Normalization by Evaluation for Untyped Combinatory Logic

Peter Dybjer Chalmers tekniska högskola

Stockholm-Uppsala Logic Seminar Stockholm, 2 February 2005

Untyped normalization by evaluation: previous work

- Mogensen 1992: "Efficient self-interpretation in lambda calculus"
- Aehlig and Joachimski 2004: "Operational aspects of untyped normalization by evaluation"
- Filinski and Rohde 2004: "Denotational aspects of untyped normalization by evaluation"
- Devautour 2004: "Untyped normalization by evaluation" (for combinatory logic)

Related issues appear in Danvy's and Filinski's "Type-directed partial evaluation" for typed languages with general recursion.

Formalizing typed combinatory logic in Martin-Löf type theory (AgdaLight)

Constructors for Ty :: Set:

```
X :: Ty -- base type
(=>) :: Ty -> Ty -- function types
```

Constructors for Exp :: Ty -> Set:

```
K :: (a,b :: Ty) -> Exp (a => b => a)
S :: (a,b,c :: Ty) -> Exp ((a => b => c) => (a => b) => a => c)
App :: (a,b :: Ty) -> Exp (a => b) -> Exp a -> Exp b
```

In this way we only generate well-typed terms.

The glueing model

The normalization function is obtained by evaluating an expression in the glueing model, and then "reifying" this interpretation

```
nbe :: (a :: Ty) -> Exp a -> Exp a
nbe a e = reify a (eval a e)

eval :: (a :: Ty) -> Exp a -> Sem a
reify :: (a :: Ty) -> Sem a -> Exp a
```

Evaluation and reification

Evaluation is defined by induction on Exp a, eg

```
eval :: (a :: Ty) -> Exp a -> Sem a
eval (a => b => a) (K a b)
= (K a b, \x -> (App a (b => a) (K a b) (reify a x), \y -> x))
```

Reification is defined by induction on Ty, eg

```
reify :: (a :: Ty) -> Sem a -> Exp a
reify (a => b) (e,f) = e
```

It is tempting to "hide" the type information, but note that it is used in the computation.

A decision procedure for convertibility

Let e, e' :: Exp a.

- Prove that e conv e' implies eval a e = eval a e'!
- It follows that e conv e' implies nbe a e = nbe a e'
- Prove that e conv (nbe a e) using the glueing (reducibility) method!
- Hence e conv e' iff nbe a e = nbe a e'
- Hence e conv e' iff (nbe a e == nbe a e') = True

Formalizing syntax and semantics in Haskell

The Haskell type of untyped combinatory expressions:

```
data Exp = K \mid S \mid App Exp Exp
(We will later use e@e' for App e e'.)
```

Note that Haskell types contain programs which do not terminate at all or lazily compute infinite values, such as App K (App K ...))).

The untyped glueing model as a Haskell type:

```
data Sem = Gl Exp (Sem -> Sem)
```

A reflexive type!

The nbe program in Haskell

Application in the model

```
appsem :: Sem -> Sem -> Sem
appsem (Gl e f) x = f x
```

The nbe program computes the Böhm tree of a term

Theorem. (Devautour 2004) $nbe\ e$ computes the combinatory Böhm tree of e. In particular, $nbe\ e$ computes the normal form of e iff it exists.

Proof. Following categorical method of Pitts 1993 and Filinski and Rohde 2004 using "invariant relations".

What is the combinatory Böhm tree of an expression? An *operational* notion: the Böhm tree is defined by repeatedly applying the *inductively defined* head normal form relation.

Note that nbe gives a denotational (computational) definition of the Böhm tree of e, so the theorem is to relate an operational (inductive) and a denotational (computational) definition.

Combinatory head normal form

Inductive definition of relation between terms in Exp

Formal neighbourhoods

To formalize the notion of combinatory Böhm tree we make use of Martin-Löf 1983 - the domain interpretation of type theory. Notions of

- ullet formal neighbourhood = finite approximation of the canonical form of a program (lazily evaluated); in particular Δ means no information about the canonical form of a program.
- The denotation of a program is the set of all formal neighbourhoods approximating its canonical form (applied repeatedly to its parts). Two possibilities: operational neighbourhoods and denotational neighbourhoods. Different because of the full abstraction problem, Plotkin 1976.

Expression neighbourhoods

An expression neighbourhood U is a finite approximation of the canonical form of a program of type Exp. Operationally, U is the set of all programs of type Exp which approximate the canonical form of the program. Notions of $inclusion \supseteq and intersection \cap of neighbourhoods.$

A grammar for expression neighbourhoods:

$$U := \Delta \mid \mathtt{K} \mid \mathtt{S} \mid U@U$$

A grammar for the sublanguage of normal form neighbourhoods:

$$U ::= \Delta \mid \mathtt{K} \mid \mathtt{K}@U \mid \mathtt{S} \mid \mathtt{S}@U \mid (\mathtt{S}@U)@U$$

Combinatory Böhm trees

A (combinatory) Böhm tree is a *filter* of normal form neighbourhoods. A filter is a set α of neighbourhoods satisfying:

- $U \in \alpha$ and $U' \supseteq U$ implies $U' \in \alpha$;
- $\Delta \in \alpha$;
- $U, U' \in \alpha$ implies $U \cap U' \in \alpha$.

Approximations of head normal forms

$$e \rhd^{\operatorname{Bt}} \Delta$$

$$\frac{e \Rightarrow^{\operatorname{h}} \mathsf{K}}{e \rhd^{\operatorname{Bt}} \mathsf{K}} \qquad \frac{e \Rightarrow^{\operatorname{h}} \mathsf{K}@e' \qquad e' \rhd^{\operatorname{Bt}} U'}{e \rhd^{\operatorname{Bt}} \mathsf{K}@U'}$$

$$\frac{e \Rightarrow^{\operatorname{h}} \mathsf{S}}{e \rhd^{\operatorname{Bt}} \mathsf{S}} \qquad \frac{e \Rightarrow^{\operatorname{h}} \mathsf{S}@e' \qquad e' \rhd^{\operatorname{Bt}} U'}{e \rhd^{\operatorname{Bt}} \mathsf{S}@U'}$$

$$\frac{e \Rightarrow^{\operatorname{h}} (\mathsf{S}@e')@e'' \qquad e' \rhd^{\operatorname{Bt}} U' \qquad e'' \rhd^{\operatorname{Bt}} U''}{e \rhd^{\operatorname{Bt}} (\mathsf{S}@U')@U''}$$

The Böhm tree of a combinatory expression

The Böhm tree of an expression e in Exp is the set

$$\{U \mid e \rhd^{\mathrm{Bt}} U\}$$

One can prove that it is a filter of normal form neighbourhoods, by induction on the definition of $\triangleright^{\mathrm{Bt}}$. (Note that the head normal form of an expression is unique.)

One can also prove that two convertible expressions have the same Böhm tree.

Combinatory conversion

Conversion is inductively generated by the rules of reflexivity, symmetry, and transitivity, together with:

$$(\mathtt{K}@e)@e' \mathtt{conv}\ e$$

$$\frac{e_0 \hspace{0.1cm} \mathtt{conv} \hspace{0.1cm} e_1 \hspace{0.1cm} e_0' \hspace{0.1cm} \mathtt{conv} \hspace{0.1cm} e_1'}{e_0@e_0' \hspace{0.1cm} \mathtt{conv} \hspace{0.1cm} e_1@e_1'}$$

Operational neighbourhoods of nbe

 $\mathtt{nbe}\,e \in U$ iff U is a finite approximation of the canonical form of $\mathtt{nbe}\,e$ when evaluated lazily. For example,

- $nbe e \in \Delta$, for all e
- $nbe K \in K$
- $nbe(Y@K) \in K@\Delta$
- $nbe(Y@K) \in K@(K@\Delta)$, etc

Y is a fixed point combinator.

Definition of the operational neighbourhood relation

Is this operational semantics or denotational semantics?

The definition of the operational neighbourhood relation follows the computation rules (operational semantics) of a program. So to define the relation $\mathtt{nbe}\,e \in U$, we must first define the relations $\mathtt{eval}\,e \in V$ and $\mathtt{reify}\,x \in U$. Here V is a neighbourhood of the reflexive type

We need to consider function neighbourhoods.

Function neighbourhoods

If $(U_i)_{i < n}$ and $(V_i)_{i < n}$ are families of neighbourhoods of types σ and τ , respectively, then

$$\bigcap_{i < n} [U_i; V_i]$$

is a function neighbourhood of the type $\sigma \to \tau$. We write $\Delta = \bigcap_{i<0} [U_i; V_i]$.

If f is a program of type $\sigma \to \tau$, then

$$f \in \bigcap_{i < n} [U_i; V_i]$$

iff for all i < n, $a \in U_i$ implies $f a \in V_i$. In addition to inclusion and meet we consider *consistency (inhabitedness)* of function neighbourhoods.

Neighbourhoods in Sem

- ullet Δ is a Sem-neighbourhood.
- If U is an Exp-neighbourhood and $(V_i)_{i < n}$ and $(W_i)_{i < n}$ are families of Sem-neighbourhoods, then

$$\operatorname{Gl} U \left(\bigcap_{i < n} [V_i; W_i] \right)$$

is a Sem-neighbourhood.

Operational neighbourhoods of eval e

eval $e \in \Delta$, as always.

For e = K we have the equation

$$\mathtt{eval}\,\mathtt{K} = \mathtt{Gl}\,\mathtt{K}\,(\lambda x.\mathtt{Gl}\,(\mathtt{K}@(\mathtt{reify}\,x))\,(\lambda y.x))$$

Hence,

$$\mathtt{eval}\,\mathtt{K}\in\mathtt{Gl}\,U\,(\bigcap_i[V_i;W_i])$$

iff $\mathbf{K} \in U$ and for all i and for all $x \in V_i$, we have $\mathrm{Gl}\left(\mathrm{K}@(\mathrm{reify}\,x)\right)(\lambda y.x) \in W_i$. This is the case iff either $W_i = \Delta$ or $W_i = \mathrm{Gl}\,U_i\left(\bigcap_j[V_{ij};W_{ij}]\right)$ and $\mathrm{K}@(\mathrm{reify}\,x) \in U_i$ and $x \in W_{ij}$ for all j.

Operational neighbourhoods of eval (e@e')

Recursion equations

$$\begin{array}{lll} \operatorname{eval}\left(e@e'\right) & = & \operatorname{appsem}\left(\operatorname{eval}e\right)\left(\operatorname{eval}e'\right) \\ \\ \operatorname{appsem}\left(\operatorname{Gl}ef\right)x & = & fx \end{array}$$

One can prove that $\operatorname{eval}(e@e') \in W$ iff either $W = \Delta$ or there exist U and V such that $\operatorname{eval} e \in \operatorname{Gl} U[V;W]$ and $\operatorname{eval} e' \in V$

Operational neighbourhoods of nbe

Equations:

$$\begin{array}{rcl} \operatorname{nbe} e & = & \operatorname{reify} \left(\operatorname{eval} e \right) \\ \operatorname{reify} \left(\operatorname{Gl} e f \right) & = & e \end{array}$$

Thus, $\mathtt{nbe}\,e\in U$ iff $U=\Delta$ or $\mathtt{eval}\,e\in\mathtt{Gl}\,U\,\Delta$.

Nbe maps convertible terms into equal Böhm trees

We can prove that $nbe e \in U$ implies that U is a normal form neighbourhood, and hence the denotation of nbe e is a Böhm tree.

We can also prove that if e conv e' and ${\tt nbe}\,e \in U$, then ${\tt nbe}\,e' \in U$, that is, ${\tt nbe}$ maps convertible terms to equal Böhm trees (cf "uniqueness of normal forms"). As in the typed case this follows by induction on the definition of convertibility, using a lemma that eval maps convertible terms into equal denotations.

Completeness of nbe

Any finite part of the Böhm tree is returned:

$$e
ightharpoonup^{\operatorname{Bt}} U ext{ implies } \operatorname{nbe} e \in U$$

The proof is by induction on the derivation of $e \triangleright^{\text{Bt}} U$.

Consider eg the case when $e >^{\mathrm{Bt}} \mathrm{K}$ comes from $e \Rightarrow^{\mathrm{h}} \mathrm{K}$. Since $\mathrm{nbe}\,\mathrm{K} \in \mathrm{K}$ and convertible terms have equal Böhm trees it follows that $\mathrm{nbe}\,e \in \mathrm{K}$.

Soundness of nbe

Only approximations of the Böhm tree are returned by nbe:

$$\mathsf{nbe}\,e \in U \;\; \mathsf{implies} \;\; e \, \triangleright^{\mathsf{Bt}} \, U$$

We need a lemma (cf reducibility/glueing method)

$$eval e \in V \text{ implies } e \rhd^{Gl} V$$

where $e
ightharpoonup^{\mathrm{Gl}} V$ iff either $V = \Delta$ or $V = \mathrm{Gl}\,U\left(\bigcap_i[V_i;W_i]\right)$ where $e
ightharpoonup^{\mathrm{Bt}} U$ and for all i and e', $e'
ightharpoonup^{\mathrm{Gl}} V_i$ implies $e@e'
ightharpoonup^{\mathrm{Gl}} W_i$.

This lemma is proved by induction on e. Soundness then follows immediately.

Definition of $e \triangleright^{Gl} U$

The property on the previous page is not directly acceptable as an inductive definition because of negative occurrence of $e \triangleright^{Gl} U$.

Instead we define it as the union of an infinite sequence of approximations: $e \triangleright^{Gl} V$ iff there exists an n such that $e \triangleright^{Gl}_n V$, where

$$e \triangleright_0^{\mathrm{Gl}} V \text{ iff } V = \Delta.$$

 $e \triangleright_{n+1}^{\mathrm{Gl}} V$ iff either $V = \Delta$ or $V = \mathrm{Gl}\,U\left(\bigcap_i[V_i;W_i]\right)$ where $e \triangleright^{\mathrm{Bt}} U$ and for all i and e', $e' \triangleright_n^{\mathrm{Gl}} V_i$ implies $e@e' \triangleright_n^{\mathrm{Gl}} W_i$.

The set $\{V | e \triangleright^{\mathrm{Gl}} V\}$ is a filter of Sem-neighbourhoods, and is invariant under convertibility.

Case K: eval $K \in V$ implies $K \triangleright^{Gl} V$

Proof by analyzing the neighbourhoods of eval K.

Case $V = \Delta$ is immediate.

Case $V = \operatorname{Gl} U (\bigcap_i [V_i; W_i])$, where $K \in U$ and for all i and $x \in V_i$, we have $\operatorname{Gl} (K@(\operatorname{reify} x)) (\lambda y.x) \in W_i$. We need to prove two things:

- $K \triangleright^{Bt} U$. This follows from $K \in U$.
- For all i, $e'
 ightharpoonup^{Gl} V_i$ implies $K@e'
 ightharpoonup^{Gl} W_i$.

Case $W_i = \Delta$, and we are done.

Case $W_i = \operatorname{Gl} U_i (\bigcap_j [V_{ij}; W_{ij}])$, where $\operatorname{KQ}(\operatorname{reify} x) \in U_i$ and $x \in W_{ij}$ for all j. We need to show two things:

- $\mathbb{K}@e' \triangleright^{\operatorname{Bt}} U_i$. Case $V_i = \Delta$. It follows that $U_i \supseteq \mathbb{K}@\Delta$ and hence $\mathbb{K}@e' \triangleright^{\operatorname{Bt}} U_i$. Case $V_i = \operatorname{Gl} U_i' (\bigcap_j [V_{ij}'; W_{ij}'])$. It follows that $U_i \supseteq \mathbb{K}@U_i'$. We know $e' \triangleright^{\operatorname{Bt}} U_i'$ and hence $\mathbb{K}@e' \triangleright^{\operatorname{Bt}} U_i$.
- For all j, $e''
 ightharpoonup^{\mathrm{Gl}} V_{ij}$ implies $(K@e')@e''
 ightharpoonup^{\mathrm{Gl}} W_{ij}$. Because of closure of convertibility it suffices to prove $e'
 ightharpoonup^{\mathrm{Gl}} W_{ij}$. But this follows from $W_{ij} \supseteq V_i$ and upward closure of $ightharpoonup^{\mathrm{Gl}}$ in the right argument, since we know $e'
 ightharpoonup^{\mathrm{Gl}} V_i$.

Case e@e':

Prove that $eval(e@e') \in W$ implies $(e@e') \triangleright^{Gl} W$ from the induction hypotheses that $eval(e \in W)$ implies $eval(e \in W)$ and $eval(e \in W)$ implies $e' \triangleright^{Gl} W'$.

Either $W = \Delta$ and we are done.

Or there exist U and V such that $\operatorname{eval} e \in \operatorname{Gl} U[V;W]$ and $\operatorname{eval} e' \in V$. We can now use the induction hypotheses to conclude that $e \triangleright^{\operatorname{Gl}} \operatorname{Gl} U[V;W]$ and $e' \triangleright^{\operatorname{Gl}} V$. Hence it follows by the second property of $\triangleright^{\operatorname{Gl}}$ that $(e@e') \triangleright^{\operatorname{Gl}} W$.

Conclusion

The proof could presumably be carried out in a similar way using denotational neighbourhoods. Can we isolate the abstract properties of function neighbourhoods which are needed for the proof?