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What is a higher inductive type?

In ordinary Martin-Löf type theory

a =A a′

has one constructor refl : a =A a.

In Homotopy Type Theory higher inductive types (hits) are
types A where we can have other constructors as well, for all
the iterated identity types:

a =A a′

p =a=Aa′ p′

θ =p=a=Aa′p
′ θ′

...

Bauer, Lumsdaine, Shulman, Warren 2011.
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Higher inductive types of level n

Terminology:

point constructor for A (level 0)

path constructor for a =A a′ (level 1)

surface constructor for p =a=Aa′ p′ (level 2)

etc

n-hits only have constructors of level ≤ n.
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1-hits

General examples from the HoTT-book

propositional truncation

pushout

Homotopical examples:

interval

circle

suspension

Equational theories TΣ,E , e g

combinatory logic

many examples in Basold, Geuvers, Van der Weide 2017



Introduction Quotients Schema for introduction rules Elimination and equality rules Groupoid model

2-hits

General examples:

0-truncation

set-quotient

Homotopical examples:

2-sphere

torus

Computer science example:

patch theories (Angiuli, Harper, Licata, Morehouse, 2014)
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From the HoTT-book

In this book we do not attempt to give a general
formulation of what constitutes a “higher inductive
definition“ and how to extract the elimination rule from
such a definition - indeed, this is a subtle question and
the subject of current research. Instead we will rely on
some general informal discussion and numerous examples.
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Some questions

What is a good definition of a higher inductive type, that is,
what do the types of their constructors look like in general?

What are their associated elimination and equality rules?

How do we show the consistency of a general theory of higher
inductive types?

How do we get a ”computational interpretation”?

What is the foundational status of higher inductive types?
What is their relation to Martin-Löf’s meaning explanations?

Can we reduce the meaning of higher inductive types to the
standard inductive or inductive-recursive types?
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Higher-dimensional, univalent type theory

A reinterpretation of intensional type theory

type = weak ∞-groupoid (Kan cubical set)

new rules are validated, e g the univalence axiom and higher
inductive types

constructivity is maintained because Kan cubical set model
can be formulated in constructive metatheory (extensional
type theory) itself justified by Martin-Löf’s (1979) standard
meaning explanations. Cf work in progress by Bickford and
Coquand on an implementation in NuPRL.
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Type theory in the groupoid model

A reinterpretation of intensional type theory, Hofmann and
Streicher (1993).

type = groupoid A = (A0,A1,A2) = (A0,A1,=A1( , )).

new rules are validated, e g univalence axiom in first universe
and higher inductive types of level 2.

constructivity is maintained because groupoid model can be
formulated in constructive metatheory (extensional type
theory) itself justified by Martin-Löf’s (1979) standard
meaning explanations.



Introduction Quotients Schema for introduction rules Elimination and equality rules Groupoid model

Type theory in the setoid model

A reinterpretation of intensional type theory

type = setoid A = (A0,A1) = (A0,=A).

new rules are validated, e g higher inductive types of level 1,
including quotient types and algebraic theories TΣ,E . Cf
Basold, Geuvers, van der Weide (2017).

constructivity is maintained because setoid model can be
formulated in constructive metatheory (extensional type
theory) itself justified by Martin-Löf’s (1979) standard
meaning explanations.



Introduction Quotients Schema for introduction rules Elimination and equality rules Groupoid model

Quotient types

Let A be a type and R be a binary relation on A. Then A/R is the
1-hit with

c0 : A→ A/R

c1 : (x , y : A)→ R(x , y)→ c0(x) =A/R c0(y)

Notation: [x ] = c0(x)
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Quotient types in the setoid model

In the setoid model the points/elements are generated by the
constructor

c00 : A0 → (A/R)0

and the paths/proofs of equality are generated by

c10 : (x , y : A0)→ (R(x , y))0 → c00(x) =A/R c00(y)

c01 : (x , y : A0)→ x =A y → c00(x) =A/R c00(y)

◦ : (x , y , z ∈ (A/R)0)→ x =A/R y → y =A/R z → x =A/R z

id : (x ∈ (A/R)0)→ x =A/R x

(−)−1 : (x , y ∈ (A/R)0)→ x =A/R y → y =A/R x

Note that (A/R)0 is an inductive type and =A/R is an inductive
family which are instances of the general schema for inductive
families of Dybjer (1991) and CiC.
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Heterogenous identity

If x : A ` C (x), a, a′ : A, and p : a =A a′,then

c =C
p c ′

denotes the heterogenous identity of c : C (a) and c ′ : C (a′).

If f : (x : A)→ C (x), a, a′ : A, then

apdf : (p : a =A a′)→ f (a) =C
p f (a′)

Both are definable from the rules for homogeneous identity types.
(Should they perhaps be primitive?)
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Elimination and equality rules for quotients

The elimination rule expresses how to define a function

f : (x : A/R)→ C (x)

by structural induction on the points of A/R, such that the
function preserves =A/R .

f (c0(x)) = c̃0(x)

apdf (c1(x , y , z)) = c̃1(x , y , z)

under the assumptions

c̃0 : (x : A)→ C (c0(x))

c̃1 : (x , y : A)→ (z : R(x , y))→ c̃0(x) =C
c1(x ,y ,z) c̃0(y)
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General schema for 1-hits?

H is a hit with point constructors

c0 : ?

and path constructors
c1 : ?

What is the form of their types?

First try:

the type of a point constructor has the form of a constructor
for an inductive type H.

the type of a path constructor has the form of a constructor
for a binary inductive family =H on H.
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General schema for 1-hits?

H is a hit with point constructors

c0 : ?

and path constructors
c1 : ?

What is the form of their types? First try:

the type of a point constructor has the form of a constructor
for an inductive type H.

the type of a path constructor has the form of a constructor
for a binary inductive family =H on H.
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A schema for finitary 1-hits

We settle for the time being for a restricted version of hits:

the type of a point constructor has the form of a constructor
for a finitary inductive type H.

the type of a path constructor has the form of a constructor
for a finitary binary inductive family =H on H. The indices in
the type are point constructor patterns

Three reasons:

Simpler semantics

Simpler syntax, yet cover most (but not all) examples

Clearly constructive (the schema for inductive families in
Dybjer (1991) was perhaps too general)
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The type of a point constructor

Finitely branching trees, with finitely many constructors

c0 : (x1 : A1)→ · · · → (xm : Am(x1, . . . , xm−1))

→ H→ · · · → H

→ H

Ai are arbitrary types. They may not depend on H.
This is also the schema for point constructors of the hit H.
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A schema for path constructors

c1 : (x1 : B1)→ · · · → (xn : Bn(x1, . . . , xn−1))

→ (y1 : H)→ · · · → (yn′ : H)

→ p1(~xi , ~yj) =H q1(~xi , ~yj)→ · · · → pm(~xi , ~yj) =H qm(~xi , ~yj)

→ p′(~xi , ~yj) =H q′(~xi , ~yj)

where neither H nor =H may appear in Ai and where
p1, q1, . . . , pm, qm, p

′, q′ are point constructor patterns built up by
from variables ~xi , ~yj by point constructors c0. Grammar

p ::= y | c0(a, . . . , a, p, . . . , p)
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A schema for path constructors

1-hits generalize TΣ,E from algebraic specification theory, the
initial term algebra for a signature Σ and a list of equations E .

Note that although one may think that the set of points of H
is defined before =H, a negative occurrence of H would
generate a negative occurrence of =H in the setoid
interpretation of =H.
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Simplified schema for 1-hits

A simplified form with only one side condition and one inductive
premise:

c0 : A0 → H→ H

c1 : (x : A1)→ (y : H)→ p(x , y) =H q(x , y)

→ p′(x , y) =H q′(x , y)
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The Torus T2 as a 2-hit

base : T2

path1 : base =T2 base

path2 : base =T2 base

surf : path1 ◦ path2 =base=T2 base path2 ◦ path1
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Simplified schema for 2-hits

Simplified version:

c0 : A0 → H→ H

c1 : (x : A1)→ (y : H)→ p(x , y) =H q(x , y)

→ p1(x , y) =H q1(x , y)

c2 : (x : A2)→ (y : H)→ (z : p2(x , y) =H q2(x , y))

→ g1(x , y , z) =p3(x ,y)=Hq3(x ,y) h1(x , y , z)

→ g2(x , y , z) =p4(x ,y)=Hq4(x ,y) h2(x , y , z)

Here p, q, pi , qi are point constructor patterns in the variables x , y
and gi , hi are path constructor patterns in the variables x , y , z .
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Point and path constructor patterns

Point constructor patterns

p ::= x | c0(a, p)

Path constructor patterns

g ::= z | c1(a, p, g) | g ◦ g | id | g−1

(add apc0
(p, g)?)
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Elimination rule for the simplified schema for hits

The elimination rule expresses how to define a function

f : (x : H)→ C (x)

by structural induction on the points of H, such that the function
preserves =H.

f (c0(x , y)) = c̃0(x , y , f (y))

apdf (c1(x , y , z)) = c̃1(x , y , f (y), z , apdf (z))

under the assumptions

c̃0 : (x : A0)→ (y : H)→ C (y)→ C (c0(x , y))

c̃1 : (x : A1)→ (y : H)→ (ỹ : C (y))

→ (z : p =H q)→ T0(p) =C
z T0(q)

→ T0(p′) =C
c1(x ,y ,z) T0(q′)

where T0 is a lifting function defined below.
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Lifting

Lifting point constructor patterns:

T0(y) = ỹ

T0(c0(a, p)) = c̃0(a, p,T0(p))

Lifting path constructor patterns:

T1(z) = z̃

T1(c1(a, p, g)) = c̃1(a, p,T0(p), g ,T1(g))

T1(g ◦ g ′) = T1(g) ◦′ T1(g ′)

T1(id) = id

T1(g−1) = T1(g)−1′

It follows that T0(p) = f (p) and T1(g) = apf (g)
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Heterogeneous identity of level 2.

Let a, a′ : A, p, p′ : a =A a′, θ : p =a=Aa′ p′, b : B(a), b′ : B(a′),
q : b =B

p b′, q′ : b =B
p′ b′ We write

q =
b=Bb′

θ q′

for the heterogeneous identity of the heterogenous paths q, q′.
Moroever,

q =
b=Bb′

refl(p) q′

is judgmentally equal to q =b=B
p b

′ q′.
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Functions preserve level 2 identities

If
f : (x : A)→ C (x)

then not only

apdf : (p : x =A x ′)→ f (x) =C
p f (x ′)

but also

apd2
f : (θ : p =x=Ax ′ p′)→ apdf (p) =

f (x)=C f (x ′)
θ apdf (p′)
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Elimination and equality rules

We define f : (x : H)→ C (x) by

f (c0(a1, b1)) = c̃0(a1, b1, f (b1))

apdf (c1(a2, b2, c2)) = c̃1(a2, b2, f (b2), c2, apdf (c2))

apd2
f (c2(a3, b3, c3, d3)) = c̃2(a3, b3, f (b3), c3, apdf (c3), d3, apd

2
f (d3))

We have already shown the assumptions on c̃0 and c̃1. We also
have

c̃2 : (a3 : A2)→ (b3 : H)→ (b̃3 : C (b3))→ (c3 : p3 =H q3)

→ (c̃3 : T0(p3) =C
c3

T0(q3))→ (d3 : g1 =p4=Hq4 h1)

→ T1(g1) =
T0(p4)=HT0(q4)
d3

T1(h1)

→ T1(g2) =
T0(p5)=HT0(q5)
c2(a3,b3,c3,d3) T1(h2)
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Groupoid model of H

The interpretation of H is the groupoid (H0,H1,H2), where

H0 is the inductively defined set of objects (elements, points).

H1(x , y) is the inductively defined family of set of arrows
(identity proofs, paths)

H2(x , y , f , g) is the inductively defined family of set of 2-cells
(identity proofs of arrows, surfaces, homotopies)
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The objects of H

H0 is inductively generated by a constructor for the object part of
the point constructor

c00 : (A0)0 → H0 → H0
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The arrows of H

H1 is inductively generated by:

a constructor for the object part of the path constructor

c10 : (x ∈ (A1)0)→ (y ∈ H0)

→ H1(p0(x , y), q0(x , y))→ H1(p′0(x , y), q′0(x , y))

a constructor for the arrow part of the point constructor:

c01 : (x , x ′ ∈ (A0)0)→ (A0)1(x , x ′)→ (y , y ′ ∈ H0)

→ H1(y , y ′)→ H1(c00(x , y), c00(x ′, y ′))

constructors for composition, identity, and inverse of paths

◦ : (x , y , z ∈ H0)→ H1(x , y)→ H1(y , z)→ H1(x , z)

id : (x ∈ H0)→ H1(x , x)

(−)−1 : (x , y ∈ H0)→ H1(x , y)→ H1(y , x)
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The surfaces of H

H2 (representing equality of paths) is inductively generated by

c20 – the object part of the surface constructor

c11 – the arrow part of the path constructor

c02 – the surface (preservation of equality of arrows) part of
the point constructor:

cid
0 , c

◦
0 – witnesses for the functor laws for the point

constructor

tran, refl, sym – witnesses that H2 is a family of equivalence
relations

w0,w1 – witnesses that composition preserves equality

α, λ, ρ, ι0, ι1 – witnesses for the groupoid laws
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Interpretation of formation rule

It’s clear that (H0,H1,H2) is a groupoid.



Introduction Quotients Schema for introduction rules Elimination and equality rules Groupoid model

Interpretation of introduction rules

The point constructor c0 : A0 → H→ H is interpreted by the
functor on groupoids with object part c00, arrow part c01 and
preservation of equality part c02. The functor laws are
witnessed by the constructors cid

0 and c◦0.

A groupoid interpreting x =H y is a setoid and hence functors
on such groupoids degenerate to setoid-maps. Hence, the
path constructor

c1 : (x : A1)→ (y : H)→ p(x , y) =H q(x , y)

→ p1(x , y) =H q1(x , y)

is interpreted by the setoid map with underlying function c10

and preservation of equality part c11.

A groupoid interpreting f =x=Hx ′ f ′ has only one object and
one arrow (up to equality). Hence it suffices that the
constructor c2 is interpreted by c20.
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Interpretation of elimination and equality rules

We want to show that there exists a ”dependent groupoid functor”

f : (x : H)→ C (x)

such that

f (c0(x , y)) = c̃0(x , y , f (y))

apdf (c1(x , y , z)) = c̃1(x , y , f (y), z , apdf (z))

apd2
f (c2(x , y , z ,w)) = c̃2(x , y , f (y), z , apdf (z),w , apd2

f (w))
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Object and arrow part of f

Object part f0 : (x ∈ H0)→ C0(x) by

f0(c00(x , y)) = (c̃0)0(x , y , f0(y)))

Arrow part

f1 : (x , x ′ ∈ H0)→ (g ∈ H1(x , x ′))→ C ′1(g , f0(x), f0(x ′))

where C ′1 is a heterogenous version of arrow (between
elements of different fibers). This is done by H1-elimination:

f1(c10(x , y , z)) = (c̃1)0(x , y , f0(y), z , f1(p, q, z))

f1(c01(x , x ′, e, y , y ′, d)) = (c̃0)1(x , x ′, e, y , y ′, d , f0(y), f0(y ′), f1(y , y ′, d))

and clauses which say that f1 maps an identity on H to an
identity, a composition to a composition, and an inverse to an
inverse.
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Preservation of equality of arrows part of f

We define the 2-cell part

f2 : (x , x ′ ∈ H0)→ (g , g ′ ∈ H1(x , x ′))→ (∗ ∈ H2(x , x ′, g , g ′))

→ C ′2(∗, f1(x , x ′, g), f1(x , x ′, g ′))

where C ′2 is a heterogenous notion of equality between elements in
different fibres. This is proved by H2-elimination.
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∞-Hits?

Can the schemata for 1- and 2-hits be extended to arbitrary n-hits
and also to ∞-hits?

Can cubical type theory be extended with schema for hits with
constructors of arbitrary dimensionality?

Can these hits be interpreted in the Kan cubical set model?

A step on the way:

Formulate 1- and 2-hits using face maps and degeneracies.

Formulate setoids and groupoids as truncated Kan cubical
sets.
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