
A Remark on the Subsequence Problem

for Arc-Annotated Sequences with

Pairwise Nested Arcs

Peter Damaschke

Department of Computer Science and Engineering, Chalmers University

41296 Göteborg, Sweden

ptr@cs.chalmers.se

Abstract

The Arc-Preserving Subsequence (APS) problem appears in the com-

parison of RNA structures in computational biology. Given two arc-

annotated sequences of length n and m < n, APS asks if the shorter

sequence can be obtained from the longer one by deleting certain ele-

ments along with their incident arcs. It is known that APS with pairwise

nested arcs can be solved in O(mn) time. We give an algorithm running

in O(m2 +n) time in the worst case, actually it is even faster in particular

if the shorter sequence has many arcs. The result may serve as a buidling

block for improved APS algorithms in the general case.

Keywords: RNA structure, pattern matching, dynamic programming

1 Introduction

RNA secondary structure comparison is of vital interest in computational biol-
ogy, because structure determines to a large extent the function of non-coding
RNA molecules. A common model for RNA structure is arc-annotated se-
quences. Given an alphabet Σ, an arc-annotated sequence (S, P) is a sequence
S, that is, a string over Σ, together with a set P of disjoint arcs, i.e., pairs of
elements of the sequence. Elements of a pair can be arbitrarily far apart in the
sequence. In the RNA case, Σ is the “alphabet” of ribonucleotids A,C,G,U, and
arcs represent hydrogen bonds. These bonds are disjoint, therefore we assume
that no element is incident to more than one arc.

1

The Arc-Preserving Subsequence (APS) problem takes as input two arc-
annotated sequences (S, P) and (T,Q) of length n and m < n, respectively, and
asks if (T,Q) is contained in (S, P) in the sense that one can obtain (T,Q) by
deleting certain elements of (S, P) along with their incident arcs. Equivalently,
we may think of an embedding of (T,Q) in (S, P) that establishes an induced
subgraph relation of ordered graphs and preserves the order of elements in T ,
but is in general not contiguous. Note carefully that we use the term subsequence
in this non-contiguous sense: T is called a subsequence of S if T is obtained by
deleting certain elements from S. In contrast, we say that T is a substring of
S if T occurs in S without gaps. For any sequence S we use S[i] and S[i..j] to
denote the ith element of S and the segment of S from the ith to the jth symbol
(inclusively). By convention, S[i..j] is empty if i > j. If T is a subsequence of
S, we say that an embedding occupies position k in S if some element of T is
mapped to S[k]. Sometimes we may not strictly distinguish formally between a
symbol (element of the alphabet) and an occurence of the symbol at a specific
position in a sequence, but the correct meaning will be clear from context.

The APS problem appears in pattern searching in RNA databases and as a
subproblem in other (harder) RNA comparison tasks [1, 3, 4, 5, 6, 7, 8]. Recently,
[2] presented a comprehensive study of APS with several natural restrictions
imposed on the structure of arc sets, with the goal to understand the borderline
between polynomial-time solvable and NP-complete cases. We refer to [2] for
an overview of known complexity results. Given four endpoints i < j < k < l of
two arcs, these two arcs are called nested if they connect i with l and j with k.
The two arcs are crossing if they connect i with k and j with l, and non-crossing
in all other cases. We focus on problem APS with pairwise nested arcs, defined
as the case when, in both (T,Q) and (S, P), any two arcs are nested.

' $' $' $�� ��
' $#

1

2

3

4 5

6

7

Figure 1. An example of pairwise non-crossing arcs. Arcs in {1, 2, 3, 4} or in
{1, 6, 7} are also pairwise nested.

2

APS is solvable in O(mn) time if both (T,Q) and (S, P) have only pairwise
nested arcs. The time bound holds even in the more general case that no crossing
arcs appear [4]. (One has to be careful with the terminology. The latter case
is usually denoted APS(nested, nested), i.e., the condition nested refers
to non-crossing arcs.) It was explicitly mentioned as an open problem in [2]
whether APS for pairwise nested arcs can be solved faster. In the present note
we give an affirmative answer, proving a worst-case bound O(m2 +n). The idea
is a rather simple use of monotonicity properties inside dynamic programming
(Section 2). The new worst-case bound is, of course, already an improvement if
m is significantly smaller than n. Furthermore, our analysis in Section 3 shows
that the actual running time is typically even better, especially if arcs in (T,Q)
are dense.

Pairwise nested arcs is a very special case that rarely appears in pure form in
RNA strings. However, its study is motivated, observing that our result can be
further used as a building block for efficient pattern matching in more general
instances, as we briefly sketch in Section 4.

2 An Auxiliary String Embedding Problem

We define an auxiliary problem which we call Conflict-Free Prefix Embedding
(CFPE): The input of CFPE consists of four sequences S1, S2, T1, T2, with |T1| =
m1, |T2| = m2, and |S1| = |S2| = n. Assuming that Ti is a subsequence of
Si (i = 1, 2), consider a pair of embeddings. We say that embeddings are in
conflict if there exists some k such that position k is occupied in both S1 and
S2. We define a boolean-valued function E by E(x1, x2, y) = 1 if there exist
conflict-free embeddings of T1[1..x1] in S1[1..y] and T2[1..x2] in S2[1..y], and
E(x1, x2, y) = 0 otherwise. With the understanding that 0 < 1, obviously E is
monotone increasing in argument y and monotone decreasing in x1 and x2.

Our problem CFPE is to determine, for all x1 ≤ m1 and x2 ≤ m2, the
smallest y ≤ n with E(x1, x2, y) = 1, or to report that E(x1, x2, n) = 0. That
is, the output is an m1 × m2 matrix with these y (or a special symbol in the
negative case) as entries.

Theorem 1 Problem CFPE is solvable in time O(m1m2 + k), where k =
min{y|E(m1,m2, y) = 1}. The result holds regardless of the alphabet size.

Proof. For any fixed y we may think of the E(x1, x2, y) as a matrix with
entries 0 or 1. By the monotonicity properties of E, the 1-entries and 0-entries
form an “upper staircase” and “lower staircase” subset, respectively, of the

3

matrix. We say that two matrix entries at (x1, x2) and (x′1, x
′
2) are adjacent if

either x1 = x′1 and |x2 − x′2| = 1, or x2 = x′2 and |x1 − x′1| = 1.
We shall compute all E(x1, x2, y) from the E(x1, x2, y − 1). Clearly, it is

enough to consider those (x1, x2) which satisfy E(x1, x2, y − 1) = 0 but are
adjacent to some 1-entries in the (y − 1)th matrix. (When y grows by 1, a
conflict-free embedding can accommodate at most one more element from either
T1 or T2.) We call these matrix elements switch candidates. We get the dynamic
programming formula E(x1, x2, y) = E(x1, x2, y − 1) + 1 in the following cases:
E(x1 − 1, x2, y − 1) = 1 and T1[x1] = S1[y], or
E(x1, x2 − 1, y − 1) = 1 and T2[x2] = S2[y].

By monotonicity, every element of the m1 × m2 matrix we are working
with is switched at most once while y is growing, hence we have O(m1m2)
switches. For the time bound, however, we must take into account the time
needed to determine the switch candidates that will actually switch in every
step, and update the set of switch candidates. This task can be managed in
O(m1m2) time in total, by using a suitable data structure: Note that in every
step y every switch candidate “knows” by its position (x1, x2) in the matrix
the alphabet symbol in S1 or S2 whose occurrence at position y would make
(x1, x2) a 1-element. Thus we proceed as follows. For each alphabet symbol
in S1 and S2, respectively, we initialize a queue for the corresponding switch
candidates. (Actually we initialize every queue when the symbol appears the
first time, hence the procedure does not rely on a fixed alphabet size.) When
this symbol actually appears as S1[y] or S2[y], respectively, the queue assigned
to it is emptied and the switches are executed. Moreover, after every switch,
new switch candidates are created in the obvious way: Take the next element
in the direction of the switch and put it in the designated queue. We have to
remark that a 0-element in a corner of the staircase may appear in two queues
(belonging to S1 and S2), and it may remain in one queue even after the switch,
but such obsolete switch candidates being already 1-elements are recognized
later when the queue is emptied. Clearly, this is yet another constant-time
operation for each element and does not affect the time bound. The algorithm
stops as soon as E(m1,m2, y) = 1. Altogether we need O(k) time to read the
symbols in S1 and S2, and to initialize and call the queues. 2

A more tricky implementation and storage of function values (i.e., a concise
description of the output) can make the algorithm work even faster, but since
this does not improve our worst-case time bound, we discuss it only as a side
remark: Let us maintain only the horizontal and vertical lines in the matrix that
separate 1-elements from 0-elements. Due to the conditions for a switch, only
entire lines are moved in one step. This reduces the total time to the number

4

of different lines, which in turn equals the number of corners during the course
of the algorithm. This number can be significantly smaller than the matrix size
m1m2. (We wonder if it can be easily computed in advance from the given
sequences. This would allow to choose the straightforward implementation or
the advanced one that involves some administration overhead. We leave this as
an open question.) Note also that a corner is split in two new corners only by a
conflict, and that corners can coalesce. Anyway, we will now apply Theorem 1
to APS with pairwise nested arcs.

3 The Result for Pairwise Nested Arcs

Given two arc-annotated sequences (S, P) and (T,Q) of length n and m, re-
spectively, both with pairwise nested arcs, we solve APS through a sequence
of instances of CFPE. Before the construction of an embedding we have to do
some preprocessing.

First we fix in S some arbitrary position between two neighbored elements
inside the innermost arc of P . We split S in two sequences SL, SR to the left
and to the right of the split position. We reverse SR, and insert occurences of
a dummy symbol (which is not in Σ) both in SL and in the reverse of SR, in
such a way that the following holds:

• any two elements of S connected by an arc of P are aligned in the resulting
pair of sequences,

• any symbol that was not involved in an arc of P is aligned to a dummy
symbol, and

• the two filled-up sequences have equal lengths.

Trivially, such an alignment exists and can be constructed in O(n) time. We
denote the resulting sequences again SL and SR.' $#

G A U G C A C C G U G A

left G + + A U + + G C +
right, reversed + A G U + G C C + A

Figure 2. An example for the transformation of (S, P).

5

Arcs of Q are totally ordered inwards, in an obvious sense. Let us denote
them q1, . . . , qk, where q1 is the outermost and qk the innermost arc. Let T [li]
and T [ri] be the elements connected by qi. We abbreviate the (possibly empty)
substrings between endpoints of arcs as follows. (Remember the convention for
empty substrings.)
TL

0 = T [1..(l1 − 1)] and TR
0 = T [(r1 + 1)..m],

TL
i = T [(li + 1)..(li+1 − 1)] and TR

i = T [(ri+1 + 1)..(ri − 1)] for i = 1, . . . , k− 1,
TM = T [(lk + 1)..(rk − 1)].
Let mL

i = |TL
i |, mR

i = |TR
i |, and mM = |TM |.' $' $' $#

l1 l2 l3 l4 r4 r3 r2 r1TL
1 TL

2 TL
3 TM TR

3 TR
2 TR

1

Figure 3. Denotations in (T,Q).

With these denotations we prove:

Theorem 2 APS for arc-annotated sequences with pairwise nested arcs is solv-
able in time O(m2 + n) in the worst case.

Proof. First we embed TL
0 and the reverse of TR

0 conflict-free in SL and in the
reverse of SR, respectively. Using Theorem 1 we determine the smallest y0 such
that the prefixes of length y0 of SL and of the reversed SR can accommodate
TL

0 and the reversed TR
0 , respectively, in O(mL

0 mR
0 +y0) time. Then, we find the

outermost arc of P which does not touch these prefixes and matches q1. Since
this requires only symbol comparisons, the time for this search is proportional
to the number of arcs checked in P . From SL and the reverse of SR we cut away
the prefixes until the (aligned) endpoints of the matching arc. This finishes the
phase that embeds arc q1 and everything of T outside this arc.

We continue in the same way with TL
i , TR

i , qi+1, for i = 1, . . . , k − 1, always
with the remaining SL, SR. The time for the ith phase is O(mL

i mR
i +yi) (where

yi has the similar meaning as y0 above), plus the number of arcs checked in P .
The last phase is slightly different. Using Theorem 1 we embed TM and its

reverse conflict-free in SL and in the reverse of SR, in time O((mM)2 + yk).
If this succeeds for some pair x1, x2 with x1 + x2 ≥ mM , we have found an
embedding of (T,Q) in (S, P). If not, or if SL, SR was already emptied earlier,
we report that no embedding can exist.

Proving correctness is straightforward. We have the following induction hy-
pothesis: The algorithm finds the outermost arc pi in P such that T [1..li]T [ri..m]

6

can be embedded in S[1..ai]S[bi..n], where S[ai] and S[bi] are the elements
connected by pi. For i = 1 this is obvious from the specification of the first
phase. Assume that the hypothesis holds for i. By definition of pi+1 there ex-
ists an embedding of T [1..li+1]T [ri+1..m] in S[1..ai+1]S[bi+1..n]. If we denote by
S[a′i], S[b′i] the elements connected by the arc of P that matches qi in this em-
bedding, it induces an embedding of T [li..li+1]T [ri+1..ri] in S[a′i..ai+1]S[bi+1..b

′
i].

Furthermore, since S[ai], S[bi] are the ends of the outermost possible arc that
matches qi in a complete embedding, we have ai ≤ a′i and b′i ≤ bi, hence
T [li..li+1]T [ri+1..ri] can also be embedded in the longer S[ai..ai+1]S[bi+1..bi].
Since phase i + 1 finds the shortest possible pair of embeddings inwards, and
starts by inducton hypothesis from both ends of pi, it does not pass arc pi+1,
which completes the inductive step. Finally we use the induction hypothesis
for k to complete the correctness argument. Suppose that an embedding ex-
ists. Since our algorithm has already found an embedding of T [1..lk]T [rk..m] in
S[1..ak]S[bk..n] with qk matched onto the outermost possible arc pk, any com-
plete embedding must include an embedding of TM in S[ak + 1..bk − 1]. This
can be viewed as a conflict-free pair of embeddings of some prefix and some
reversed suffix of TM in the prefix and reversed suffix of S[ak + 1..bk − 1] to
the left and right, respectively, of the split position, where this prefix and suffix
of TM together have to build the whole TM . Now, obviously, existence of a
solution with x1 + x2 ≥ mM is equivalent to this condition.

We have
∑k

i=0 yi = O(n), since the yi refer to mutually disjoint segments of
S. Similarly, all mL

i ,mR
i are lengths of mutually disjoint segments of T . Hence

we need time O((
∑k−1

i=0 mL
i mR

i + yi) + (mM)2 + yk + |P |) = O(m2 + n). 2

Actually, the worst case O(m2) appears only when Q has few arcs (but
in this case the better implementation of dynamic programming sketched after
Theorem 1 may take effect), otherwise the quadratic term is much smaller. Note
that the algorithm works inwards on T and S in a greedy fashion. Dynamic
programming is used only to determine the shortest embeddings of the pairs of
substrings of T between the endpoints of neighbored arcs in Q.

In [2] it was shown that APS with pairwise crossing arcs (in both P and
Q) can be solved by m-fold application of any algorithm for APS with pairwise
nested arcs, resulting in the time bound O(m2n). With our Theorem 2 we can
immediately improve this result:

Corollary 3 APS for arc-annotated sequences with pairwise crossing arcs is
solvable in time O(m3 + mn) in the worst case.

7

4 Outlook

We suggest extensions of the presented result along the following lines. Arc
structures (S, P) without crossing arcs are widely considered an important case
of RNA structure. Obviously they can be represented by trees (or forests) where
every node v stands for a set Nv of pairwise nested arcs so that all other arcs are
inside and outside the innermost and outermost arc of Nv, respectively. (For
instance, in Figure 1, root {1} has three children representing {2, 3, 4}, {5},
{6, 7}.) Often the tree has only a few nodes, due to abundant pairwise nested
arcs. Let us informally discuss the case of APS where pattern (T,Q) still has
pairwise nested arcs, and (S, P) is free of crossings. Since the algorithm in
Theorem 2 works inwards, we can readily apply it top-down in the tree. An
argument as in Theorem 2 shows that a greedy embedding into Nv is optimal at
every node v. The new feature is that we must branch, i.e., pass the remainder
of (T,Q) to the children of a finished node v, and continue recursively. In every
branching phase we can get embedding conflicts only if a unique child of v

remains for continued embedding of (T,Q) (that is, if only the subtree rooted
at v can accommodate the next arc of Q). Similarly as in Theorem 2, the time
on every path of the computation is a sum of squares of lengths that sum up to
m, and the second term in the time bound remains O(n), since the segments of
S to be processed in the tree nodes are disjoint. The overall time depends on
the size and shape of the tree. Alternatively, one may also combine the scheme
from [4] with a bottom-up variant of the algorithm in Theorem 2 (where the
innermost matching arc in every tree path would first be determined in a binary
search procedure). More elaboration on the sketched ideas, in order to identify
cases still solvable in o(mn) time, is left for further research.

Acknowledgments

This work has been partially supported by the Swedish Research Council (Veten-
skapsr̊adet) through the project “Algorithms for searching and inference in ge-
netics”, grant no. 621-2002-4574. The author would like to thank Ferdinando
Cicalese for enlightening discussions during a stay at the University of Bielefeld,
and the anonymous referees for careful reading and valuable comments.

8

References

[1] J. Alber, J. Gramm, J. Guo, R. Niedermeier, Computing the similarity of
two sequences with nested arc annotations, Theoretical Computer Science
312 (2004), 337-358

[2] G. Blin, G. Fertin, R. Rizzi, S. Vialette, What makes the Arc-Preserving

Subsequence problem hard?, 1st International Workshop on Bioinformat-
ics Research and Applications IWBRA 2005, LNCS 3515, 860-868

[3] P. Evans, Algorithms and complexity for annotated sequence analysis, PhD
thesis, Univ. Victoria, 1999

[4] J. Gramm, J. Guo, R. Niedermeier, Pattern matching for arc-annotated
sequences, 22nd Conference on Foundations of Software Technology and
Theoretical Computer Science FSTTCS 2002, LNCS 2556, 182-193

[5] J. Guo, Exact algorithms for the longest common subsequence problem for
arc-annotated sequences, Master’s thesis, Univ. Tübingen, 2002

[6] T. Jiang, G.H. Lin, B. Ma, K. Zhang, The longest common subsequence
problem for arc-annotated sequences, 11th Symposium on Combinatorial
Pattern Matching CPM 2000, LNCS 1848, 154-165

[7] G. Lin, Z.Z. Chen, T. Jiang, J. Wen, The longest common subsequence
problem for sequences with nested arc annotations, Journal of Computer
and System Sciences 65 (2002), 465-480

[8] K. Zhang, L. Wang, B. Ma, Computing the similarity between RNA struc-
tures, Theoretical Computer Science 276 (2002), 111-132

9

