Finitary Higher Inductive Types in the Groupoid Model

Peter Dybjer and Hugo Moeneclaey

Chalmers and ENS Cachan

AIM XXV Göteborg, 9 - 15 May, 2017

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Introduction Quotients Schema for introduction rules Elimination and equality rules Groupoid model

What is a higher inductive type?

• In ordinary Martin-Löf type theory

$$a =_A a'$$

has one constructor refl : $a =_A a$.

• In Homotopy Type Theory higher inductive types (hits) are types A where we can have other constructors as well, for all the iterated identity types:

$$a =_A a'$$
$$p =_{a=_Aa'} p'$$
$$\theta =_{p=_{a=_Aa'}p'} \theta'$$

Bauer, Lumsdaine, Shulman, Warren 2011.

Higher inductive types of level n

Terminology:

- point constructor for A (level 0)
- path constructor for $a =_A a'$ (level 1)
- surface constructor for $p =_{a=_A a'} p'$ (level 2)
- etc

n-hits only have constructors of level $\leq n$.

General examples from the HoTT-book

- propositional truncation
- pushout

Homotopical examples:

- interval
- circle
- suspension
- Equational theories $\mathrm{T}_{\Sigma,\textit{E}},$ e g
 - combinatory logic
 - many examples in Basold, Geuvers, Van der Weide 2017

Introduction	Quotients	Schema for introduction rules	Elimination and equality rules	Groupoid model
2-hits				

General examples:

- 0-truncation
- set-quotient

Homotopical examples:

- 2-sphere
- torus

Computer science example:

• patch theories (Angiuli, Harper, Licata, Morehouse, 2014)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Introduction

From the HoTT-book

In this book we do not attempt to give a general formulation of what constitutes a "higher inductive definition" and how to extract the elimination rule from such a definition - indeed, this is a subtle question and the subject of current research. Instead we will rely on some general informal discussion and numerous examples.

Some questions

- What is a good definition of a higher inductive type, that is, what do the types of their constructors look like in general?
- What are their associated elimination and equality rules?
- How do we show the consistency of a general theory of higher inductive types?
- How do we get a "computational interpretation"?
- What is the foundational status of higher inductive types? What is their relation to Martin-Löf's meaning explanations?
- Can we reduce the meaning of higher inductive types to the standard inductive or inductive-recursive types?

Higher-dimensional, univalent type theory

A reinterpretation of intensional type theory

- type = weak ∞ -groupoid (Kan cubical set)
- new rules are validated, e g the *univalence* axiom and *higher inductive types*
- constructivity is maintained because Kan cubical set model can be formulated in constructive metatheory (*extensional* type theory) itself justified by Martin-Löf's (1979) *standard* meaning explanations. Cf work in progress by Bickford and Coquand on an implementation in NuPRL.

Type theory in the groupoid model

A *reinterpretation* of *intensional* type theory, Hofmann and Streicher (1993).

- type = groupoid $A = (A_0, A_1, A_2) = (A_0, A_1, =_{A_1(_,_)}).$
- new rules are validated, e g univalence axiom in first universe and *higher inductive types* of level 2.
- constructivity is maintained because groupoid model can be formulated in constructive metatheory (*extensional* type theory) itself justified by Martin-Löf's (1979) *standard* meaning explanations.

Type theory in the setoid model

A reinterpretation of intensional type theory

- type = setoid $A = (A_0, A_1) = (A_0, =_A)$.
- new rules are validated, e g higher inductive types of level 1, including quotient types and algebraic theories $T_{\Sigma,E}$. Cf Basold, Geuvers, van der Weide (2017).
- constructivity is maintained because setoid model can be formulated in constructive metatheory (*extensional* type theory) itself justified by Martin-Löf's (1979) *standard* meaning explanations.

Let A be a type and R be a binary relation on A. Then A/R is the 1-hit with

$$c_0 : A \to A/R$$

$$c_1 : (x, y : A) \to R(x, y) \to c_0(x) =_{A/R} c_0(y)$$
Notation: $[x] = c_0(x)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Quotient types in the setoid model

In the setoid model the points/elements are generated by the constructor $% \left({{{\left[{{{\left[{{{c}} \right]}} \right]}_{i}}}_{i}}} \right)$

$$\mathrm{c}_{00}$$
 : $A_0
ightarrow (A/R)_0$

and the paths/proofs of equality are generated by

$$\begin{array}{rcl} c_{10} & : & (x, y : A_0) \to (R(x, y))_0 \to c_{00}(x) =_{A/R} c_{00}(y) \\ c_{01} & : & (x, y : A_0) \to x =_A y \to c_{00}(x) =_{A/R} c_{00}(y) \\ & \circ & : & (x, y, z \in (A/R)_0) \to x =_{A/R} y \to y =_{A/R} z \to x =_{A/R} z \\ & \text{id} & : & (x \in (A/R)_0) \to x =_{A/R} x \\ -)^{-1} & : & (x, y \in (A/R)_0) \to x =_{A/R} y \to y =_{A/R} x \end{array}$$

Note that $(A/R)_0$ is an inductive type and $=_{A/R}$ is an inductive family which are instances of the general schema for inductive families of Dybjer (1991) and CiC.

Heterogenous identity

• If
$$x : A \vdash C(x)$$
, $a, a' : A$, and $p : a =_A a'$, then
 $c =_p^C c'$

denotes the heterogenous identity of c : C(a) and c' : C(a'). • If $f : (x : A) \to C(x)$, a, a' : A, then

$$\operatorname{apd}_f: (p: a =_A a') \to f(a) =_p^C f(a')$$

Both are definable from the rules for homogeneous identity types. (Should they perhaps be primitive?)

Elimination and equality rules for quotients

The elimination rule expresses how to define a function

$$f:(x:A/R)\to C(x)$$

by structural induction on the points of A/R, such that the function preserves $=_{A/R}$.

$$f(c_0(x)) = \tilde{c_0}(x)$$

apd_f(c₁(x, y, z)) = $\tilde{c_1}(x, y, z)$

under the assumptions

$$\begin{array}{rcl} \tilde{c_0} & : & (x:A) \to C(c_0(x)) \\ \tilde{c_1} & : & (x,y:A) \to (z:R(x,y)) \to \tilde{c_0}(x) = {}^C_{c_1(x,y,z)} \tilde{c_0}(y) \end{array}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

General schema for 1-hits?

 ${\rm H}$ is a hit with point constructors

 c_0 :?

and path constructors

 $\mathrm{c}_1: ?$

What is the form of their types?

General schema for 1-hits?

 ${\rm H}$ is a hit with point constructors

 $c_0:?$

and path constructors

 $\mathrm{c}_1: ?$

What is the form of their types? First try:

- the type of a point constructor has the form of a constructor for an inductive type H.
- the type of a path constructor has the form of a constructor for a binary inductive family $=_{\rm H}$ on H.

A schema for finitary 1-hits

We settle for the time being for a restricted version of hits:

- the type of a point constructor has the form of a constructor for a *finitary* inductive type H.
- the type of a path constructor has the form of a constructor for a *finitary* binary inductive family $=_{\rm H}$ on H. The indices in the type are *point constructor patterns*

Three reasons:

- Simpler semantics
- Simpler syntax, yet cover most (but not all) examples
- Clearly constructive (the schema for inductive families in Dybjer (1991) was perhaps too general)

The type of a point constructor

Finitely branching trees, with finitely many constructors

$$c_0 : (x_1 : A_1) \to \cdots \to (x_m : A_m(x_1, \dots, x_{m-1}))$$

$$\to H \to \cdots \to H$$

$$\to H$$

 A_i are arbitrary types. They may not depend on H. This is also the schema for point constructors of the hit H.

A schema for path constructors

$$c_1 : (x_1 : B_1) \to \dots \to (x_n : B_n(x_1, \dots, x_{n-1}))$$

$$\to (y_1 : H) \to \dots \to (y_{n'} : H)$$

$$\to p_1(\vec{x_i}, \vec{y_j}) =_H q_1(\vec{x_i}, \vec{y_j}) \to \dots \to p_m(\vec{x_i}, \vec{y_j}) =_H q_m(\vec{x_i}, \vec{y_j})$$

$$\to p'(\vec{x_i}, \vec{y_j}) =_H q'(\vec{x_i}, \vec{y_j})$$

where neither H nor $=_{\rm H}$ may appear in A_i and where $p_1, q_1, \ldots, p_m, q_m, p', q'$ are *point constructor patterns* built up by from variables $\vec{x_i}, \vec{y_j}$ by point constructors c_0 . Grammar

$$p ::= y \mid c_0(a, \ldots, a, p, \ldots, p)$$

A schema for path constructors

- 1-hits generalize T_{Σ,E} from algebraic specification theory, the initial term algebra for a signature Σ and a list of equations E.
- Note that although one may think that the set of points of H is defined before $=_{\rm H}$, a negative occurrence of H would generate a negative occurrence of $=_{\rm H}$ in the setoid interpretation of $=_{\rm H}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Simplified schema for 1-hits

A simplified form with only one side condition and one inductive premise:

$$\begin{array}{rcl} \mathbf{c}_0 & : & A_0 \to \mathbf{H} \to \mathbf{H} \\ \mathbf{c}_1 & : & (x:A_1) \to (y:\mathbf{H}) \to p(x,y) =_{\mathbf{H}} q(x,y) \\ & & \to p'(x,y) =_{\mathbf{H}} q'(x,y) \end{array}$$

Introduction

Elimination and equality rules

Groupoid model

The Torus T^2 as a 2-hit

base : T^2 path₁ : base =_{T²} base path₂ : base =_{T²} base surf : path₁ \circ path₂ =_{base=T²} base path₂ \circ path₁

Simplified schema for 2-hits

Simplified version:

$$\begin{array}{rcl} c_{0} & : & A_{0} \to H \to H \\ c_{1} & : & (x : A_{1}) \to (y : H) \to p(x, y) =_{H} q(x, y) \\ & \to p_{1}(x, y) =_{H} q_{1}(x, y) \\ c_{2} & : & (x : A_{2}) \to (y : H) \to (z : p_{2}(x, y) =_{H} q_{2}(x, y)) \\ & \to g_{1}(x, y, z) =_{p_{3}(x, y) =_{H} q_{3}(x, y)} h_{1}(x, y, z) \\ & \to g_{2}(x, y, z) =_{p_{4}(x, y) =_{H} q_{4}(x, y)} h_{2}(x, y, z) \end{array}$$

Here p, q, p_i, q_i are point constructor patterns in the variables x, y and g_i, h_i are path constructor patterns in the variables x, y, z.

Point and path constructor patterns

Point constructor patterns

$$p ::= x \mid c_0(a, p)$$

Path constructor patterns

$$g ::= z \mid c_1(a, p, g) \mid g \circ g \mid \mathrm{id} \mid g^{-1}$$

 $(add ap_{c_0}(p,g)?)$

Introduction

Elimination rule for the simplified schema for hits

The elimination rule expresses how to define a function

 $f:(x:\mathrm{H})\to C(x)$

by structural induction on the points of $\rm H,$ such that the function preserves $=_{\rm H}.$

$$f(c_0(x, y)) = \tilde{c_0}(x, y, f(y))$$

$$apd_f(c_1(x, y, z)) = \tilde{c_1}(x, y, f(y), z, apd_f(z))$$

under the assumptions

$$\begin{split} \tilde{c_0} &: (x:A_0) \to (y:\mathrm{H}) \to \mathcal{C}(y) \to \mathcal{C}(\mathrm{c}_0(x,y)) \\ \tilde{c_1} &: (x:A_1) \to (y:\mathrm{H}) \to (\tilde{y}:\mathcal{C}(y)) \\ &\to (z:p=_\mathrm{H}q) \to \mathrm{T}_0(p) =_z^C \mathrm{T}_0(q) \\ &\to \mathrm{T}_0(p') =_{\mathrm{c}_1(x,y,z)}^C \mathrm{T}_0(q') \end{split}$$

where T_0 is a lifting function defined below.

Lifting point constructor patterns:

$$T_0(y) = \tilde{y}$$

$$T_0(c_0(a, p)) = \tilde{c_0}(a, p, T_0(p))$$

Lifting path constructor patterns:

$$T_{1}(z) = \tilde{z}$$

$$T_{1}(c_{1}(a, p, g)) = \tilde{c_{1}}(a, p, T_{0}(p), g, T_{1}(g))$$

$$T_{1}(g \circ g') = T_{1}(g) \circ' T_{1}(g')$$

$$T_{1}(id) = id$$

$$T_{1}(g^{-1}) = T_{1}(g)^{-1'}$$

It follows that $T_0(p) = f(p)$ and $T_1(g) = \mathbf{ap}_f(g)$

Heterogeneous identity of level 2.

Let
$$a, a' : A, p, p' : a =_A a', \theta : p =_{a=_A a'} p', b : B(a), b' : B(a'), q : b =_p^B b', q' : b =_{p'}^B b'$$
 We write

$$q =_{\theta}^{b = B b'} q'$$

for the heterogeneous identity of the heterogenous paths q, q^{\prime} . Moroever,

$$q =_{\operatorname{refl}(p)}^{b = {}^B b'} q'$$

is judgmentally equal to $q =_{b=\frac{B}{p}b'} q'$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Functions preserve level 2 identities

lf

$$f:(x:A)\to C(x)$$

then not only

$$\operatorname{\mathsf{apd}}_f:(p:x=_A x') \to f(x) =_p^C f(x')$$

but also

$$\mathsf{apd}_f^2:(heta: p=_{\mathsf{x}=_{\mathcal{A}}\mathsf{x}'} p') o \mathsf{apd}_f(p) =^{f(\mathsf{x})=^C_f(\mathsf{x}')}_{ heta} \mathsf{apd}_f(p')$$

Introduction Quotients Schema for introduction rules Elimination and equality rules Grou

Elimination and equality rules

We define $f : (x : H) \to C(x)$ by

$$\begin{aligned} f(c_0(a_1, b_1)) &= \tilde{c_0}(a_1, b_1, f(b_1)) \\ \mathbf{apd}_f(c_1(a_2, b_2, c_2)) &= \tilde{c_1}(a_2, b_2, f(b_2), c_2, \mathbf{apd}_f(c_2)) \\ \mathbf{apd}_f^2(c_2(a_3, b_3, c_3, d_3)) &= \tilde{c_2}(a_3, b_3, f(b_3), c_3, \mathbf{apd}_f(c_3), d_3, \mathbf{apd}_f^2(d_3)) \end{aligned}$$

We have already shown the assumptions on $\tilde{\mathrm{c_0}}$ and $\tilde{\mathrm{c_1}}.$ We also have

$$\begin{split} \tilde{c_2} &: (a_3 : A_2) \to (b_3 : H) \to (\tilde{b}_3 : C(b_3)) \to (c_3 : p_3 =_H q_3) \\ &\to (\tilde{c}_3 : T_0(p_3) =_{c_3}^C T_0(q_3)) \to (d_3 : g_1 =_{p_4 =_H q_4} h_1) \\ &\to T_1(g_1) =_{d_3}^{T_0(p_4) =_-^H T_0(q_4)} T_1(h_1) \\ &\to T_1(g_2) =_{c_2(a_3, b_3, c_3, d_3)}^{T_0(p_5) =_-^H T_0(q_5)} T_1(h_2) \end{split}$$

Groupoid model of ${\rm H}$

The interpretation of ${\rm H}$ is the groupoid $({\rm H}_0,{\rm H}_1,{\rm H}_2),$ where

- H_0 is the inductively defined set of objects (elements, points).
- H₁(x, y) is the inductively defined family of set of arrows (identity proofs, paths)
- H₂(x, y, f, g) is the inductively defined family of set of 2-cells (identity proofs of arrows, surfaces, homotopies)

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ④ Q @

The objects of H

 H_{0} is inductively generated by a constructor for the object part of the point constructor

$$c_{00}$$
 : $(A_0)_0 \rightarrow H_0 \rightarrow H_0$

The arrows of ${\rm H}$

 H_1 is inductively generated by:

• a constructor for the object part of the path constructor

$$\begin{aligned} \mathrm{c}_{10} &: & (x \in (\mathcal{A}_1)_0) \to (y \in \mathrm{H}_0) \\ & & \to \mathrm{H}_1(p_0(x,y), q_0(x,y)) \to \mathrm{H}_1(p_0'(x,y), q_0'(x,y)) \end{aligned}$$

• a constructor for the arrow part of the point constructor:

$$\begin{array}{rl} \mathrm{c}_{01} & : & (x,x' \in (A_0)_0) \to (A_0)_1(x,x') \to (y,y' \in \mathrm{H}_0) \\ & & \to \mathrm{H}_1(y,y') \to \mathrm{H}_1(\mathrm{c}_{00}(x,y),\mathrm{c}_{00}(x',y')) \end{array}$$

• constructors for composition, identity, and inverse of paths

$$\circ : (x, y, z \in H_0) \rightarrow H_1(x, y) \rightarrow H_1(y, z) \rightarrow H_1(x, z)$$

id : $(x \in H_0) \rightarrow H_1(x, x)$
 $(-)^{-1} : (x, y \in H_0) \rightarrow H_1(x, y) \rightarrow H_1(y, x)$

The surfaces of ${\rm H}$

 H_2 (representing equality of paths) is inductively generated by

- $\bullet\ \mathrm{c_{20}}$ the object part of the surface constructor
- $\bullet \ \mathrm{c_{11}}$ the arrow part of the path constructor
- c_{02} the surface (preservation of equality of arrows) part of the point constructor:
- $\bullet \ c_0^{id}, c_0^{\circ}$ witnesses for the functor laws for the point constructor
- $\bullet~{\rm tran, refl, sym}$ witnesses that ${\rm H_2}$ is a family of equivalence relations
- $\bullet \ \mathrm{w}_0, \mathrm{w}_1 \mathsf{witnesses}$ that composition preserves equality
- $\alpha, \lambda, \rho, \iota_0, \iota_1$ witnesses for the groupoid laws

Introduction

uotients

Schema for introduction rules

Elimination and equality rules

Groupoid model

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Interpretation of formation rule

It's clear that (H_0, H_1, H_2) is a groupoid.

Introduction Quotients Schema for i

Interpretation of introduction rules

- The point constructor $\mathrm{c}_0:\mathcal{A}_0\to\mathrm{H}\to\mathrm{H}$ is interpreted by the functor on groupoids with object part $\mathrm{c}_{00},$ arrow part c_{01} and preservation of equality part c_{02} . The functor laws are witnessed by the constructors $\mathrm{c}_0^{\mathrm{id}}$ and $\mathrm{c}_0^\circ.$
- A groupoid interpreting x =_H y is a setoid and hence functors on such groupoids degenerate to setoid-maps. Hence, the path constructor

c₁ :
$$(x : A_1) \rightarrow (y : H) \rightarrow p(x, y) =_H q(x, y)$$

 $\rightarrow p_1(x, y) =_H q_1(x, y)$

is interpreted by the setoid map with underlying function $\rm c_{10}$ and preservation of equality part $\rm c_{11}.$

 A groupoid interpreting f =_{x=Hx'} f' has only one object and one arrow (up to equality). Hence it suffices that the constructor c₂ is interpreted by c₂₀.

(日) (日) (日) (日) (日) (日) (日) (日)

Interpretation of elimination and equality rules

We want to show that there exists a "dependent groupoid functor"

 $f:(x:\mathrm{H})\to C(x)$

such that

$$f(c_0(x,y)) = \tilde{c_0}(x,y,f(y))$$

$$apd_f(c_1(x,y,z)) = \tilde{c_1}(x,y,f(y),z,apd_f(z))$$

$$apd_f^2(c_2(x,y,z,w)) = \tilde{c_2}(x,y,f(y),z,apd_f(z),w,apd_f^2(w))$$

Object and arrow part of f

• Object part $f_0: (x \in \mathrm{H}_0)
ightarrow \mathcal{C}_0(x)$ by

$$f_0(c_{00}(x,y)) = (\tilde{c_0})_0(x,y,f_0(y)))$$

Arrow part

$$f_1 \quad : \quad (x,x' \in \mathrm{H}_0) \rightarrow (g \in \mathrm{H}_1(x,x')) \rightarrow C_1'(g,f_0(x),f_0(x'))$$

where C'_1 is a heterogenous version of arrow (between elements of different fibers). This is done by H_1 -elimination:

$$f_1(c_{10}(x, y, z)) = (\tilde{c_1})_0(x, y, f_0(y), z, f_1(p, q, z))$$

$$f_1(c_{01}(x, x', e, y, y', d)) = (\tilde{c_0})_1(x, x', e, y, y', d, f_0(y), f_0(y'), f_1(y))$$

and clauses which say that f_1 maps an identity on H to an identity, a composition to a composition, and an inverse to an inverse.

Groupoid model

Preservation of equality of arrows part of f

We define the 2-cell part

$$\begin{split} f_2 &: (x, x' \in \mathrm{H}_0) \to (g, g' \in \mathrm{H}_1(x, x')) \to (* \in \mathrm{H}_2(x, x', g, g')) \\ &\to C_2'(*, f_1(x, x', g), f_1(x, x', g')) \end{split}$$

where C'_2 is a heterogenous notion of equality between elements in different fibres. This is proved by H₂-elimination.

Can the schemata for 1- and 2-hits be extended to arbitrary *n*-hits and also to ∞ -hits?

- Can cubical type theory be extended with schema for hits with constructors of arbitrary dimensionality?
- Can these hits be interpreted in the Kan cubical set model?
- A step on the way:
 - Formulate 1- and 2-hits using face maps and degeneracies.
 - Formulate setoids and groupoids as truncated Kan cubical sets.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ