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Abstract. In an overdetermined and feasible system of linear equations
Ax = b, let vector b be corrupted, in the way that at most k entries are
off their true values. Assume that we can check in the restricted system
given by any minimal dependent set of rows, the correctness of all corre-
sponding values in b. Furthermore, A has only coefficients 0 and 1, with
at most two 1s in each row. We wish to recover the correct values in b
and x as much as possible. The problem arises in a certain chemical mix-
ture inference application in molecular biology, where every observable
reaction product stems from at most two candidate substances. After
formalization we prove that the problem is NP-hard but fixed-parameter
tractable in k. The FPT result relies on the small girth of certain graphs.
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1 Introduction

Let Ax = b be a system of m linear equations in n variables, over the real
numbers. Suppose that Ax = b was obtained from some feasible linear system
Ax = b′ by changing at most k of the coefficients in the vector b′. That is, b
differs from the unknown true vector b′ in at most k positions, but we are not
told which. The maximum number k of errors may or may not be known. Our
goal is to recover the correct values in b (and x) as far as possible, using a certain
correctness criterion for entries of b that will be introduced below.

We were led to the problem by an application where we wish to infer the
amounts of chemical compounds in an unknown mixture. We can only measure
amounts of products of chemical split reactions each of which can stem from one
or more candidate substances. This is modelled by a system of linear equations
Ax = b. Each row (equation) corresponds to a measured substance, and each
column of A (resp. variable of x) corresponds to a candidate compound. A with
entries aij is the incidence matrix, that is, aij = 1 if split product i appears in
compound j, and aij = 0 else. The aij are known, and bi is the measured amount
of product i. Typically every split product is contained in very few candidate



compounds, hence the rows of A contain very few 1s. We are particularly in-
terested in the reconstruction of protein mixtures after enzymatic digestion into
peptides which can be identified and measured. Most peptides come from only
one or two candidate proteins, and simulated protein digestion data suggest that
already equations with at most two variables suffice to infer most of the protein
amounts, provided that all measurements are correct [2]. A practical issue is
that, as a result of experimental errors, some of the measured values in b may
be corrupted. Without errors we would merely have to solve the linear system,
which is even overdetermined. But in the presence of errors it is clear that any
inference algorithm needs some assumptions about the number or the nature of
errors, as well as the manner by which they can be detected. Here we will adopt
what we call the independent errors assumption; see below.

For any set R of rows, let A[R] be the matrix A restricted to R, and let
b[R] be the vector b restricted to the corresponding entries, in the rows of R.
Our systems are overdetermined. Consider any subset C of rows that is linearly
dependent and minimal with this property, that is, every proper subset of C is
linearly independent. Following the terminology of matroid theory we call such C
a circuit. (Note that circuits can be of any size up to rank(A)+1.) Every row of
a circuit C is a unique linear combination of the other rows of C. It follows that,
if b[C] has exactly one false entry, then the system A[C]x = b[C] is not feasible.
However, if b[C] has several false entries, these errors are unlikely to cancel
out each other such that A[C]x = b[C] remains feasible by chance. Since the
false entries in b result from independent measurement errors, deviations follow
some continuous probability distribution and are uncorrelated. Hence errors in
a circuit lead almost surely to infeasibility. This motivates the following
Independent errors assumption: Whenever C is a circuit and A[C]x = b[C]
is feasible (we also call the circuit C balanced), then all values in b[C] are true.

Note that minimality of C is essential here. The assumption trivially extends
to unions of circuits, but not to arbitrary dependent sets. If some row in a
dependent set D is not contained in any circuit with other rows of D, the row is
independent of the rest of D, and then arbitrary changes of the corresponding
entry of vector b will keep the system feasible. Our assumption is of similar spirit
as the very common “general position” assumptions in computational geometry
(e.g., no three points are on the same line, no three lines intersect in a point). The
setting also resembles the combinatorial group testing problem where elements
of a set can be faulty or clean, and one can test pools of elements, with the
result that either the entire pool is clean, or some faults are present. But when
faults are present, the test does not tell us what the faulty elements are. In
our variant however, pools are restricted to circuits of some matroid. For ease
of presentation we assume an idealized computational model with precise real
numbers, in practice we must allow small tolerances when we check two numbers
for equality. Our problem is now preliminarily stated as follows:

Balanced Circuits Recovery: Given a linear system Ax = b where some
unknown subset of the entries in b are faulty, identify all entries of vector b that
can be confirmed true under the independent errors assumption.



After that, it only remains to solve the linear system restricted to the rows
with confirmed entries of b. Two questions arise: Which entries of b can we
recover, if we can recover any at all, and how difficult is this algorithmically?

We focus on the case where all coefficients in A are 0 or 1, and every row of
A contains at most two entries that are 1. This problem is not as limited and
specialized as it might seem. The restriction to 0, 1-matrices with sparse rows
is immediately motivated by applications as above, and the independent errors
assumption is not restrictive at all; loosely speaking it just says that random
errors will not collectively appear correct by pure chance.
Organization of the paper: First we have to put some work into the formal
problem statement and terminology. In Section 2 we characterize the entries in
b that are recoverable under the independent errors assumption. In the case of
two variables per equation, our problem can be formalized as a graph labeling
problem where the entries of x and b are turned into vertices and edges, respec-
tively. We introduce some notions and facts about matroids from graphs, which
are needed in the following (see also [11]). The graph formulation is essential
for our algorithm. In Section 3 we prove NP-hardness of Balanced Circuits
Recovery in graphs. Section 4 gives a preparation for an FPT algorithm, with
the number k of faulty edges as the parameter: we show that, after some pre-
processing, we always find a circuit of logarithmic size. This extends the known
fact that graphs of constant minimum degree have logarithmic girth, but since
circuits and cycles are different objects, the matter requires some care. What we
have here is the even cycle matroid of the associated graph, for which the circuits
are different than the cycles of the ordinary cycle matroid. Based on the girth we
give our FPT result in Section 5, by constructing a kernel of O(k log k) vertices.
In Section 6 we obtain an O∗((log k)k) time bound. Section 7 lists some open
questions. Due to space limitations some proofs and straightworward algorithm
details are omitted.
Related literature: In [2] we considered an error model where all bi are changed
by at most some small ε, and we gave graph-theoretic and LP methods for
controlling the error in the solution vector x. The motivation for the present
study is that, besides general measurement inaccuracies, a number k of measured
amounts may be totally wrong and should be detected first. Only for ease of
presentation we assume here that all non-faulty bi are accurate. If they are
slightly disturbed, then unbalanced circuits remain unbalanced, and “nearly”
balanced circuits within some tolerance have to be considered as balanced.

Approximability and parameterized complexity of finding maximal feasible
subsystems of linear systems is studied, e.g., in [4, 5]. Like ours, this problem is of
special interest in the case of graphs (e.g., for some models in statistical physics),
and it can be generalized to so-called gain graphs where vertices and edges are
labeled with elements of a group. The minimum number of unsatisfied edges
is known as the frustration index, and its computation is NP-hard already in
special cases. We refer to the extensive annotated bibliography in [15]. However,
Balanced Circuits Recovery differs from this suite of problems in that we
made an additional mild assumption on the confirmation of correct edge labels.



Next, the matroid circuits we have to deal with are even cycles and connected
pairs of odd cycles (see details in Section 2), which loosely relates our problem
to both feedback set problems [12, 7, 3] and odd cycle transversals (OCT) [13,
7, 9] whose parameterized complexity is well investigated. Remarkably, [8] uses
matroids for kernelization, too. LP techniques as applied to OCT and other
problems in [10] do not seem to be immediately applicable to our problem. In [1]
we enumerated solutions with minimal support in linear systems with a constant
number of nonzeros per row, however in an error-free setting.

2 Characterizations and Formalization

Remember that our input is a linear system Ax = b, where some entries of the
observed b are faulty but obey the independent errors assumption.

Definition 1. A row i is correct if bi has its true value, otherwise it is faulty.
A set of rows is correct if every row in that set is correct. A row i is recoverable
if a unique value bi is consistent with the independent errors assumption.

Note that we cannot directly “see” which rows are correct, rather, we learn
them only by checking circuits for being balanced. Row i being recoverable
means informally that we could infer the true bi, given enough computation
time. Clearly, rows in balanced circuits are recoverable, and an obvious question
is whether there exist more recoverable rows.

Definition 2. We inductively define reachable rows as follows. A row in a bal-
anced circuit is reachable; a single row in a circuit where all other rows are
reachable is reachable, too; and no other rows are reachable.

As mentioned, all rows in balanced circuits are recoverable. Next, any row i
that appears in some circuit C where all other rows are recoverable, is recover-
able, too. This follows from the fact that row i of matrix A is a unique linear
combination of the other rows of C: since the true values in b[C], perhaps except
bi, can be determined, we can finally determine the true bi as well, thereby even
ignoring the given value. In summary, all reachable rows are recoverable. The
converse is also true, but due to space limitations we skip the proof.

Theorem 1. The recoverable rows are exactly the reachable rows. ut

From now on we deal with the announced “graphical” case.

Definition 3. Let Ax = b be a system of m linear equations in n variables, with
at most two variables per equation, that appear with coefficient 1. We represent
it as a graph with n vertices and m edges as follows. Its vertices are the variables
in x. For every equation (row) xu + xv = bi, the graph has an edge uv with edge
label buv := bi. For every trivial equation 2xu = bi with only one variable, the
graph has a loop with edge label buu := bi. Variable xv is also called the vertex
label of v. The graph may comprise parallel edges and also several loops at the
same vertex, since the given matrix A may have identical rows.



We have multiplied the trivial equations by 2 (and doubled bi) to give all
equations the same form. Despite possible parallel edges the notation buv will
not cause confusion, as it will be clear from context which edge we refer to.

Due to the correspondence established in the Definitions and Theorem 1
we can use the terms row and edge interchangeably and speak of recoverable
(reachable) edges. Moreover we can state the following graph problem, whose
complexity with respect to parameter k will be studied here.

Balanced Circuits Recovery in graphs: Given a graph G = (V,E), possibly
with parallel edges and loops, and an edge labeling b, identify all reachable edges.
As for the parameter k, the following is assumed: There exists a labeling b′ that
differs from b on at most k edges called the faulty edges; G with labeling b′ has
only balanced circuits; and in G with labeling b, no circuit containing faulty
edges is balanced.

Of course, it is essential to know which edge sets in the graph correspond to
the circuits, i.e., minimal dependent sets of rows in the linear system.

Definition 4. A path or cycle in a graph is simple if it does not cross itself,
that is, every vertex appears at most once on it. The length of a path or cycle
is the number of edges. We consider a loop as a simple odd cycle of length 1. A
bow tie is either a pair of vertex-disjoint simple odd cycles connected by a simple
path whose inner vertices do not appear in any of the two cycles, or a pair of
simple odd cycles with exactly one common vertex.

The following is implicit in earlier literature [14, 6]. (In [6] one can also find
an interesting treatment of the algebra of the even cycle matroid.)

Theorem 2. The circuits are exactly the simple even cycles and bow ties. ut

The two types of circuits behave differently when it comes to the vertex
labels. In a bow tie, the vertex labels are uniquely determined. This is because
the incidence matrix of a simple odd cycle has a nonzero determinant. As opposed
to this, the incidence matrix of a simple even cycle has determinant zero, and the
possible vectors of vertex labels form a 1-dimensional space: We can alternatingly
add/subtract some free value to/from the vertex labels.

For our algorithm we will need some “technical” generalization of graphs
(which is well established in matroid theory, cf. signed graphs and gain graphs).

Definition 5. A signed graph is a graph where every edge also has a sign,
besides the edge label. A sign is even or odd. Signs can be added modulo 2 where
even=0 and odd=1. Vertex and edge labels are related as follows. The label buv

of an odd edge uv satisfies buv = xu + xv; note that buv = bvu. The label duv

of an even edge uv satisfies duv = xu − xv. Note that duv = −dvu, that is, the
orientation of an even edge matters.

The operation of merging edges in a signed graph works as follows. Let w be
some vertex of degree 2 with neighbors u and v, where possibly u = v. We replace
w and edges wu and wv with a new edge uv whose sign is the sum of signs of
wu and wv. The label of uv is built according to these rules:



If both wu and wv are odd, then uv is even, and
duv = xu − xv = buw − xw + xw − bvw = buw − bwv.
If both wu and wv are even, then uv is even, and
duv = xu − xv = duw + xw − xw − dvw = duw + dwv.
If wu is odd and wv is even, then uv is odd, and
buv = xu + xv = buw − xw + xw + dvw = buw − dwv.
If wu is even and wv is odd, then uv is odd, and
buv = xu + xv = bvw − xw + xw + duw = bvw − dwu.

Note that:
(1) In terms of the linear system, merging just means to eliminate the variable

xw by combining the equations for the labels of wu and wv.
(2) We can consider the original graph as a signed graph where all signs are

odd. After a sequence of mergings, an odd (even) edge can represent a path
of odd (even) length with inner vertices of degree 2 in the original graph. It is
straightforward to prove associativity: The label of an edge does not depend on
the order the merge steps are applied to consecutive edges in a path. Also the
notions of circuit and balanced circuit can now be lifted to signed graphs in a
straightforward way. In particular we have:

Corollary 1. The circuits in signed graphs are exactly the simple even cycles
and bow ties, with the modification that the sign of a cycle (odd or even) is now
the sum of signs of its edges. ut

3 NP-Hardness of Determining the Recoverable Edges

Theorem 3. Balanced Circuits Recovery in graphs is NP-hard.

Proof. We will demonstrate that the following decision problem is NP-complete:
Given a graph with edge signs and edge labels and a specific edge, is this edge
recoverable? Then the Theorem follows, because even edges are only used as a
shorthand for a path of two odd edges. (An instance of Balanced Circuits
Recovery has odd edges only.)

The well-known NP-complete Subset Sum takes as input n+1 real numbers
a1, . . . , an; s and asks whether

∑
i∈A ai = s holds for some subset A ⊆ {1, . . . , n}.

Given an instance of Subset Sum, we construct in linear time an instance of
Balanced Circuit Recovery as follows (consult Fig.1 for an example of the
reduction graph):

Create two vertices u and v, each with a loop with odd sign. The loop at
u gets label 0, and the loop at v gets label 2s. For i = 1 create vertices u1, v1

and two edges uu1 and uv1. For each item ai, i > 1, from the sequence, create
two vertices ui, vi and four edges ui−1ui, ui−1vi, vi−1ui, vi−1vi. Also create two
edges unv, vnv. All these non-loop edges are even. Edges get the following labels.
Every edge uiui+1 and viui+1 gets label 0, and every edge uivi+1 and vivi+1 gets
label −ai+1. Similarly, edge uu1 gets label 0, and edge uv1 gets label −a1. Both
unv and vnv get label 0.



The idea is that every even edge, so to speak, shifts the vertex label by either
ai+1 or 0 when we proceed from u to v. Based on this, we will show the following
equivalence (remember what recoverable means, from Definition 1).
Claim. The two loops are recoverable if and only if the Subset Sum instance is
a Yes instance.
Proof of Claim. Trivially, the graph without the loops at u and v contains only
even cycles. Due to Theorem 2, the circuits containing a loop are exactly the bow
ties connecting the loops at u and v by a simple path. That is, the two loops can
only appear together in circuits. By the inductive definition of reachable edges
(rows) and Theorem 1, we can only infer edge labels in balanced circuits, and one
further true edge label at a time, in a circuit where all other edges are already
recovered. But we cannot infer two new edge labels in a circuit simultaneously.
Hence the loops are recoverable if and only if they appear in a balanced circuit.

The 2n shortest simple paths from u to v go through the vertices ui or vi

strictly in the order of indices i = 1, . . . , n. On a simple path from u to v we may
also go from index i+1 back to index i, but then we have to return immediately
to i+1, to avoid repeated visits of a vertex. Any such zig zag path of three edges
can be replaced with the one edge between its end vertices with indices i and
i+1. The shift of labels on the zig zag path and the single edge is the same; this
is easy to verify by our choice of even edge labels and their effect on the vertex
labels. (Note that the direct edge is the result of merging the three edges in the
zig zag path.) Hence it suffices to consider only bow ties with shortest paths
from u to v. Now, going through vi means to add ai to the solution A, and going
through ui means not to add ai to A. Since the loop at v has label 2s = s + s,
the total shift must be exactly s, and the claimed equivalence is established. ut

Fig. 1. The reduction graph (Theorem 3) for 3 items. The dashed lines show a zig zag
path that may be replaced with the bold edge in a bow tie.



4 Girth of Reduced Signed Graphs

In view of the NP-hardness result in Theorem 3 it is natural to study the pa-
rameterized version of Balanced Circuits Recovery in graphs, with the
maximum number k of faulty edges as the parameter. The following is a build-
ing block of our parameterized algorithm.

Given any signed graph with real-valued edge labels we construct the reduced
signed graph by repeatedly applying the following steps as long as possible:

0-rule: If vertex w has a single loop with odd sign, and w is not adjacent with
further edges, delete w and the loop.
1-rule: If w is a vertex of degree 1 with neighbor u, delete w and the edge wu.
2-rule: If w is a vertex of degree 2 with neighbors u and v (where possibly
u = v), merge the edges wu and wv.

It is easy to establish that these rules can be applied in any order and yield
a uniquely determined reduced signed graph. We also need:

Lemma 1. In a signed graph G with n vertices and minimum degree d ≥ 3 we
find a circuit with at most 4 logd−1 n+2 edges in polynomial time. Consequently,
in a reduced signed graph with n vertices we find a circuit with at most 4 log2 n+2
edges in polynomial time.

Proof. We only sketch the construction, details are omitted due to space limita-
tions. By breadth-first search we easily find a cycle C of logarithmic length. If
C is even, we are done. If C is odd, we shrink C to a super vertex and run BFS
again, to find another cycle and a path connecting it to C, both of logarithmic
length. Finally note Corollary 1. ut

5 Parameterized Algorithm for the Recoverable Edges

Suppose that we have identified a balanced circuit C. Then the edges in C
are recovered, due to the independent errors assumption. Furthermore we can
contract C by successively contracting its edges.
Edge contraction: Once an edge uv is recognized as correct, we can contract
it and obtain an equivalent smaller problem instance. The principle is simply to
eliminate one of the variables, say xv, which is possible since we know that the
edge label is correct. For clarity we discuss all details as needed later.

If the considered edge is a loop (u = v), we have the following cases. If the
loop is even, then duu = 0 (otherwise the loop would not be correct), and we can
simply delete the loop. If the loop is odd, then xu = buu/2 is enforced, thus we
keep the loop as an indicator that the xu has been determined. In the following
we suppose u 6= v and discuss the real edge contraction. We keep vertex u and
eliminate v; this choice is arbitrary. Let w denote any further vertex. When we
contract uv, all edges uw (w 6= v) are unchanged. We merge uv with every edge
vw (w 6= v) exactly as described earlier in Section 2. Note that at least one such
edge exists, since otherwise uv is in no circuit (by Theorem 2), hence it would



never be confirmed as correct. It remains to consider odd loops at v (whereas
even loops are meaningless, as seen before). Any odd loop at v, with label bvv,
is transformed into an odd loop at u with the following label buu.
If uv is odd, then buu = 2xu = 2buv − 2xv = 2buv − bvv.
If uv is even, then buu = 2xu = 2duv + 2xv = 2duv + bvv.

It may be helpful to notice what the final result of contracting a balanced
circuit C is. If C is a simple even cycle, there remains one vertex without loop,
that is, the label of that vertex is not “internally” determined by C, correspond-
ing to the 1-dimensional solution space of a simple even cycle. If C is a bow tie,
we eventually get one vertex with two odd loops attached, however they have
equal edge labels as C is balanced, hence one of them is redundant. – We are
ready to give a high-level description of our algorithm for Balanced Circuits
Recovery in graphs.
Preprocessing: In the following we work with signed graphs. Initially, every
edge gets an odd sign. First we apply the 1-rule as long as possible. From Theo-
rem 1 and Corollary 1 we get: The removed edges do not appear in any circuit,
hence they are not recoverable nor can they contribute to recovery of other edge
labels. Clearly, we can ignore them henceforth. Next we also apply the 2-rule
and 0-rule as long as possible, hence we obtain the reduced signed graph.
Main loop of the algorithm: We apply Lemma 1 to find a circuit C with at
most 4 log2 n+O(1) edges. We check whether C is balanced, by testing whether
the linear system induced by the edges in C is feasible.

If C is balanced, we contract C. Contraction does not alter the degrees of
vertices outside C, only some edges incident with C may get new end vertices
and adjusted labels. (Remember that parallel edges are allowed, they are not
removed from our graphs. While contraction of edges may render other edges
parallel, these edges are still kept, hence the degrees of vertices outside C are
not diminished.) In particular, the graph is still a reduced signed graph after
contraction, hence no merging takes places among the remaining edges.

If C is not balanced, clearly C contains some faulty edge, but it is important
to notice that we do not know which edges are faulty. Therefore, in this case we
delete all edges of C (but not their vertices) from the graph, and then we reduce
the remaining graph again, by exhaustively applying the three rules.

We iterate the process of circuit detection, contraction, deletion and reduc-
tion, until the remaining graph has some constant size O(1).
Re-inserting edges: As said in the beginning of this section, contraction only
yields equivalent problem instances, and vertices eliminated during the contrac-
tion of balanced circuits have labels uniquely determined by the labels of the
vertices we keep, hence we need not consider them any more. Roughly speaking,
no information gets lost by contraction.

The situation is different for faulty circuits. Since we have removed edges
that are only “potentially” faulty, we must eventually re-insert them one by
one to guarantee an equivalent problem instance. The details of this step need
some more discussion. In the following, G denotes the input graph after initial
exhaustive application of the 1-rule (hence G has minimum degree 2), and H



denotes the graph obtained by our processing so far. Let e = uv be some edge
that we want to put back next. Recall that any vertex of H may stand for a
vertex of G or represent a subset of original vertices of G identified due to edge
contractions. Similarly, any edge of H may stand for an original edge of G or a
path of merged edges from G. Thus, any end of e, say u, may lie in a vertex of
H or on an edge of H, or u may even lie outside H, because the edges adjacent
to u have been removed as well (e.g., by the 1-rule). If e is already on a path
represented by an edge of H, clearly we need not re-insert e.

Now we treat the other cases. If u is in a vertex of H, we simply attach e to
this vertex in the obvious sense. If u is on an edge f of H, we insert vertex u
in H and subdivide f . If u is not in H, then due to minimum degree 2 another
path in G different from edge uv starts in u and ends somewhere in H, or in v.
We also re-insert such a path, but then exhaustively apply the 2-rule again. A
few simple case inspections show that, in either case regarding the ends u and v
of e, re-insertion of an edge e adds at most 2 vertices and 2 further edges to H.
With at most k faulty edges, the size of H thus increases by O(k log n) in total,
due to Lemma 1. (After each re-insertion we can also update the edge labels in
H straightforwardly, since the original edge labels from G are still known.)
Analysis: By the last observation we can reduce a graph with n vertices to a
kernel of k log n vertices (with some fixed logarithm base) in polynomial time.
Thus an upper bound n on the kernel size is implicitly given by n = k log n. In
order to bound n in terms of k only, observe that n = k log n implies k > log n
(for large enough n). Therefore n = k log n = k(log k + log log n) = O(k log k).
Work on the kernel: The above procedure has computed, in polynomial time,
a kernel of O(k log k) vertices, with the property that every edge outside the
kernel is already recovered or not recoverable at all. Thus it only remains to
solve the problem on the kernel. Even if we naively enumerate all circuits in the
kernel, test them, and get the other recoverable edges inductively (Theorem 1),
the time depends only on k. Thus we have finally shown:

Theorem 4. Balanced Circuits Recovery in graphs parameterized by the
number of faulty edges is in FPT. ut

6 Branching Strategies

Theorem 4 establishes our FPT result, however exhaustive enumeration of all
circuits in the kernel would be wasteful. We consider more efficient strategies
for this last phase separately. Before we solve the remaining problem on the
kernel, we reduce this graph once more: Isolated odd loops removed by the
0-rule and edges removed by the 1-rule are not recoverable anyhow, and in
every path P of edges merged by the 2-rule, either all or none of the edges
in P are recoverable, such that we need not distinguish them. Also remember
that contracting balanced circuits only removes edges that are already recovered
(since the independent errors assumption holds, and edges that became parallel
are kept in the graph). In parameterized time bounds we use the O∗ notation
that omits polynomial factors, and log means the logarithm with a suitable base.



Theorem 5. Balanced Circuits Recovery in graphs with n vertices and m
edges, at most k of them faulty, is solvable within the minimum of the following
time bounds: O∗(2m); O∗(mk/k!); and O∗((log n)k).

Proof. We may guess the subset of faulty edges and delete them. Clearly, these
are at most 2m and at most mk/k! subsets. In every branch we run the algorithm
from Section 5, with the difference that we abort it when a faulty circuit is
detected. Every branch needs polynomial time.

Alternatively, we may run the algorithm from Section 5, now with the differ-
ence that, when a faulty circuit C is detected, we branch on C, thereby guessing
only one faulty edge and deleting it. Due to Lemma 1, C has log n edges. Since
we can apply this step at most k times, we obtain a bounded search tree of
size (log n)k. Clearly, if some branch is successful, we have found all recoverable
edges, otherwise we report that more than k faulty edges were present.

A side remark is that the reachable edges that are not in balanced circuits (see
the definition of reachable rows/edges and Theorem 1) are eventually detected,
as they are linearly dependent from already recovered edges. ut

Since we have n = O(k log k) as said above, we obtain O∗((log n)k) =
O∗((log k)k) = O∗(ck log log k) for some constant c > 1. Hence the latter method
is faster unless m = O(k log log k).

Corollary 2. Balanced Circuits Recovery in graphs with at most k faulty
edges is solvable in O∗((log k)k) time. ut

7 Conclusions

We proved NP-hardness and gave an FPT algorithm for the problem of recover-
ing the entries of vector b in a linear system Ax = b, where A is a 0,1-matrix with
at most two 1s per row, assuming that b has at most k errors which are uncorre-
lated in a sense. The problem is motivated by the inference of chemical mixtures
under measurement errors, and can be rephrased as a graph problem. Already
membership in FPT is not trivial. Some obvious open questions are: Can we
improve the FPT time bound, possibly by using stronger relations between edge
number and girth? What about matrices with general nonzero coefficients, and
with some more than two nonzeros per row? (Do the resulting hypergraph prob-
lems inherit some of the useful graph structure?) Can we generalize the FPT
approach to gain graphs [15], provided that there exist natural applications?
The complexity of approximation might be interesting, too, but this was not the
scope of this paper. Finally, it would be worthwhile to apply the algorithms to
real protein quantitation data and validate the error assumptions made in the
parameterization.

Acknowledgment

This work has been supported by the Swedish Research Council (Vetenskapsr̊adet),
grant no. 2010-4661, “Generalized and fast search strategies for parameterized



problems”. Early stages of the third author’s work have also been supported
by Devdatt Dubhashi through a Chalmers Bioscience Initiative grant. The work
was done while the second author was visiting Chalmers during his sabbatical
2011–2012.

References

1. Damaschke, P.: Sparse Solutions of Sparse Linear Systems: Fixed-Parameter
Tractability and an Application of Complex Group Testing. In: Marx, D., Ross-
manith, P. (eds.) IPEC 2011. LNCS, vol. 7112, pp. 94–105, Springer, Heidelberg
(2011). Extended version to appear in Theor. Comp. Sci.

2. Damaschke, P., Molokov, L.: Error Propagation in Sparse Linear Systems With
Peptide-Protein Incidence Matrices. In: Bleris, L., Mandoiu, I., Schwartz, R., Wang,
J. (eds.) ISBRA 2012. LNCS, vol. 7292, pp. 72–83, Springer, Heidelberg (2012)

3. Dehne, F.K., Fellows, M.R., Langston, M.A., Rosamond, F.A., Stevens, K.: An
O(2O(k)n3) FPT Algorithm for the Undirected Feedback Vertex Set Problem. The-
ory Comput. Syst. 41, 479–492 (2007)

4. Feige, U., Reichman, D.: On the Hardness of Approximating Max-Satisfy. Info.
Proc. Lett. 97, 31–35 (2006)

5. Giannopoulos, P., Knauer, C., Rote, G.: The Parameterized Complexity of Some
Geometric Problems in Unbounded Dimension. In: Chen, J., Fomin, F. (eds.) IW-
PEC 2009. LNCS, vol. 5917, pp. 198–209, Springer, Heidelberg (2009)

6. Grossman, J.W., Kulkarni, D.M., Schochetman, I.E.: Algebraic Graph Theory
Without Orientation. Lin. Algebra and its Appl. 212/213, 289–307 (1994)
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Appendix

Proof of Theorem 1

Let R be the set of reachable rows, hence the bj for all j ∈ R are correct. Only one
direction of the Theorem remains to be shown: No row outside R is recoverable.
For this we may view the bi, i /∈ R, as variables besides the actual variables xi,
and show that the (now nonlinear) system with fixed coefficients bj , j ∈ R, has
solutions with different values bi, for each i /∈ R.

Thus, consider any unreachable row i. Let B be some basis of R, that is,
some maximal independent set of rows of A[R]. Let b[R] be defined as earlier,
however with corrected entries in reachable rows that are not in balanced circuits,
according to the inductive definition of R. (We keep the notation b without risk
of confusion.) Then every vector x that satisfies A[B]x = b[B] is also a solution
to A[R]x = b[R], with the corrected b[R]. Since row i is unreachable, we have:
(1) row i is faulty, or (2) B together with row i does not contain a circuit. In
case (2), row i is linearly independent of B. Hence the system A[B]x = b[B] has
solutions x that yield different bi. (In more detail: The scalar product of x and
row i of A is not uniquely determined.) Hence A[R]x = b[R] has solutions x that
yield different bi. The remaining case is: (1) but not (2). Then row i is faulty and
linearly dependent of B. But then it forms a circuit together with some subset
of B ⊆ R and would therefore be reachable, a contradiction.

Proof of Theorem 2

For easier accessibility we give a proof of Theorem 2, although the result is
mentioned in [6].

For the definition of matroid (family of independent sets that satisfies certain
axioms) we refer to [11]. The even cycle matroid of a graph G is just the matroid
obtained from its vertex-edge incidence matrix A, that is, a set of edges is inde-
pendent if and only if the corresponding row vectors are linearly independent.

First assume that G is connected. The even cycle matroid of G can have two
kinds of bases, as described in [6], depending on whether or not G is bipartite.
The circuits are minimal dependent sets, i.e., dependent sets such that removal
of an edge gives a set that is contained in some basis. If G is bipartite, then the
bases correspond to spanning trees of G. Therefore in this case the circuits are
ordinary cycles, which are even since G is bipartite. If G is not bipartite, then the
bases correspond to disjoint unions of odd unicyclic subgraphs the union of whose
vertices is the vertex set of G. An odd unicyclic graph is defined as a connected
graph with exactly one odd cycle [6]. Note that for a connected nonbipartite
graph a basis may itself be disconnected, though each of its components must
be odd unicyclic. Any set of cycle-free edges of G can be extended to a basis set
by addition of edges. It follows that even cycles in G are circuits, since taking
an edge away from an even cycle we get an independent set in the matroid, and
even cycles themselves are dependent as no basis contains an even cycle. If a
subgraph contains a single odd cycle, then it is not dependent, since it can be



extended to a basis. If it contains exactly two odd cycles, then unless the cycles
are connected by a path, the subgraph can be extended to a basis. In the case
that the two odd cycles are connected by a path, breaking one of the odd cycles
gives an independent set in the matroid. By minimality, there can be no other
edges in the circuit other than the odd cycles and the path, which may have
length zero. Finally, if there are three or more odd cycles in a subgraph, then
the subgraph either is not minimal, which can happen if one of the cycles is not
connected to the others; or taking away an edge does not give an independent set
which can happen if all there are connected. Finally if G itself is not connected,
this argument applies to each of its connected components.

Proof of Lemma 1

We assume familiarity with breadth-first-search (BFS) and the notion of a BFS
tree. Edges in the BFS tree are tree edges, others are non-tree edges.

By Corollary 1 a circuit is a simple even cycle or a bow tie graph. Let ` =
logd−1 n. Pick a vertex v and consider the set of vertices of distance at most ` from
v. The subgraph H induced by these vertices cannot be a tree since otherwise
the number of leaves is at least d(d − 1)`−1 > (d − 1)` ≥ n, a contradiction.
Therefore it contains a simple cycle C of length at most 2` + 1. We easily find
it in linear time: Run BFS with root v, take some non-tree edge e in H, and
starting from the vertices of e, follow the tree edges towards the root.

If C is even, then we are done. We can assume that there is no vertex u
in G that is adjacent to two vertices in C, because otherwise u together with
one of the paths connecting its neighbors on the cycle is a simple even cycle.
Now consider the graph G′ obtained by identifying the vertices on C into a
single super vertex v′. The union of the neighborhoods of vertices in C becomes
the neighborhood of v. Graph G′ also has minimum degree d, and less than n
vertices. Consider a BFS tree in G′ rooted at v. This tree has height no more
than `, by the same argument as above. Therefore within 2`+1 edges, we find a
a path from v′ to some vertex v′′ (possibly v′ = v′′) and a simple cycle C ′ from
v′′ to itself. (Again, take some non-tree edge and follow the tree edges towards
the root.) If C ′ is even, then again we are done, thus assume that C ′ is odd. If
C ′ contains v′, then possibly it actually contains a unique vertex of C. In this
case we have a bow tie consisting of C and C ′ sharing one vertex. If C ′ contains
two vertices u1 and u2 of C, then one of the cycles formed by C ′ and one or the
other path on C between u1 and u2 is even. A final possibility is that C ′ does
not contain v. In this case we also have a bow tie. The total length of the path
from v′ to v′′ together with C ′ is 2` + 1. Thus the total size of the circuit does
not exceed 4` + 2.


