In this section we leave the area of branching rules and deal with the
size and computation of full kernels. The following decomposition is the
basis for our estimate of full kernel size.

Definition 5.1 A cluster decomposition of a connected graph G = (V,E)
is a partition of V in disjoint sets, called a head Q and pre-clusters, with
the following properties:
(i) Every pre-cluster is a clique.
(ii) There are no edges between pre-clusters.
(iii) Every pre-cluster is a module.
(iv) For any two pre-clusters C and D, sets N(C), N(D), called the tags
of C and D in Q, are disjoint.

Lemma 5.2 If graph G is at most k edit steps away from a cluster graph,
then a cluster decomposition of G with |Q| ≤ 3k can be computed in
O(k2n + m) time.

Proof. Consider a maximal set P of mutually pair-disjoint induced P3 in
G. Let the head Q be the vertex set spanned by P . Since P is maximal,
G−Q does not contain another P3, hence G−Q induces a cluster graph.
We define the components of G − Q to be the pre-clusters. Then (i),
(ii) are obvious. Condition (iii) is true, since otherwise some u, v ∈ C
and w ∈ Q induce a P3 u − v − w, contradicting the maximality of P .
Finally, if some C,D violate (iv), then some u ∈ C, v ∈ Q, w ∈ D
form a P3, again contradicting the maximality of P . In conclusion, P as
specified above yields a cluster decomposition. Since |Q| ≤ 3k, at most
3k pre-clusters are connected to Q.

In order to construct P efficiently, we start from the subgraph H of
G with empty vertex set and from an empty P . Then we insert vertex
by vertex in H, along some spanning tree of G, so that H always remains
connected. Moreover, we maintain a cluster decomposition of the current
H, until H = G. For any new vertex w added to H we form several new
P3, each consisting of w and a pair of vertices u, v in H. We call u, v an
eligible pair if u, v, w form a P3, and u, v do not already belong to the
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same P3 in P . Then, we take disjoint eligible pairs and add the resulting
new P3 to P in a greedy fashion, until P cannot be further extended in
the current H. Correctness is obvious. We analyze the time.

We have to find a greedy set of eligible pairs u, v efficiently in every
step. First of all, u, v must form an induced P3 with w. Since |Q| =
O(k), only O(k) of the pre-clusters are connected with Q, and the pre-
clusters are modules in H, we can easily partition subgraph H + w in
O(k) modules, using the cluster decomposition of H. In detail: Every
pre-cluster in H is split into at most two modules (consisting of the
vertices being adjacent to w or not), and every vertex in Q ∪ {w} may
form a module on its own, in the worst case.

Now, it suffices to choose one representative vertex from every module
of H + w, and to check O(k2) pairs u, v whether they form a P3 with
w, since the results carry over to all vertices u′, v′ in the same modules.
Once we know the pairs of candidate modules, we can restrict our greedy
extension procedure to vertices from these pairs of modules. Vertices
that became members of any new P3 in P will move, of course, from the
pre-clusters to Q.

As we have seen above, for every w we need O(k2) preprocessing time
to identify the new members of P , from a partitioning of H + w into
modules. This gives the O(k2n) term. We limit the time for all other
operations in the whole algorithm as follows. Since the final P has still
at most k P3, inserting them in P costs O(k) time. Edges incident to
each new w are inserted in the growing induced subgraph H in O(m)
time. Thus we need O(m) time in total, in order to compute modules of
H + w from the cluster decomposition of H, and for all updates of the
cluster decomposition. 2

Next we give a cleaning procedure which transforms an instance G, k
of Cluster Editing, preserving the set of minimal solutions. It does
some forced edit steps immediately and removes parts of G being irrele-
vant for the problem. Recall that every v ∈ Q is in the tag of at most one
pre-cluster C. To avoid case distinctions, we introduce a dummy clique
of size 0 and define its tag as the set of all vertices in Q which are not in
the tag of any (real) pre-cluster.

Cleaning Procedure:
(1) For every pre-cluster C with more than k vertices, insert an edge uv
between any two u, v ∈ N(C) that are not yet adjacent.
(2) For any two pre-clusters C and D with c and d vertices, respectively,
where c+d > k, delete every edge uv with u ∈ N(C) and v ∈ N(D). (In
particular, D may be the dummy pre-cluster and d = 0.)
(3) Remove every clique which is disconnected from the rest of the graph.
Apply these rules as long as possible.
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Lemma 5.3 The cleaning procedure does not alter the set of minimal
solutions and can be implemented to run in O(k2 + m) time if a cluster
decomposition as in Lemma 4.7 is already given.

Proof. In any solution, every clique with k + 2 vertices in G must
entirely be in a cluster, otherwise we had to disconnect the clique, which
is impossible with k deletions. To see that (1) is correct, note that both
C ∪{u} and C ∪{v} are cliques of size at least k + 2, hence u, v must be
in the same cluster. As for (2), observe that if we keep edge uv, every
vertex in C ∪D must be incident to an inserted or deleted edge with one
of u, v, requiring more than k edit steps, a contradiction. Correctness of
(3) is trivial: Extra edges that connect an isolated clique to other vertices
cannot be part of a minimal solution.

Rules (1) and (2) only add edges inside (or delete edges between) tags
in a set of O(k) vertices, hence they apply at most once to each of O(k2)
vertex pairs. Rule (3) simply removes isolated cliques. Hence the time is
linear in the size of G. 2

Corollary 5.4 After the cleaning procedure, every pre-cluster C has at
most k vertices.

Proof. Assume that a larger C exists. Since (1) does not apply, C∪N(C)
is a clique. Since (2) does not apply, no edge connects N(C) and vertices
outside C ∪ N(C). This gives an isolated clique, and (3) applies, a
contradiction. 2

Corollary 5.5 A full kernel with at most 3k2+3k vertices is computable
in O(k2n + m) time.

Proof. The remaining graph is a full kernel, |Q| ≤ 3k, all tags are
disjoint, and the pre-clusters are bounded due to Corollary 5.4. 2

5.2 Ambiguous vertices

Corollary 5.5 establishes an O(k2) bound for the full kernel. Next we
also achieve the optimal constant factor. In the following we fix the
cluster decomposition and a certain minimal solution. With respect to
this minimal solution, we distinguish several cases of pre-clusters C and
“charge” them for edit steps that touch vertices in C. All pre-clusters
will be charged. Since at most k edit steps are allowed in total, this will
eventually limit the full-kernel size.

Lemma 5.6 If the graph (full kernel) G′ after the cleaning procedure is
disconnected, then a minimal solution never adds edges between vertices
from different components of G′.
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Proof. The cleaning procedure performs only enforced edit steps (which
must be done in any minimal solution). Any cluster with vertices from
different components of G′ can be split in smaller clusters, each containing
vertices from one component. This finer clustering was produced by a
proper subset of further edit steps (starting from G′), hence the given
clustering was not a minimal solution. 2

Theorem 5.7 At most k2/4 + 7k/2 + 1/4 vertices are ambiguous, and
a full kernel of that size can be computed in O(k2n + m) time.

Proof. Consider any component H of the full kernel after the cleaning
procedure. Let c1 ≥ · · · ≥ cr be the vertex numbers of all r pre-clusters
in H. If the tags of all pre-clusters in H are cliques, we set the weight
of H to c1 + cr. Otherwise, the weight of H is just c1. Finally, w is
the maximum weight of a component in our full kernel. Every tag is
non-empty, since the cleaning procedure has removed isolated cliques.

We call a pre-cluster inert, with respect to a fixed minimal solution,
if the vertex set of this pre-cluster and its tag forms exactly one cluster
there. Let C, with c vertices, be a largest pre-cluster in a component
H of weight w. In the following we suppose that C is not inert in some
minimal solution, and we fix such a minimal solution.

Phase 1:
First assume that all other pre-clusters in H are inert. Since, by

Lemma 5.6, edit steps after the cleaning procedure occur only inside the
components, it follows that C ∪ N(C) is split in at least two clusters.
This splitting requires at least c deletions of edges incident to vertices of
C, which is easily seen from N(C) 6= ∅ and the fact that C is a clique
and a module. Moreover, since we consider a minimal solution, N(C)
was not a clique. By the definition of w, we get c = w.

The other case is that some other pre-cluster D in H, say with |D| =
d, is not inert either. We claim that at least c + d edit steps that involve
vertices of C ∪ D must be done. It is easy to check the few different
cases that C ∪ N(C) (or D ∪ N(D)) is cut in different clusters or stays
in one cluster that gets at least one more vertex. Trivially, we also have
c + d ≥ w.

Thus we can already charge one or two non-inert pre-clusters for at
least w edit steps, in both cases.

Phase 2:
Next we also charge all the remaining pre-clusters in all components.

In the following, consider any component with, say, r pre-clusters. By
connectivity, at least r−1 edges tie their tags together. Two pre-clusters
are called neighbors if there exists an edge between their tags.

If the considered component has at least one non-inert pre-cluster
C, or an inert pre-cluster C whose tag N(C) is not a clique, we can
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successively charge all r pre-clusters, each for one edit step, as follows.
First charge all pre-clusters C of the two mentioned types: If C is not
inert, there is an edit step involving a vertex of C. If C is inert but N(C)
not a clique, an edge insertion must be done in N(C). Next, pick a yet
uncharged pre-cluster D (inert, with a clique as tag) which has already a
charged neighbor C. Since D is inert, an edge between N(C) and N(D)
is deleted in the solution, and we charge D for this deletion. Since C
was already charged, we did not count this edge twice. By connectivity,
this procedure never gets stuck, until all pre-clusters are charged. If one
of the pre-clusters in the component is dummy, we also consider it as
“charged” in the beginning and proceed as above. In either case, every
non-empty pre-cluster in the component is now charged for a different
edit step. Also note that every pre-cluster contains at most w vertices.

It remains to discuss components where all pre-clusters are inert and
have cliques as tags. Obviously, at least r−1 edges must be deleted. We
charge the largest and the smallest pre-cluster together for one deletion,
and the other r−2 pre-clusters together for r−2 deletions. By definition
of w, at most w vertices from pre-clusters are now charged for each of
the r − 1 edge deletions.

Putting things together:
Recall that at most k edit steps in total are allowed. In Phase 1

we charged, for y ≥ w of them, no more than y vertices from one or
two pre-clusters. In Phase 2, at most w ≤ y vertices from nonempty
pre-clusters have been charged for each of the, at most, k − y other edit
steps. Since all pre-clusters are charged, all pre-clusters together contain
at most (1 + k − y)y vertices. This term is maximized if y = (k + 1)/2,
hence the pre-clusters contain at most k2/4+k/2+1/4 vertices. Adding
the at most 3k vertices from Q yields the result.

Finally we give the time complexity. Again, let C be a largest pre-
cluster in a component of maximum weight. (C is easy to find in the
cluster decomposition.) Our construction and analysis shows: If C is not
inert in some minimal solution, the union of pre-clusters has already a size
of at most k2/4 + k/2 + 1/4, and we can stop. By contraposition, if this
union is larger, we know that C is inert in all minimal solutions. Hence,
removing C ∪ N(C) leaves us with a smaller full kernel. Moreover, we
still have a cluster decomposition of this smaller graph where |Q| ≤ 3k,
since the part outside Q is still a cluster graph. Thus we can simply
iterate the procedure. A cluster decomposition with |Q| ≤ 3k must be
computed only once in the beginning. The only thing to recompute after
every removal is the components of Q. Now the time bound follows from
the previous results. 2

The asymptotic k2/4 bound is tight even for Cluster Deletion,
as the following example shows. For simplicity let k be even.
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Proposition 5.8 There exist graphs with k2/4 + 3k/2 + 2 ambiguous
vertices.

Proof. Take k/2 + 1 disjoint cliques, each with k/2 + 1 vertices, and
attach to every clique another vertex being adjacent to one vertex in the
clique. Put any one of the extra vertices x and its only neighbor y in
one cluster, the other k/2 edges incident to y are deleted. The other k/2
extra edges are also deleted. Every such solution is minimal, hence all
vertices are ambiguous. 2

There remains a gap in the linear term only. For the graphs in the
previous proof, the minimum number of edit steps to reach a cluster
graph is only k0 = k/2 + 1. It arises the question whether the full kernel
size is even smaller than k2/4 for k = k0, or already for some k < 2k0.

5.3 Ambiguous pairs

Theorem 5.9 The number of ambiguous pairs is bounded by k4/32 +
o(k4), and there exist graphs with k4/800 ambiguous pairs.

Proof. The first statement follows from Theorem 5.7. The worst case
would be that all pairs in a full kernel of maximum size are ambiguous.

As an example for the lower bound, take ak disjoint cliques, each
with bk vertices, and another special vertex z. Constants a, b are fixed
later. For simplicity assume that all numbers that denote cardinalities
are in fact integer. Join one vertex from every clique by an edge to z.
In the following, Kv denotes the clique with vertex v connected to z.
For any Ku and Kv and w ∈ Kv (w 6= v) we specify a minimal solution
as follows. We keep edges uz, zv, vw, and all edges in Ku. This implies
that Ku and z, v, w belong to the same cluster. In order to put z, v, w
in Ku we have to insert 3bk edges. The other ak − 2 edges indicent to z
are deleted, as well as the 2bk − 4 edges between v and w, respectively,
and the rest of Kv. Obviously, these (a + 5b)k − 6 edit steps yield a
cluster graph. This solution is minimal, by the following argument. In
any solution using a subset of edit steps we must keep uz, zv, vw and the
edges in Ku, too, hence Ku, z, v, w are in the same cluster. Furthermore
we must keep Kv \ {v, w} and all other cliques. Since merging two Θ(k)
cliques would require Θ(k2) insertions, we must also delete the same edges
as above. Note that all a2b2k4/2 edges (lower-order terms neglected) are
ambiguous. The constant factor is maximized under constraint a+5b ≤ 1
if a = 1/2 and b = 1/10. 2

The constant factor is left as an open problem. Similar remarks as
above apply to the graphs used in this proof: Note that k0 = ak = k/2.
We conjecture that we get much less ambiguous pairs if k is close to k0.
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The number of ambiguous edges in Cluster Deletion is open, only an
upper bound of 3k3/4+o(k3) and a quadratic lower bound is known [20].
Another question arises from Theorem 5.7: Our construction yields a
bound in terms of k, but not the smallest full kernel for any given graph.
We conjecture that computing the exact set of ambiguous pairs requires
the actual computation of all minimal solutions, and thus exponential
time in k.

6 Other Problem Variants and Conclusions

If a graph G = (V,E) is at most k edit steps away from a graph with
a given hereditary property (preserved on induced subgraphs), we also
reach that property by k vertex deletions (or much less, if the “graph
of edit steps” has a small vertex cover). Thus, any edge modification
problem gives rise to a related vertex deletion problem.

For example, Cluster Vertex Deletion, corresponding to Clus-
ter Editing, asks to find some X ⊂ V , |X| ≤ k, such that G − X is
a cluster graph. This allows for small overlaps of many clusters, whose
number is no longer limited by the parameter. For the currently best
results on this problem see [14]. A concise enumeration is easy to obtain
by a search tree algorithm with branching number 2.42 (based on the
observation that any graph with components other than cliques and P3

has two induced P3 with two common vertices), but this can certainly
be improved. All complexity bounds in the paper are subject to further
improvements as well, e.g., by more sophisticated branching rules and
analysis.

Can we efficiently solve edge modification problems in a two-stage
process, using their vertex deletion counterparts? The idea would be to
compute concise enumerations for the vertex deletion problem, and to
assign edge changes to the affected vertices only.

Cluster editing with arbitrary individual edge weights (at least 1) is
solvable in O(3k +n3) time, where k is the total cost of editing [21]. Can
we do better if weights are distances in a metric space? Furthermore,
vicinity graphs in a metric space cannot contain induced stars K1,s (s
depending on the dimension). Can our bounds be improved for such
graphs G? Can we efficiently compute posterior probabilities of cluster-
ings when prior probabilities of edges are given? This problem seems to
be quite different from weighted cluster editing [21].

Instead of weights we could have two parameters for the number of
insertions and deletions. This is appropriate in applications where inser-
tions and deletions have different evidence.
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Böcker. Exact and heuristic algorithms for weighted cluster edit-
ing, 6th Annual International Conference on Computational Systems
Bioinformatics CSB 2007, 391–401

26



[22] D. Scholtens, M. Vidal, R. Gentleman. Local modeling of global
interactome networks, Bioinformatics 21 (2005), 3548–3557

[23] R. Shamir, R. Sharan, D. Tsur. Cluster graph modification prob-
lems, Discrete Applied Mathematics 144 (2004), 173–182

[24] R. Sharan, A. Maron-Katz, R. Shamir. CLICK and EXPANDER:
A system for clustering and visualizing gene expression data, Bioin-
formatics 19 (2003), 1787–1799

[25] R. Sharan, R. Shamir. Algorithmic approaches to clustering gene
expression data, in: Current Topics in Computational Molecular
Biology, MIT Press, 2002, 269–300

[26] S. Wu, X. Gu. Gene network: Model, dynamics and simulation, 11th
Computing and Combinatorics Conference COCOON 2005, LNCS
3595, 12–21

27


