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A comment on program proving

When you’ve proved your program correct, then you’d
better run it, to make sure it works!

How come?

wrong specification?

wrong model of program?

wrong manual proof?

mechanical proof, but faulty proof assistant?

What does this have to do with the foundations of mathematics?
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A comment on the validity of the logical laws

When you’ve made your logical law evident to yourself,
then you’d better run it, to make sure it’s valid!

How can you "run" a logical formula?
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A comment on the validity of the logical laws

When you’ve made your judgement evident to yourself,
then you’d better run it, to make sure it’s valid!

This is possible in Martin-Löf type theory, in a sense to be explained.

The meaning explanations in "Constructive Mathematics and
Computer Programming" (1979) from the point of view of the computer
programmer (or perhaps better, the computer "user"), rather than from
the point of view of the constructive mathematician.
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Meaning explanations for intuitionistic type theory

Meaning explanations for extensional polymorphic type theory.
References by Martin-Löf:

Hannover 1979 (1982) Constructive mathematics and computer
programming

Padova 1980 (1984) Intuitionistic Type Theory, book published by
Bibliopolis
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What are Martin-Löf’s meaning explanations?

Meaning explanations. Also called

direct semantics, intuitive semantics, standard
semantics, syntactico-semantical approach

They are "pre-mathematical" as opposed to "meta-mathematical":

mathematical semantics (assuming set theory as
meta-language)

see for example Martin-Löf: Intuitionistic Type Theory, Bibliopolis,
1984, p 1, par 1.

Before 1979: normalization proofs, but no meaning explanations.
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Meta-mathematical interpretation of meaning explanations

"It’s just realizability!"

A special kind of abstract realizability:

Realizers are lambda terms:

a ::= x |(x)a |a(a) |λ |Ap |0 |s |R |r |J |Π |N | I |U | · · ·

Some terms denote types.

Judgements are interpreted in terms of the relation a⇒ v
between closed terms, meaning "a has canonical form v".
Canonical forms are

v ::= λ(a) |0 |s(a) | r |Π(a,a) |N | I(a,a,a) |U | · · ·

(We write f (a1, . . . , .an) = f (a1) · · ·(an) and (λx)a = λ((x)a).)
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General pattern

A⇒ C(a1, . . . .am) · · ·
A type

A⇒ C(a1, . . . .am) A′⇒ C(a′1, . . . .a
′
m) · · ·

A = A′

where C is an m-place type constructor, and

A⇒ C(a1, . . . .am) a⇒ c(b1, . . . .bn) · · ·
a ∈ A

A⇒ C(a1, . . . .am) a⇒ c(b1, . . . .bn) a′⇒ c(b′1, . . . .b
′
n) · · ·

a = a′ ∈ A

where c is an n-place term constructor for C.
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Natural numbers

A⇒ N
A type

A⇒ N A′⇒ N
A = A′

A⇒ N a⇒ 0
a ∈ A

A⇒ N a⇒ s(b) b ∈ N
a ∈ A

A⇒ N a⇒ 0 a′⇒ 0
a = a′ ∈ A

A⇒ N a⇒ s(b) a′⇒ s(b′) b = b′ ∈ N
a = a′ ∈ A
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Meta-mathematical interpretation of meaning explanations

A partial equivalence relation (per) model!

We simultaneously define the following relations on the set of closed
terms:

the per of "equal types" A = A′

the family of pers of "equal terms of a given type" a = a′ ∈ A.

The rules in previous slides inductively generate these pers, Allen
(1987). Related models can be found in Aczel (1974, 1980), Beeson
(1982), Smith (1984).

However, the idea that meaning explanations are "just realizability" is,
although helpful, fundamentally misleading!
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The meaning of induction

How is now the rule of N-elimination justified?

C(x) type n ∈ N d ∈ C(0) e ∈ (Πx ∈ N)C(x)→ C(s(x))

R(n,d ,e) ∈ C(n)

By mathematical induction on the meta-level (in set theory)!

This is not a satisfactory explanation for a constructivist! Let us work
with an intuitionistic metalanguage. The model construction refered to
above can be carried out in such a language (Aczel 1983, Smith 1984).

Why is the rule of induction on the intuitionistic meta-level correct?

Because of the BHK-interpretation, i e, the rule of N-elimination. Etc.



PFM

Introduction Meaning explanations Meaning as testing Impredicative type theory Summary Q & A

The meaning of induction

How is now the rule of N-elimination justified?

C(x) type n ∈ N d ∈ C(0) e ∈ (Πx ∈ N)C(x)→ C(s(x))

R(n,d ,e) ∈ C(n)

By mathematical induction on the meta-level (in set theory)!

This is not a satisfactory explanation for a constructivist! Let us work
with an intuitionistic metalanguage. The model construction refered to
above can be carried out in such a language (Aczel 1983, Smith 1984).

Why is the rule of induction on the intuitionistic meta-level correct?

Because of the BHK-interpretation, i e, the rule of N-elimination. Etc.



PFM

Introduction Meaning explanations Meaning as testing Impredicative type theory Summary Q & A

The meaning of induction

How is now the rule of N-elimination justified?

C(x) type n ∈ N d ∈ C(0) e ∈ (Πx ∈ N)C(x)→ C(s(x))

R(n,d ,e) ∈ C(n)

By mathematical induction on the meta-level (in set theory)!

This is not a satisfactory explanation for a constructivist! Let us work
with an intuitionistic metalanguage. The model construction refered to
above can be carried out in such a language (Aczel 1983, Smith 1984).

Why is the rule of induction on the intuitionistic meta-level correct?

Because of the BHK-interpretation, i e, the rule of N-elimination. Etc.



PFM

Introduction Meaning explanations Meaning as testing Impredicative type theory Summary Q & A

The meaning of induction

How is now the rule of N-elimination justified?

C(x) type n ∈ N d ∈ C(0) e ∈ (Πx ∈ N)C(x)→ C(s(x))

R(n,d ,e) ∈ C(n)

By mathematical induction on the meta-level (in set theory)!

This is not a satisfactory explanation for a constructivist! Let us work
with an intuitionistic metalanguage. The model construction refered to
above can be carried out in such a language (Aczel 1983, Smith 1984).

Why is the rule of induction on the intuitionistic meta-level correct?

Because of the BHK-interpretation, i e, the rule of N-elimination. Etc.



PFM

Introduction Meaning explanations Meaning as testing Impredicative type theory Summary Q & A

The meaning of induction

How is now the rule of N-elimination justified?

C(x) type n ∈ N d ∈ C(0) e ∈ (Πx ∈ N)C(x)→ C(s(x))

R(n,d ,e) ∈ C(n)

By mathematical induction on the meta-level (in set theory)!

This is not a satisfactory explanation for a constructivist! Let us work
with an intuitionistic metalanguage. The model construction refered to
above can be carried out in such a language (Aczel 1983, Smith 1984).

Why is the rule of induction on the intuitionistic meta-level correct?

Because of the BHK-interpretation, i e, the rule of N-elimination. Etc.



PFM

Introduction Meaning explanations Meaning as testing Impredicative type theory Summary Q & A

The correctness of powerful induction principles

How do we justify the rules for Setzer’s Π3-reflecting universe?

By the intuitionistically valid Π3-reflecting universe principle on the
meta-level!
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Mathematical induction and inductive inference

Alternatively. The rule of induction is correct because if we test the
primitive recursion combinator R(n,d ,e) for n = 0,1,2, . . . , and for
arbitrary base case d and arbitrary step case e, it succeeds each time
(more later)!

Inductive inference!

Similarly, the elimination rules for the Π3-reflecting universe are correct
because if we test them for suitable inputs these tests succeed!
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Static vs dynamic, time vs space

The meaning explanations are about what really happens!

Syntactico-semantical approach! Semantics is what happens during
execution. Meaning = extension.

a⇒ b is a static mathematical representation of the real fact that a will
turn into b a little later after some computation is done.
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Pre-mathematical rendering of meaning explanations

Read the rules (which are said to "inductively generate" the
realizability interpretation), rather as a "testing manual", a manual for
"falsification of conjectures", or "bug-finding". A tester only needs to be
able to push a button "execute program" and inspect results. He/she is
only a "user" who does not need to know logic or programming.

How do you test that
A type?

A = A?′

a ∈ A?

a = a′ ∈ A?
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How to test A type?

Some rules for deriving judgements of the form A type are

A⇒ N
A type

A⇒ I(B,b,b′) B type b ∈ B b′ ∈ B
A type

A⇒ U
A type

The testing manual reading: Run A!

If it has canonical form N, then the test is successful.

If it has canonical form I(B,b,b′), then first test B type and if
successfull test b ∈ B and then b′ ∈ B.

If it has canonical form U, then the test is successful.

If it has a canonical form which does not begin with a type
constructor, or no canonical form at all, then the test fails.



PFM

Introduction Meaning explanations Meaning as testing Impredicative type theory Summary Q & A

How to test a ∈ A?

A⇒ N a⇒ 0
a ∈ A

A⇒ N a⇒ s(b) b ∈ N
a ∈ A

A⇒ I(B,b,b′) a⇒ r B type b,b′ ∈ B b = b′ ∈ B
a ∈ A

A⇒ U a⇒ N
a ∈ A

A⇒ U a⇒ I(B,b,b′) B ∈ U b,b′ ∈ B
a ∈ A

Testing manual: Run A and a! Depending on their canonical form
continue with the tests prescribed by the remaining premises of the
appropriate rule!
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Testing hypothetical judgements

How do we read

A⇒ Π(B,C) a⇒ λ(c) x ∈ B ` c(x) ∈ C(x)

a ∈ A

as a rule in our testing manual? What action should we take to test

x ∈ B ` c(x) ∈ C(x)?

Maybe: for all b ∈ B it is the case that c(b) ∈ C(b)? But how did we
get b ∈ B? Maybe from a maliscious hacker?

We’d better manufacture our own tests! The rules which are said to
"inductively generate" the realizability interpretation is now given a
second reading: how to generate input to hypothetical tests!
This is a key point!
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How to generate x ∈ A?

Read the rules as a manual (for the user) for generating an input x :

A⇒ N x ⇒ 0
x ∈ A

A⇒ N x ⇒ s(y) y ∈ N
x ∈ A

A⇒ I(B,b,b′) B type b ∈ B b′ ∈ B b = b′ ∈ B x ⇒ r
x ∈ A

A⇒ U x ⇒ N
x ∈ A

A⇒ U x ⇒ I(Y ,y ,y ′) Y ∈ U y ∈ Y y ′ ∈ Y
x ∈ A

Input generation manual: Run A!

If it has canonical form N, then either generate x = 0 or generate
x = s(y) and then, if necessary, generate y ∈ N.

If it has canonical form I(B,b,b′)? To be discussed later.

If it has canonical form U, then either generate x = N or generate
x = I(Y ,y ,y ′) and then, if necessary, generate
Y ∈ U,y ∈ Y ,y ′ ∈ Y .
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Functional input. How to generate x ∈ N→ N?

How do we read the rule

x ⇒ λ(z) y ∈ N ` z(y) ∈ N
x ∈ N→ N

as a rule for generating x?
It would be wrong to try to read y ∈ N ` z(y) ∈ N as syntactic
derivability in some formal system for Martin-Löf type theory. We want
the semantic notion! Cf discussion of alleged impredicativity of
functionals. We want it to be "local", that is, the test generated does
not depend on the formal system as a whole.
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Domain theory to the rescue

Domain theory (continuity principle) and game semantics to the
rescue! We generate input/output pairs (m,n) with m,n ∈ N. Which
ones? As many as needed! But we do not know in advance. When we
test e g

x ∈ N→ N ` b(x) ∈ B(x)

We will have to begin to test b(x) ∈ B(x) without knowing x . At some
stage the computation gets stuck because it does not know x . E g
R(Ap(x ,0),d ,e) needs to know the canonical form of Ap(x ,0). We
generate an input output pair (0,y) for x where y ∈ N is generated as
before. Now the computation can go on. Etc.
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Identity types. How to generate x ∈ I(N,a,b) and
x ∈ I(N→ N, f ,g)?

How do we read the rule

A⇒ I(N,m,n) N type m,n ∈ N m = n ∈ N x ⇒ r
x ∈ A

as a rule for generating x? If m = n ∈ N (closed expressions), then
generate x = r , otherwise, there is no x!
How do we read the rule

A⇒ I(N→ N, f ,g) N→ N type f ,g ∈ N→ N f = g ∈ N→ N x ⇒ r
x ∈ A

as a rule for generating x? If f = g ∈ N→ N (closed expressions),
then generate x = r , otherwise, there is no x! But we will not be able to
establish this in finite time! What to do?
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Meaning explanations for impredicative type theory?

What about testing manuals for

System F (Girard)?

Calculus of Constructions (Coquand and Huet)?

Calculus of Inductive Constructions (Coquand and Paulin), the
theory of the Coq-system?

These systems are justified with normalization proofs, in the style of
Martin-Löf type theory prior to 1979. Will they see a 1979?
These systems, especially the last one, have real users. What do they
expect when they "run" their programs?
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An impredicative universe

Predicative universe closed under Π:

A ∈ U x ∈ A ` B ∈ U
(Πx ∈ A)B ∈ U

Impredicative universe U closed under Π:

A type x ∈ A ` B ∈ U
(Πx ∈ A)B ∈ U

e g
N = (ΠX ∈ U)X → (X → X)→ X ∈ U

I(A,a,b) = (ΠX ∈ A→ U)X(a)→ X(b) ∈ U
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Testing manual for the Calculus of Constructions

Formally, there is great similarity between Martin-Löf type theory and
the Calculus of Constructions, except that the latter

only has types U and (Πx ∈ B)C, no primitive data types
N, I(A,a,b), . . .

U is closed under impredicative Π

Modify the testing manual for Martin-Löf type theory accordingly. The
difference appears in the test for elements of U. The only rule is:

A⇒ U a⇒ (Πx ∈ B)C B type x ∈ B ` C ∈ U
a ∈ A

No base case!
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Testing based on normalization of open expressions?

Per Martin-Löf (2009): Evaluation of open expressions

The informal, or intuitive, semantics of type theory makes
it evident that closed expressions of ground type evaluate to
head normal form, whereas metamathematics, ..., is
currently needed to show that expressions which are open
or of higher type can be reduced to normal form. The
question to be discussed is: Would it be possible to modify
the informal semantics in such a way that it becomes evident
that all expressions, also those that are open or of higher
type, can be reduced to full normal form?

The user computes with open expressions in CoC. Open weak head
normal forms are

v ::= U |(Πx ∈ a)a |(λx)a |x(a, . . . ,a)

What about CIC?
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Testing manual for CoC

Testing types

A⇒ (Πy ∈ B)C Γ ` B type Γ,y ∈ B ` C type
Γ ` A type

A⇒ U
Γ ` A type

Testing terms

A⇒ U a⇒ (Πy ∈ B)C Γ ` B type Γ,y ∈ B ` C ∈ U
Γ ` a ∈ A

A⇒ (Πx ∈ B)C a⇒ (λy)c Γ,y ∈ B ` c ∈ C
Γ ` a ∈ A
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Testing manual for CoC; neutral forms

a⇒ x(b1, . . . ,bn) x ∈ (Πy1 : B1) · · ·(Πyn : Bn)C in Γ

Γ ` b1 ∈ B1 · · · Γ ` bn ∈ Bn Γ ` C[b1/y1, . . . ,bn/yn] = A
Γ ` a ∈ A

Testing manual = type checking algorithm ...



PFM

Introduction Meaning explanations Meaning as testing Impredicative type theory Summary Q & A

Summary

Some important distinctions:

pre-mathematical vs meta-mathematical

local (single judgement) vs
global (system of inference rules) correctness

judgement vs proposition

validated by testing (objective) vs
made evident by thinking (subjective)

game semantics vs realizability semantics

input generation vs output computation

primary school computation of closed expressions vs
secondary school computation of open expressions
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Logical rule vs its implementation

Q: You test the implementation of a judgement, not the judgement itself
A: It is only meaningful to test an implementation, if by that we mean
something which so as to speak can run by itself, something
mechanical, a machine, or a user without knowledge of logic.
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Incompleteness of testing

Q: In this way you will never be able to establish validity of a
judgement!
A: I’m not saying that the only way we can establish validity of a
judgement is to test it. I’m only saying that testing is the ultimate
verification whether you were correct when you said that a certain
judgement is evident. That’s why the first slide is the most important
one.
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Testing the Ackermann function

Q: It doesn’t make sense to say that you can test the Ackermann
function. Very quickly the computations will take too long for you to see
the result, although they will in fact terminate.
A: Although it is not possible to observe non-termination, nothing
forbids us to look at intermediate stages of a computation and realize
that it has got into a loop, or an infinite regress that it will never get out
of. This is a good falsification.
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Testing formulas in classical set theory

Q: I can test a formula in set theory too! I just enumerate all the
theorems, and test whether a particular one is in the enumeration!
A: Yes, but this is "global" testing, testing of the whole system. Testing
of judgements in type theory are "local", you only test the judgement
itself, not the whole system of which it is a rule.
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What does "A type" mean?

Q: To know that A is a type, you have to know how the elements are
formed and how equal elements are formed. You only say "A has to
have canonical type as value". Why?
A: It’s part of the assumptions we have before we do the testing that
we know the introduction rules for each type former.


	Introduction
	Meaning explanations
	Meaning as testing
	Impredicative type theory
	Summary
	Q & A

