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Untyped normalization by evaluation: previous work

e Mogensen 1992: “Efficient self-interpretation in lambda calculus”

e Aehlig and Joachimski 2004: “Operational aspects of untyped normal-
ization by evaluation”

e Filinski and Rohde 2004: “Denotational aspects of untyped normalization
by evaluation”

e Devautour 2004: “Untyped normalization by evaluation” (for combina-
tory logic)

Related issues appear in Danvy's and Filinski's “Type-directed partial eval-
uation” for typed languages with general recursion.



Formalizing typed combinatory logic
in Martin-Lof type theory (AgdaLight)

Constructors for Ty :: Set:

:: Ty -— base type
(=>) :: Ty => Ty -> Ty -- function types

Constructors for Exp :: Ty -> Set:

K :: (a,b :: Ty) -> Exp (a => b => a)
S :: (a,b,c :: Ty) -> Exp ((@a => Db =>c¢c) => (a => b) => a => c)
App :: (a,b :: Ty) -> Exp (a => b) -> Exp a -> Exp b

In this way we only generate well-typed terms.



The glueing model

Sem :: Ty -> Set
Sem X = Exp X
Sem (a => b) = (Exp (a => b), (Sem a) -> (Sem b))

The normalization function is obtained by evaluating an expression in the
glueing model, and then “reifying” this interpretation

nbe :: (a :: Ty) -> Exp a —> Exp a
nbe a e = reify a (eval a e)

eval :: (a :: Ty) -> Exp a -> Sem a

reify :: (a :: Ty) -> Sem a -> Exp a



Evaluation and reification

Evaluation is defined by induction on Exp a, eg

eval :: (a :: Ty) -> Exp a -> Sem a
eval (a => b => a) (K a b)
= (Kab, \x > (App a (b => a) (K a b) (reify a x), \y -> x))

Reification is defined by induction on Ty, eg

reify :: (a :: Ty) -> Sem a -> Exp a
reify (a => b) (e,f) = e

It is tempting to “hide” the type information, but note that it is used in the
computation.



A decision procedure for convertibility

Let e, e’ :: Exp a.

Prove that e conv e’ implies eval a e = eval a e’!

It follows that e conv e’ implies nbe a e = nbe a e’

Prove that e conv (nbe a e) using the glueing (reducibility) method!
Hence e conv e’ iff nbe a e = nbe a e’

Hence e conv e’ iff (nbe a e == nbe a e’) = True



Formalizing syntax and semantics in Haskell

The Haskell type of untyped combinatory expressions:
data Exp = K | S | App Exp Exp
(We will later use e@e’ for App e e’.)

Note that Haskell types contain programs which do not terminate at all
or lazily compute infinite values, such as App K (App K (App K ... ))).

The untyped glueing model as a Haskell type:
data Sem = Gl Exp (Sem -> Sem)

A reflexive type!



The nbe program in Haskell

nbe :: Exp -> Exp
nbe e = reify (eval e)

eval :: Exp -> Sem
eval K = G1 K (\x -> G1 (App K (reify x)) (\y -> x))
eval S = G1 S (\x -> G1 (App S (reify x))
(\y => G1 (App (App S (reify x)) (reify y))))
(\z -> appsem (appsem x z) (appsem (y z)))))
eval (App e e’) = appsem (eval e) (eval e’)

reify :: Sem -> Exp
reify (Gl e f) = e



Application in the model

appsem :: Sem —-> Sem —-> Sem
appsem (Gl e f) x = f x



The nbe program computes the Bohm tree of a term

Theorem. (Devautour 2004) nbe e computes the combinatory Bohm
tree of e. In particular, nbe e computes the normal form of e iff it exists.

Proof. Following categorical method of Pitts 1993 and Filinski and
Rohde 2004 using “invariant relations” .

What is the combinatory Bohm tree of an expression? An operational

notion: the Bohm tree is defined by repeatedly applying the inductively
defined head normal form relation.

Note that nbe gives a denotational (computational) definition of the
Bohm tree of e, so the theorem is to relate an operational (inductive) and
a denotational (computational) definition.
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Combinatory head normal form

Inductive definition of relation between terms in Exp

K =P K s =P g
e =" K e =P KQe' e/ =h g
eQe’ =h KQe' eQe! =h g
e =8 g e =" s@¢
eQe’ =h sQe eQe =h (sQe’)Qe”
e =0 (s@e')Qe” (e'@e@(e"@e"") =1 v

eQe!"" =h g
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Formal neighbourhoods

To formalize the notion of combinatory Bohm tree we make use of
Martin-Lof 1983 - the domain interpretation of type theory. Notions of

e formal neighbourhood = finite approximation of the canonical form of a
program (lazily evaluated); in particular A means no information about
the canonical form of a program.

e The denotation of a program is the set of all formal neighbourhoods
approximating its canonical form (applied repeatedly to its parts). Two
possibilities: operational neighbourhoods and denotational neighbour-
hoods. Different because of the full abstraction problem, Plotkin 1976.

12



Expression neighbourhoods

An expression neighbourhood U is a finite approximation of the canonical
form of a program of type Exp. Operationally, U is the set of all programs
of type Exp which approximate the canonical form of the program. Notions
of inclusion O and intersection N of neighbourhoods.

A grammar for expression neighbourhoods:

U:=A|K|S|UQU

A grammar for the sublanguage of normal form neighbourhoods:

U:=A|K|KQU | s |s@U | (sQU)QU
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Combinatory Bohm trees

A (combinatory) Bohm tree is a filter of normal form neighbourhoods.
A filter is a set a of neighbourhoods satisfying:

e Ucaand U’ DU implies U’ € «;
o A Cq;

e U U' € aimpliesUNU’ € a.

14



Approximations of head normal forms

e pB A
e =P K e =P KQe¢' e’ Bt U’
e Bt K e >Bt KQU'
e =h g e =P sQe¢’ e’ BBt U’
e Bt S e >Bt SQU’
e :>h (S@e’)@e” 6/ [>Bt U/ e// [>Bt U//

e >Bt (SQU")QU”
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The Bohm tree of a combinatory expression

The Bohm tree of an expression e in Exp is the set
(U | e Pt U}

One can prove that it is a filter of normal form neighbourhoods, by induction
on the definition of >P*. (Note that the head normal form of an expression
is unique.)

One can also prove that two convertible expressions have the same Bohm
tree.
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Combinatory conversion

Conversion is inductively generated by the rules of reflexivity, symmetry,
and transitivity, together with:

(KQe)Q@e' conv e

((s@e)@c’)@e"” conv (e@Qe')Q(e@e)

eg conv ey ey conv €

eoQej conv e Qe
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Operational neighbourhoods of nbe

nbee € U iff U is a finite approximation of the canonical form of nbe e
when evaluated lazily. For example,

e nbee e A, forall e

e nbeK € K

e nbe (YAK) € KOA

e nbe (Y@K) € KQ(KQA), etc

Y is a fixed point combinator.
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Definition of the operational neighbourhood relation

Is this operational semantics or denotational semantics?

The definition of the operational neighbourhood relation follows the
computation rules (operational semantics) of a program. So to define the
relation nbee € U, we must first define the relations evale € V and
reifyx € U. Here V is a neighbourhood of the reflexive type

data Sem = Gl Exp (Sem -> Sem)

We need to consider function neighbourhoods.
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Function neighbourhoods

If (U;)i<n and (V;);<n are families of neighbourhoods of types o and 7,

respectively, then
(U Vi
<n

is a function neighbourhood of the type o — 7. We write A = (._,[U;; Vi]-

1<0

If f is a program of type o — 7, then

/€ ﬂ[Uz';Vi]

1<n

iff for all : < n, a € U; implies fa € V;. In addition to inclusion and meet
we consider consistency (inhabitedness) of function neighbourhoods.
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Neighbourhoods in Sem

e A is a Sem-neighbourhood.

e If U is an Exp-neighbourhood and (V;);<, and (W;);<, are families of
Sem-neighbourhoods, then

GLU ([ [Vis Wi))

<n

is a Sem-neighbourhood.
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Operational neighbourhoods of eval e

evale € A, as always.

For e = K we have the equation
evalK = G1K (A\z.G1l (KQ(reify x)) (Ay.x))

Hence,
evalkK € GLU ([ |[Vi; Wi])

1

iff K € U and for all ¢ and for all z € V;, we have G1 (KQ(reifyx)) (Ay.x) €
W;. This is the case iff either W, = A or W, = G1 U, (ﬂj[Vij;sz]) and
KQ(reifyx) € U; and z € W;; for all 3.
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Operational neighbourhoods of eval (e@Qe¢’)

Recursion equations

eval (eQe’) = appsem(evale)(evale')

appsem (Gle f)x = fux

One can prove that eval (e@e') € W iff either W = A or there exist U
and V such that evale € G1U [V; W] and evale' € V

23



Operational neighbourhoods of nbe

Equations:

nbee = reify(evale)

reify(Glef) = e

Thus, nbeec U iff U = A or evale € G1U A.
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Nbe maps convertible terms into equal Bohm trees

We can prove that nbee € U implies that U is a normal form neigh-
bourhood, and hence the denotation of nbe e is a Bohm tree.

We can also prove that if e conv ¢’ and nbee € U, then nbee’ € U,
that is, nbe maps convertible terms to equal Bohm trees (cf “uniqueness
of normal forms”). As in the typed case this follows by induction on the
definition of convertibility, using a lemma that eval maps convertible terms
into equal denotations.
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Completeness of nbe

Any finite part of the Bohm tree is returned:

e b2 U implies nbee € U

The proof is by induction on the derivation of e Bt U.

Consider eg the case when e >Bt K comes from e =" K. Since nbeK € K
and convertible terms have equal Bohm trees it follows that nbe e € K.
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Soundness of nbe

Only approximations of the Bohm tree are returned by nbe:
nbee € U implies e p°8 U
We need a lemma (cf reducibility /glueing method)
evale € V implies e b&' V

where e G V iff either V = A or V = G1U (,[Vi; Wi]) where e b5t U
and for all i and €/, ¢ >C! V; implies e@e’ &1 W,

This lemma is proved by induction on e. Soundness then follows
immediately.
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Definition of ¢ >C! U

The property on the previous page is not directly acceptable as an
inductive definition because of negative occurrence of e ¢! U.

Instead we define it as the union of an infinite sequence of approxima-
tions: e >©! V iff there exists an n such that e &' V, where

e bSt ViffV = A.

e >yt Viff either V.= A or V.= G1U (,[Vi; Wi]) where e b5t U and
for all i and €, €' >S! V; implies e@e’ & W,

The set {V] e %! V} is a filter of Sem-neighbourhoods, and is invariant
under convertibility.
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Case K: evalK € V implies K p&' V

Proof by analyzing the neighbourhoods of evalKk.

Case V = A is immediate.
Case V =G1U ([,[Vi; Wi]), where K € U and for all ¢ and z € V;, we
have G1 (KQ(reifyx)) (Ay.x) € W;. We need to prove two things:

e K Bt U. This follows from K € U.

o For all i, ¢ G V; implies KQe' >S1 W,
Case W; = A, and we are done.

Case W; = G1U; ([,[Vij; Wij]), where KQ(reifyz) € U; and x € Wy,
for all 7. We need to show two things:
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— KQ¢' [>Bt Uz
Case V; = A. It follows that U; D KQA and hence XQe' Bt U,
Case V; = G1U; ((;[V];; Wi;])- It follows that U; 2 KQU;. We know
e’ >Bt U! and hence KQe’ Bt Us.

— For all j, ¢” %! V;; implies (KQe')Qe"” >S! W;;. Because of closure
of convertibility it suffices to prove e’ >&! W;;. But this follows from

W;; 2 V; and upward closure of >Gl in the right argument, since we
know ¢’ >Cl V.
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Case cQe¢’:

Prove that eval (e@Qe’) € W implies (e@¢’) >&! W from the induction

hypotheses that evale € W implies e >G! W and evale’ € W’ implies
e/ G W,

Either W = A and we are done.

Or there exist U and V such thatevale € GLU [V; W] and evale € V.
We can now use the induction hypotheses to conclude that e ¢! G1 U [V; W]
and € >CG! V. Hence it follows by the second property of >G! that

(e@Qe’) >C1 W
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Conclusion

The proof could presumably be carried out in a similar way using
denotational neighbourhoods. Can we isolate the abstract properties of
function neighbourhoods which are needed for the proof?
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