
The Only Way is Up

Jasmin Fisher1, Nir Piterman2, and Moshe Y. Vardi3

1 Microsoft Research Cambridge, UK
2 University of Leicester, UK

3 Rice University, USA

Abstract. We draw an analogy between biology and computer hard-
ware systems and argue for the need of a tower of abstractions to tame
complexity of living systems. Much like in hardware design, where engi-
neers use a tower of abstractions to produce the most complex man-made
systems, we stress that in reverse engineering of biological systems; only
by using a tower of abstractions we would be able to understand the
“program of life”.

1 Introduction

System-level approaches in biology have gained mainstream attention in the past
decade, in an effort to better understand biological complexity. An important
activity in system biology is the development of mathematical and computational
models. Abstraction is well understood to be a key to modeling complex systems
in general, and biological systems in particular, where by “abstraction” we refer
to a model at a certain level of description, suppressing lower-level details in a
principled way. All models used in system biology employ abstraction, but they
vary in their level of abstraction from low-level differential equations all the way
to Boolean logic. Today’s systems biology offers a tool set of many different types
of abstraction, but without an overall organizing principle. Furthermore, the
overwhelming majority of cellular models focus on the levels of genes, proteins,
and metabolites, as well as metabolic or regulatory networks. Our claim is that
abstraction alone is unlikely to be sufficient as a tool to understand biological
systems; what is needed, we believe, is a tower of abstractions; that is, a sequence
of models of increasing degree of abstraction, each level building on the level
below it. Biology, we believe, must “climb up the ladder of tower of abstractions.”

To show how a tower of abstractions can be used to tame complexity, it is
useful to draw an analogy between biological systems and computing hardware
systems. We note that, in recent years, many tools and formalisms that were
originally designed for the development and analysis of computing systems have
been successfully used for modeling biological systems [14, 10, 24]. Perhaps the
most striking resemblance between biology and hardware is the ability to do
concurrent computation. Biological systems operate with inherent concurrency
events (e.g., biochemical reactions, intercellular signaling, and the like) do not
occur one after the other, but rather concurrently in different compartments over
the entire organism just as the logical elements in computing hardware execute



concurrently. In order for computing hardware to make sequential progress, for
example, to sum up a vector of numbers, one has to add to the hardware memory
elements, referred to as registers, which make it possible to transfer values from
one machine cycle to the next. Analogously, in a cell, the accumulation of a
certain protein may serve as a memory device and triggers events that depend
on it. It is exactly this concurrency, however, that makes it difficult to understand
the behavior of hardware and biological systems.

Our thesis is that in order to better understand complex biological behaviors,
which will hopefully (and eventually) help us understand how genotype gives rise
to phenotype, one must think of multiple useful levels of abstraction, similar to
the tower of abstractions used by computer scientists and engineers in designing
computing hardware. The argument is that to tame biological complexity we
must find the right levels of abstraction to model biological systems, and that
without such a tower of abstractions it would probably be impossible to under-
stand the machinery behind complex living systems. Furthermore, the analysis
through multi-leveled abstraction can serve to identify emergent behaviors of bi-
ological systems. A computer cannot be understood by pondering the behavior
of transistors, or logic gates; similarly, the behavior of a cell cannot be predicted
by understanding its chemistry at a molecular level. In order to understand the
protocols employed by biological systems, which Caste and Doyle have suggested
will give the necessary tools to reason about biological systems [8], we have to
first identify the right levels of abstraction.

The Process of Hardware Design

To pursue the analogy of biology and hardware, it is useful to give a short
(and rather simplified) overview of the process of hardware design [29]. The
most notable feature of the design process is that it is a top-down process.
Hardware design starts with the formulation of requirements, typically provided
in a natural-language document. The next stage is the development of a software
model of the intended system. This software model is intended to serve as an
initial prototype for the system, which ultimately is implemented in hardware.
The software model is an executable model, which can be experimented with,
modified, and tuned.

The second design stage is a transformation of the software model into a
hardware-description language (HDL). Such a language is essentially a program-
ming language for hardware; it includes specialized features that talk about
clocks and concurrency. While traditional software programming languages are
designed to produce procedural code, executed one command at a time, HDLs
assume that everything happens concurrently. An HDL model describes the be-
havior of the hardware in terms of signal flow and data transfer between registers
(memory elements) and the operations performed on these signals and data. Note
that the HDL model is not meant to run the software model; the software model
and the HDL model are both models of the same system, but at different levels
of abstraction.

2



Fig. 1. The process of hardware design

The next stage is called logic synthesis; it converts the HDL model into a
gate-level model, which describes the design implementation in terms logic gates
and their connectivity. The conversion uses a predefined library of logic gates
(e.g., AND gate with 2, 3, 4, or 8 inputs, etc.) that serve as elementary building
blocks. Logic synthesis is typically an automated process, which implies that the
two different descriptions (HDL and logic gates) should have exactly the same
functionality.

The next stage is called physical design; here the logic has to be mapped
to its physical implementation, in terms of components, component locations,
component wiring, and the like. Here one deals with transistors and wires rather
than with logic gates. While previously the main constraints were functional, here
they are mainly physical. Length of wires, width of transistors, capacity, power
consumption, and timing are the primary concerns. Ultimately, this design phase
ends with a photomask, to be used in photolithography. Finally, the transistors
and wires are actually printed on silicon.

Let us now illustrate this with a concrete example. We start with a software-
level definition of integer multiplication, which can be described by K=I*J. At

3



the HDL level, we choose (for the sake of this example) to implement multi-
plication via iterated addition. We need registers for I, J, and K (initially 0).
We now iterate, at each iteration decrementing I and adding J to K. We stop
when I reaches 0. At the gate level, we represent I, J, and K as 32-bit-vectors,
that is, arrays of bits, each of length 32. We now need to implement bit-level
decrementation and addition in terms of AND, OR, and NOT gates, and repli-
cate that circuit 32 times. Finally, at the transistor level, we need to implement
logic gates and registers using transistors. The final device will have thousands
of transistors.

What is the point of this detailed description of computing hardware de-
sign? It is to emphasize the importance of having multiple levels of abstractions.
Abstraction is the hardware designer’s primary tool in dealing with complexity.
The designers of the first microprocessor, in 1974, were able to work directly
at the level of its 2300 transistors, but a modern microprocessor can have over
two billion transistors. Today’s tower of abstractions in hardware design (see
Figure 1)software, HDL, logic-gates, transistors, silicon has emerged from close
to 50 years of experience in hardware design. Hardware designers realized not
only that abstraction is necessary for taming complexity, but also that several
levels of abstraction are actually necessary.

Hardware and Wetware

It is important to note that the description above refers to the design of digi-
tal hardware systems, which have discrete behavior and form the basis for most
computing systems. In continuous (analog) hardware systems, such as amplifiers,
regulators, and filters, the focus is much more in the physical attributes of the
devices, such as gain, power, and resistance. Which approach, discrete or con-
tinuous, is more appropriate for viewing biological systems? Many researchers
believe that biology is completely continuous, doubting whether discrete abstrac-
tions can be found at all. This view, in our opinion misses an important point.
Even digital computer systems are ultimately continuous systems, implemented
in terms of transistors and wires. The value of discrete models is in their utility;
they enable us to abstract away from the low-level continuous details. Thus,
in hardware design continuous models are used only at the lowest level of ab-
straction, with higher levels, from logic gates and above, using discrete models.
Discrete models are also extremely useful in biology. Indeed, the genetic code is
discrete. Similarly, the opening and closing gating of ion channels in response
to specific stimuli allowing cells to control their internal environment is just like
having discrete switches. Biologists have been using discrete models, such as
Boolean networks, since the 1960s [17]. For example, Boolean models correctly
capture network motifs such as forward loops and dual-positive feedback loops
[4, 19] and lead to better understanding of the Drosophila segment polarity gene
network resilience [2, 7].

Clearly, biological systems are the “hardware of life”, referred to as “wetware”
by Rudy Rucker in his 1988 science-fiction novel [26]. The description above of

4



the hardware-design process reveals, however, fundamental differences between
hardware and wetware. Most fundamentally, computing hardware systems are
designed by an intelligent designer, while biological systems are the result of
billions of years of evolution. Furthermore, while hardware design proceeds in a
sequence of distinct well-defined modelssoftware, HDL, logic gates, transistors,
and silicon biology provides us with only the final ‘model’, so to speak, the living
organism. What then is the value of the hardware-wetware analogy?

To understand the value of this analogy we need to remember that the biolo-
gist is not a designer, but rather a reverse engineer, with the task of uncovering,
given a device, the functionality of that device and its principles of operation.
Consider now a hardware engineer who is given a hardware device with the task
of reverse engineering it. That task can be quite difficult. Take the device de-
scribed above for integer multiplication. An inspection of a semiconductor chip
may reveal an intricate network of thousands of transistors, but may say nothing
about the functionality of the device. The reverse-engineering process is helped
enormously by the reverse engineer’s understanding of the (forward engineer-
ing) design process. Understanding that the transistor network implements logic
gates, which implement HDL, which implements software, is critical to the suc-
cess of reverse engineering a hardware device. We believe that the main value of
the hardware-wetware analogy is in its showing that abstraction, and multiple
levels of it, are absolutely crucial to handling biological complexity.

The importance of abstraction has been implicitly understood for quite some
time. As stated by Brenner, “while the genome sequence is central, it is a level
of abstraction that is too cryptic to be used for the organization of data and
derivation of theoretical models.” [6] Boolean gene networks are an example of
an abstract model, whose value is that it is much easier to work with than the
network of differential equations that it approximates. When Bornholdt says
“Less Is More in Modeling Large Genetic Networks” [4], he is pointing out to
the value of abstract models. In our view, Biology needs to go beyond mere
abstraction and develop its own tower of abstractions. Note that we are not
referring here to the fact that biology requires models at different scales (e.g.,
molecular, cellular, organ), rather, even a single scale requires multiple levels
of abstraction, just as hardware designers apply multiple levels of abstraction
during the design process at the same scale, for example, multiplication can
be performed in terms of iterated addition. In biology, one can also observe
different level of abstraction at the same scale. For example, the process of cell-
fate determination in the earthworm C. elegans can be observed at different levels
of abstraction. On the low-level, we can look at signal transduction and describe
gene-expression levels [30] and the change in protein quantities over time [11, 20],
or, at a higher level of abstraction, we can observe the cell acquiring a specific cell
fate according to morphology, cell division, or position of its daughter cells [28,
27]. The cellular module of circadian clocks, constructed from genes and proteins
involved in interlocking feedback loops [13], is an example of functional module
that is best considered at a higher level of abstraction than that of regulatory, or
metabolic pathways, which in turn are at a higher level of abstraction than that of

5



genes, proteins, and metabolites [22]. The segmentation clock, a transcriptional
oscillator that is responsible for vertebrate somitogenesis, is, in turn, an ensemble
of numerous cellular oscillators [15].

One may argue that because biological systems are evolved rather than engi-
neered, unlike hardware, they are unlikely to be amenable to hierarchical mod-
eling. We argue otherwise. Evolution selects by fitness, and fitness is determined
by phenotype. It is the very high-level attributes and traits of an organism that
determine its fitness. Precisely because evolution typically works via reuse and
modification of biological modules [16, 18], we should expect a tower of abstrac-
tions to bridge the large gap between the genotype and phenotype. The brain is
another complex system that is the result of evolution. While at the lowest level,
brain functionality is driven by neurons, a full understanding of the brain re-
quires it to be understood in terms of systems, subsystems, and sub-subsystems
[23]; one would expect this to also be the case in cellular biology. As an ex-
ample, let us consider bacterial chemotaxsis, whereby bacteria migrate towards
chemical attractants and away from chemical repellents. Chemotaxis is a behav-
ior that contributed to fitness and is therefore selected for by evolution. The
molecular mechanisms underlying chemotaxis are a subject of ongoing research,
which shows that these mechanisms vary among different bacterial species [25].
The process of chemotaxis is very amenable to hierarchical modeling. Low level
models consider the configuration of the molecules in the base of a flagellum and
how changes in their phosphorylation leads to the binary choice of clockwise or
anti-clockwise rotation [3]. The change in conformation is abstracted in the sig-
naling network model of Rao et al., which includes the sensing (through ligand
binding) and rotation-direction decision (through phosphorylation of controller).
Higher-level models could, for example, abstract away the signaling network and
connect directly sensing and motion.

While hardware is based on a well-defined and well understood tower of
abstractions, a standard abstraction tower for biology has yet to emerge, see
Figure 2 for a putative tower (of course, a biological tower of abstraction may
not be as neat and orderly as the computing hardware tower). Even at the most
basic level, we do not have a biological analogy to the most fundamental fact of
hardware design, which is that transistors implement logic gates. Searching for
the fundamental “bio-logic gates” [10] is a highly active research area. Brandman
et al. [5] describe several general building blocks in genetic networks, such as ex-
citatory feedback loop, inhibitory feedback loop, and the like. Nurse [21] calls for
a program of describing and cataloguing cellular “logic circuits”. In the context
of synthetic biology, which is concerned with designing artificial biological sys-
tems, Endy [9] has argued for using functional modules and in turn to use these
modules to create systems. In essence, these calls are for the development of a
“bio-logic gate-level model” (obviously, in a biological setting the components are
much more fluid than in an engineering setting, often performing different tasks
in different contexts). While the development of such a model would constitute a
significant step forward in system biology, we should remember that in hardware
design the gate-level model is still a fairly low-level model. The reverse engineer

6



Fig. 2. Tower of abstractions in biology

who has uncovered the gate-level model of the multiplication device described
above is still far from realizing that the device performs integer multiplication.
Similarly, we must define models that are more abstract and higher-level than
the “bio-logic gate-level model.” The segmentation clock [15], mentioned above,
which is an ensemble of numerous cellular oscillators seems to be an example of
a functional module that is best considered at a level above that of “bio-logic
gates.”

The Software of Life

In the tower of abstractions of hardware design, the highest level was the soft-
ware level, which describes the behavior of the hardware device. What is then
the software of life? Let us go back to the example above. The software of the
device we described above is the equation Z=X*Y. This equation is not directly
represented in the silicon; nevertheless, the silicon implements it. Thus, Z=X*Y
emerges from the simple and local interaction of the thousands of transistors that
constitute the circuit. It follows that the software of hardware can be viewed as
an emergent behavior of the hardware. This behavior is the top level in our tower

7



of abstractions; see [1] for a discussion of emergence and multi-levelled abstrac-
tion in science. Analogously, the “software of life” is an emergent behavior of
biological systems (e.g., chemotaxis). To understand how genotype leads to be-
havior, we need to identify first the tower of abstractions bridging genotype and
behavior. In genetics, the central dogma provides us with the appropriate level of
abstraction, referring to the DNA-to-protein transfer. While system biology re-
searchers are largely aware of the importance of abstraction, system biology has
concentrated its efforts in models of the gene/protein/metabolite and regulatory
network levels. We believe that biological models should have multiple levels of
abstraction, starting from molecular-level models, going through bio-logic-gate
models, and eventually getting to behavioral models, relating to the “software
of life”. Identifying these levels of abstraction is, in our opinion, one of the cen-
tral challenges of system biology; and quoting a recent piece on systems biology
theory by Gunawardena [12], “Molecular biology was reductionism’s finest hour.
Now, there is nowhere left to go but up.”

References

1. R. Abott. Emergence explained-abstractions. Complexity, 12(1):13–26, 2006.
2. R. Albert and H. G. Othmer. The topology of the regulatory interactions predicts

the expression pattern of the segment polarity genes in drosophila melanogaster.
J Theor Biol, 223(1):1–18, 2003.

3. F. Bai, R. W. Branch, Jr. Nicolau, D. V., T. Pilizota, B. C. Steel, P. K. Maini,
and R. M. Berry. Conformational spread as a mechanism for cooperativity in the
bacterial flagellar switch. Science, 327(5966):685–9, 2010.

4. S. Bornholdt. Systems biology. less is more in modeling large genetic networks.
Science, 310(5747):449–51, 2005.

5. O. Brandman, Jr. Ferrell, J. E., R. Li, and T. Meyer. Interlinked fast and slow
positive feedback loops drive reliable cell decisions. Science, 310(5747):496–8, 2005.

6. S. Brenner. Sequences and consequences. Philos Trans R Soc Lond B Biol Sci,
365(1537):207–12, 2010.

7. M. Chaves, R. Albert, and E. D. Sontag. Robustness and fragility of boolean
models for genetic regulatory networks. J Theor Biol, 235(3):431–49, 2005.

8. M. E. Csete and J. C. Doyle. Reverse engineering of biological complexity. Science,
295(5560):1664–9, 2002.

9. D. Endy. Foundations for engineering biology. Nature, 438(7067):449–53, 2005.
10. J. Fisher and T. A. Henzinger. Executable cell biology. Nat Biotechnol,

25(11):1239–49, 2007.
11. B. D. Grant and H. A. Wilkinson. Functional genomic maps in caenorhabditis

elegans. Curr Opin Cell Biol, 15(2):206–12, 2003.
12. J. Gunawardena. Systems biology. biological systems theory. Science,

328(5978):581–2, 2010.
13. P. E. Hardin. The circadian timekeeping system of drosophila. Curr Biol,

15(17):R714–22, 2005.
14. D. Harel. On comprehensive and realistic modeling: some ruminations on the what,

the how and the why. Clin Invest Med, 28(6):334–7, 2005.
15. K. Horikawa, K. Ishimatsu, E. Yoshimoto, S. Kondo, and H. Takeda. Noise-

resistant and synchronized oscillation of the segmentation clock. Nature,
441(7094):719–23, 2006.

8



16. N. Kashtan and U. Alon. Spontaneous evolution of modularity and network motifs.
Proc Natl Acad Sci U S A, 102(39):13773–8, 2005.

17. S. A. Kauffman. Metabolic stability and epigenesis in randomly constructed genetic
nets. J Theor Biol, 22(3):437–67, 1969.

18. H. Kitano. Biological robustness. Nat Rev Genet, 5(11):826–37, 2004.
19. K. Klemm and S. Bornholdt. Topology of biological networks and reliability of

information processing. Proc Natl Acad Sci U S A, 102(51):18414–9, 2005.
20. F. Long, H. Peng, X. Liu, S. K. Kim, and E. Myers. A 3d digital atlas of c. elegans

and its application to single-cell analyses. Nat Methods, 6(9):667–72, 2009.
21. P. Nurse. Life, logic and information. Nature, 454(7203):424–6, 2008.
22. Z. N. Oltvai and A. L. Barabasi. Systems biology. life’s complexity pyramid. Sci-

ence, 298(5594):763–4, 2002.
23. M. Perus. Multi-level synergetic computation in brain. NONLINEAR PHENOM-

ENA IN COMPLEX SYSTEMS, 4(2):157–193, 2001.
24. C. Priami. Algorithmic systems biology. Communications of the ACM, 52(5):80–

88, 2009.
25. C. V. Rao, J. R. Kirby, and A. P. Arkin. Design and diversity in bacterial chemo-

taxis: a comparative study in escherichia coli and bacillus subtilis. PLoS Biol,
2(2):E49, 2004.

26. Rudy v B. Rucker and Copyright Paperback Collection (Library of Congress).
Wetware. Avon Books, New York, 1988.

27. P. W. Sternberg and M. A. Felix. Evolution of cell lineage. Curr Opin Genet Dev,
7(4):543–50, 1997.

28. J. E. Sulston. C. elegans: the cell lineage and beyond. Biosci Rep, 23(2-3):49–66,
2003.

29. J.F. Wakerly. Digital Design: Principles and Practices. Pearson Education, 4th
edition, 2008.

30. M. Wang and P. W. Sternberg. Pattern formation during c. elegans vulval induc-
tion. Curr Top Dev Biol, 51:189–220, 2001.

9


