Normalization by Evaluation
for
Untyped Combinatory Logic

Peter Dybjer
Chalmers tekniska hogskola

Stockholm-Uppsala Logic Seminar
Stockholm, 2 February 2005

Untyped normalization by evaluation: previous work

e Mogensen 1992: “Efficient self-interpretation in lambda calculus”

e Aehlig and Joachimski 2004: “Operational aspects of untyped normal-
ization by evaluation”

e Filinski and Rohde 2004: “Denotational aspects of untyped normalization
by evaluation”

e Devautour 2004: “Untyped normalization by evaluation” (for combina-
tory logic)

Related issues appear in Danvy's and Filinski's “Type-directed partial eval-
uation” for typed languages with general recursion.

Formalizing typed combinatory logic
in Martin-Lof type theory (AgdaLight)

Constructors for Ty :: Set:

:: Ty -— base type
(=>) :: Ty => Ty -> Ty -- function types

Constructors for Exp :: Ty -> Set:

K :: (a,b :: Ty) -> Exp (a => b => a)
S :: (a,b,c :: Ty) -> Exp ((@a => Db =>c¢c) => (a => b) => a => c)
App :: (a,b :: Ty) -> Exp (a => b) -> Exp a -> Exp b

In this way we only generate well-typed terms.

The glueing model

Sem :: Ty -> Set
Sem X = Exp X
Sem (a => b) = (Exp (a => b), (Sem a) -> (Sem b))

The normalization function is obtained by evaluating an expression in the
glueing model, and then “reifying” this interpretation

nbe :: (a :: Ty) -> Exp a —> Exp a
nbe a e = reify a (eval a e)

eval :: (a :: Ty) -> Exp a -> Sem a

reify :: (a :: Ty) -> Sem a -> Exp a

Evaluation and reification

Evaluation is defined by induction on Exp a, eg

eval :: (a :: Ty) -> Exp a -> Sem a
eval (a => b => a) (K a b)
= (Kab, \x > (App a (b => a) (K a b) (reify a x), \y -> x))

Reification is defined by induction on Ty, eg

reify :: (a :: Ty) -> Sem a -> Exp a
reify (a => b) (e,f) = e

It is tempting to “hide” the type information, but note that it is used in the
computation.

A decision procedure for convertibility

Let e, e’ :: Exp a.

Prove that e conv e’ implies eval a e = eval a e’!

It follows that e conv e’ implies nbe a e = nbe a e’

Prove that e conv (nbe a e) using the glueing (reducibility) method!
Hence e conv e’ iff nbe a e = nbe a e’

Hence e conv e’ iff (nbe a e == nbe a e’) = True

Formalizing syntax and semantics in Haskell

The Haskell type of untyped combinatory expressions:
data Exp = K | S | App Exp Exp
(We will later use e@e’ for App e e’.)

Note that Haskell types contain programs which do not terminate at all
or lazily compute infinite values, such as App K (App K (App K ...))).

The untyped glueing model as a Haskell type:
data Sem = Gl Exp (Sem -> Sem)

A reflexive type!

The nbe program in Haskell

nbe :: Exp -> Exp
nbe e = reify (eval e)

eval :: Exp -> Sem
eval K = G1 K (\x -> G1 (App K (reify x)) (\y -> x))
eval S = G1 S (\x -> G1 (App S (reify x))
(\y => G1 (App (App S (reify x)) (reify y))))
(\z -> appsem (appsem x z) (appsem (y z)))))
eval (App e e’) = appsem (eval e) (eval e’)

reify :: Sem -> Exp
reify (Gl e f) = e

Application in the model

appsem :: Sem —-> Sem —-> Sem
appsem (Gl e f) x = f x

The nbe program computes the Bohm tree of a term

Theorem. (Devautour 2004) nbe e computes the combinatory Bohm
tree of e. In particular, nbe e computes the normal form of e iff it exists.

Proof. Following categorical method of Pitts 1993 and Filinski and
Rohde 2004 using “invariant relations” .

What is the combinatory Bohm tree of an expression? An operational

notion: the Bohm tree is defined by repeatedly applying the inductively
defined head normal form relation.

Note that nbe gives a denotational (computational) definition of the
Bohm tree of e, so the theorem is to relate an operational (inductive) and
a denotational (computational) definition.

10

Combinatory head normal form

Inductive definition of relation between terms in Exp

K =P K s =P g
e =" K e =P KQe' e/ =h g
eQe’ =h KQe' eQe! =h g
e =8 g e =" s@¢
eQe’ =h sQe eQe =h (sQe’)Qe”
e =0 (s@e')Qe” (e'@e@(e"@e"") =1 v

eQe!"" =h g

11

Formal neighbourhoods

To formalize the notion of combinatory Bohm tree we make use of
Martin-Lof 1983 - the domain interpretation of type theory. Notions of

e formal neighbourhood = finite approximation of the canonical form of a
program (lazily evaluated); in particular A means no information about
the canonical form of a program.

e The denotation of a program is the set of all formal neighbourhoods
approximating its canonical form (applied repeatedly to its parts). Two
possibilities: operational neighbourhoods and denotational neighbour-
hoods. Different because of the full abstraction problem, Plotkin 1976.

12

Expression neighbourhoods

An expression neighbourhood U is a finite approximation of the canonical
form of a program of type Exp. Operationally, U is the set of all programs
of type Exp which approximate the canonical form of the program. Notions
of inclusion O and intersection N of neighbourhoods.

A grammar for expression neighbourhoods:

U:=A|K|S|UQU

A grammar for the sublanguage of normal form neighbourhoods:

U:=A|K|KQU | s |s@U | (sQU)QU

13

Combinatory Bohm trees

A (combinatory) Bohm tree is a filter of normal form neighbourhoods.
A filter is a set a of neighbourhoods satisfying:

e Ucaand U’ DU implies U’ € «;
o A Cq;

e U U' € aimpliesUNU’ € a.

14

Approximations of head normal forms

e pB A
e =P K e =P KQe¢' e’ Bt U’
e Bt K e >Bt KQU'
e =h g e =P sQe¢’ e’ BBt U’
e Bt S e >Bt SQU’
e :>h (S@e’)@e” 6/ [>Bt U/ e// [>Bt U//

e >Bt (SQU")QU”

15

The Bohm tree of a combinatory expression

The Bohm tree of an expression e in Exp is the set
(U | e Pt U}

One can prove that it is a filter of normal form neighbourhoods, by induction
on the definition of >P*. (Note that the head normal form of an expression
is unique.)

One can also prove that two convertible expressions have the same Bohm
tree.

16

Combinatory conversion

Conversion is inductively generated by the rules of reflexivity, symmetry,
and transitivity, together with:

(KQe)Q@e' conv e

((s@e)@c’)@e"” conv (e@Qe')Q(e@e)

eg conv ey ey conv €

eoQej conv e Qe

17

Operational neighbourhoods of nbe

nbee € U iff U is a finite approximation of the canonical form of nbe e
when evaluated lazily. For example,

e nbee e A, forall e

e nbeK € K

e nbe (YAK) € KOA

e nbe (Y@K) € KQ(KQA), etc

Y is a fixed point combinator.

18

Definition of the operational neighbourhood relation

Is this operational semantics or denotational semantics?

The definition of the operational neighbourhood relation follows the
computation rules (operational semantics) of a program. So to define the
relation nbee € U, we must first define the relations evale € V and
reifyx € U. Here V is a neighbourhood of the reflexive type

data Sem = Gl Exp (Sem -> Sem)

We need to consider function neighbourhoods.

19

Function neighbourhoods

If (U;)i<n and (V;);<n are families of neighbourhoods of types o and 7,

respectively, then
(U Vi
<n

is a function neighbourhood of the type o — 7. We write A = (._,[U;; Vi]-

1<0

If f is a program of type o — 7, then

/€ ﬂ[Uz';Vi]

1<n

iff for all : < n, a € U; implies fa € V;. In addition to inclusion and meet
we consider consistency (inhabitedness) of function neighbourhoods.

20

Neighbourhoods in Sem

e A is a Sem-neighbourhood.

e If U is an Exp-neighbourhood and (V;);<, and (W;);<, are families of
Sem-neighbourhoods, then

GLU ([[Vis Wi))

<n

is a Sem-neighbourhood.

21

Operational neighbourhoods of eval e

evale € A, as always.

For e = K we have the equation
evalK = G1K (A\z.G1l (KQ(reify x)) (Ay.x))

Hence,
evalkK € GLU ([|[Vi; Wi])

1

iff K € U and for all ¢ and for all z € V;, we have G1 (KQ(reifyx)) (Ay.x) €
W;. This is the case iff either W, = A or W, = G1 U, (ﬂj[Vij;sz]) and
KQ(reifyx) € U; and z € W;; for all 3.

22

Operational neighbourhoods of eval (e@Qe¢’)

Recursion equations

eval (eQe’) = appsem(evale)(evale')

appsem (Gle f)x = fux

One can prove that eval (e@e') € W iff either W = A or there exist U
and V such that evale € G1U [V; W] and evale' € V

23

Operational neighbourhoods of nbe

Equations:

nbee = reify(evale)

reify(Glef) = e

Thus, nbeec U iff U = A or evale € G1U A.

24

Nbe maps convertible terms into equal Bohm trees

We can prove that nbee € U implies that U is a normal form neigh-
bourhood, and hence the denotation of nbe e is a Bohm tree.

We can also prove that if e conv ¢’ and nbee € U, then nbee’ € U,
that is, nbe maps convertible terms to equal Bohm trees (cf “uniqueness
of normal forms”). As in the typed case this follows by induction on the
definition of convertibility, using a lemma that eval maps convertible terms
into equal denotations.

25

Completeness of nbe

Any finite part of the Bohm tree is returned:

e b2 U implies nbee € U

The proof is by induction on the derivation of e Bt U.

Consider eg the case when e >Bt K comes from e =" K. Since nbeK € K
and convertible terms have equal Bohm trees it follows that nbe e € K.

26

Soundness of nbe

Only approximations of the Bohm tree are returned by nbe:
nbee € U implies e p°8 U
We need a lemma (cf reducibility /glueing method)
evale € V implies e b&' V

where e G V iff either V = A or V = G1U (,[Vi; Wi]) where e b5t U
and for all i and €/, ¢ >C! V; implies e@e’ &1 W,

This lemma is proved by induction on e. Soundness then follows
immediately.

27

Definition of ¢ >C! U

The property on the previous page is not directly acceptable as an
inductive definition because of negative occurrence of e ¢! U.

Instead we define it as the union of an infinite sequence of approxima-
tions: e >©! V iff there exists an n such that e &' V, where

e bSt ViffV = A.

e >yt Viff either V.= A or V.= G1U (,[Vi; Wi]) where e b5t U and
for all i and €, €' >S! V; implies e@e’ & W,

The set {V] e %! V} is a filter of Sem-neighbourhoods, and is invariant
under convertibility.

28

Case K: evalK € V implies K p&' V

Proof by analyzing the neighbourhoods of evalKk.

Case V = A is immediate.
Case V =G1U ([,[Vi; Wi]), where K € U and for all ¢ and z € V;, we
have G1 (KQ(reifyx)) (Ay.x) € W;. We need to prove two things:

e K Bt U. This follows from K € U.

o For all i, ¢ G V; implies KQe' >S1 W,
Case W; = A, and we are done.

Case W; = G1U; ([,[Vij; Wij]), where KQ(reifyz) € U; and x € Wy,
for all 7. We need to show two things:

29

— KQ¢' [>Bt Uz
Case V; = A. It follows that U; D KQA and hence XQe' Bt U,
Case V; = G1U; ((;[V];; Wi;])- It follows that U; 2 KQU;. We know
e’ >Bt U! and hence KQe’ Bt Us.

— For all j, ¢” %! V;; implies (KQe')Qe"” >S! W;;. Because of closure
of convertibility it suffices to prove e’ >&! W;;. But this follows from

W;; 2 V; and upward closure of >Gl in the right argument, since we
know ¢’ >Cl V.

30

Case cQe¢’:

Prove that eval (e@Qe’) € W implies (e@¢’) >&! W from the induction

hypotheses that evale € W implies e >G! W and evale’ € W’ implies
e/ G W,

Either W = A and we are done.

Or there exist U and V such thatevale € GLU [V; W] and evale € V.
We can now use the induction hypotheses to conclude that e ¢! G1 U [V; W]
and € >CG! V. Hence it follows by the second property of >G! that

(e@Qe’) >C1 W

31

Conclusion

The proof could presumably be carried out in a similar way using
denotational neighbourhoods. Can we isolate the abstract properties of
function neighbourhoods which are needed for the proof?

32

