Universes for Inductive and Inductive-Recursive Definitions in Martin-Löf Type Theory

Peter Dybjer Chalmers Tekniska Högskola

Stockholm-Uppsala Logic Seminar 3 September 2003

References

- A finite axiomatization of inductive-recursive definitions (with Anton Setzer). Pages 129 146 in Proceedings of TLCA 1999, LNCS 1581.
- Induction-recursion and initial algebras (with Anton Setzer), 2001. To appear in Annals of Pure and Applied Logic.
- Indexed induction-recursion (with Anton Setzer). Pages 93-113 in Proof Theory in Computer Science International Seminar, Dagstuhl Castle, Germany, October 7-12, 2001, LNCS 2183.
- Universes for generic programs and proofs in dependent type theory (with Marcin Benke and Patrik Jansson), 2003. Accepted for publication in Nordic Journal of Computing.

Inductive definitions – examples

- the rules for generating well-formed formulas of a logic
- the axioms and inference rules generating theorems of the logic
- the productions of a context-free grammar
- the computation rules for a programming language
- the typing rules for a programming language
- the natural numbers generated by 0 and successor

Recursive datatypes

- lists generated by Nil and Cons
- binary trees generated by EmptyTree and MkTree
- algebraic types in general: parameterized, many sorted term algebras
- infinitely branching trees; Brouwer ordinals; etc.
- inductive dependent types (vectors of a certain length, trees of a certain height, balanced trees, etc)
- inductive-recursive defintions (freshlists, etc)

Recursive types in functional languages

Note that recursive types in functional languages (ML, Haskell) include reflexive datatypes and nested datatypes which have more complex semantics.

Inductive definitions and foundations

Classically, inductive definitions are understood as least fixed points of monotone operators (the Knaster-Tarski theorem).

P. Aczel (An introduction to inductive definitions, Handbook of Mathematical Logic, 1976, pp 779 and 780.):

An alternative approach is to take induction as a primitive notion, not needing justification in terms of other methods. ... It would be interesting to formulate a coherent conceptual framework that made induction the principal notion.

Inductive definitions and the notion of set in Martin-Löf type theory

Martin-Löf type theory is such a coherent conceptual framework. Sets are inductively defined: "to know a set is to know how its elements are *formed*" this is to know its introduction rules, i e, the rules for inductively generating its members.

Martin-Löf type theory and inductive definitions

- Basic set formers: $\Pi, \Sigma, +, I, N, N_n, W, U_n$
- Adding new set formers with their rules when there is a need for them: lists, binary trees, the well-founded part of a relation,
- Exactly what is a good inductive definition? Schemata for inductive definitions, indexed inductive definitions, inductive-recursive definitions
- Universes for inductive definitions, indexed inductive definitions, inductive-recursive definitions

Plan

- 1. A simple case: a universe for one-sorted term algebras
- 2. Generic programming
- 3. A universe for generalized inductive definitions
- 4. Universes for indexed inductive definitions: general and restricted versions
- 5. Universes for inductive-recursive definitions; induction-recursions and algebras in slice categories
- 6. Embeddings and equivalences between various theories

One-sorted term algebras

A one-sorted signature is a finite list of natural numbers, representing the arities of the operations of the signature. Examples are

- the empty type with $\Sigma = [\,]$
- ullet the natural numbers with $\Sigma=[0,1]$,
- ullet the Booleans with $\Sigma = [0,0]$,
- lists of Booleans with $\Sigma = [0, 1, 1]$,
- ullet binary trees without information in the nodes with $\Sigma=[0,2]$

Signature = universe for one-sorted term algebras

We introduce the type of signatures

and the decoding function

$$T: Sig \rightarrow Set$$

which maps a signature Σ to (the carrier of) its term algebra $T_{\Sigma}: Set$.

The initial Σ -algebra diagram

Pattern functor:

$$F_{[n_1,\dots,n_m]}X = X^{n_1} + \dots + X^{n_m}$$

A diagram for T_{Σ} -elimination

$$e(y, z) = (\operatorname{Intro}_{\Sigma} y, dy z)$$

Notation

Dependent function types are written

$$(x:A) \to B$$

Dependent product types are written

$$(x:A)\times B$$

Auxiliary constructions

$$F_{\Sigma}^{\mathrm{IH}}: (X:\mathrm{Set}) \to (X \to \mathrm{Set}) \to F_{\Sigma} X \to \mathrm{Set}$$

 $F_{[n_1,\ldots,n_m]}^{\mathrm{IH}} X C (\mathrm{In}_i (x_1,\ldots,x_{n_i})) = C x_1 \times \cdots \times C x_{n_i}$

and

$$F_{\Sigma}^{\text{map}} : (X : \text{Set}) \to (C : X \to \text{Set})$$

$$\to ((x : X) \to C x) \to (y : F_{\Sigma} X) \to F_{\Sigma}^{\text{IH}} X C y$$

$$F_{[n_1, \dots, n_m]}^{\text{map}} X C h (\text{In}_i (x_1, \dots, x_{n_i})) = (h x_1, \dots, h x_{n_i})$$

Generic rules for T_{Σ}

$$T_{\Sigma}$$
 : Set

Intro_{$$\Sigma$$} : $F_{\Sigma}T_{\Sigma} \to T_{\Sigma}$

$$\operatorname{rec}_{\Sigma} : (C : \operatorname{T}_{\Sigma} \to \operatorname{Set}) \to ((y : \operatorname{F}_{\Sigma} \operatorname{T}_{\Sigma}) \to \operatorname{F}_{\Sigma}^{\operatorname{IH}} C \, y \to C \, (\operatorname{Intro}_{\Sigma} y))$$

 $\to (x : \operatorname{T}_{\Sigma}) \to C \, x$

Equality rule

$$\operatorname{rec}_{\Sigma} C d \left(\operatorname{Intro}_{\Sigma} y \right) = d y \left(\operatorname{F}_{\Sigma}^{\operatorname{map}} C \left(\operatorname{rec}_{\Sigma} C d \right) y \right)$$

Large elimination

We may add a large version of this elimination too, where ${\cal C}$ can be an arbitrary family of types, that is,

$$C[x]$$
 Type $(x: T_{\Sigma})$

not just a family of sets.

Martin-Löf type theory with one-sorted term algebras

Start with logical framework (including at least dependent function and product types, and $\mathbf{0}, \mathbf{1}, \mathbf{2}$). Add

arities formation, introduction, (and elimination and equality) rules for N

signatures formation, introduction (and elimination and equality) rules for Sig, i.e., for lists of natural numbers

pattern functors defining rules for object and arrow parts of the functor F_{Σ} , and the auxiliary F_{Σ}^{IH} and F_{Σ}^{map}

term algebras formation, introduction, elimination, and equality rules for T_{Σ} with constants $Intro_{\Sigma}$ and rec_{Σ} .

Generic programming

A generic size function.

A special case of the initial algebra diagram. Let $\Sigma = [n_1, \dots, n_m]$.

Generic recursion step

The recusion step is defined by induction on the signature:

$$\operatorname{sizestep}_{n::\Sigma} (\operatorname{Inl} xs) = 1 + \operatorname{sum}_n xs$$
$$\operatorname{sizestep}_{n::\Sigma} (\operatorname{Inr} y) = \operatorname{sizestep}_{\Sigma} y$$

where

$$\operatorname{sum}:(n:\operatorname{N})\to\operatorname{N}^n\to\operatorname{N}$$

is a function summing the elements of a vector of natural numbers.

Generic equality

$$\begin{array}{c|c}
T_{\Sigma}^{n_{1}} + \cdots + T_{\Sigma}^{n_{m}} & \xrightarrow{\operatorname{Intro}_{\Sigma}} T_{\Sigma} \\
eq_{\Sigma}^{n_{1}} + \cdots + eq_{\Sigma}^{n_{m}} & & eq_{\Sigma}
\end{array}$$

$$(T_{\Sigma} \to \operatorname{Bool})^{n_{1}} + \cdots + (T_{\Sigma} \to \operatorname{Bool})^{n_{m}} \xrightarrow{\operatorname{eqstep}_{\Sigma}} T_{\Sigma} \to \operatorname{Bool}$$

Generic recursion step

$$\operatorname{eqstep}_{\Sigma}\left(\operatorname{In}_{i}\left(p_{1},\ldots,p_{n_{i}}\right)\right)\left(\operatorname{Intro}\left(\operatorname{In}_{i}\left(y_{1},\ldots,y_{n_{i}}\right)\right)\right)=p_{1}\,y_{1}\,\wedge\,\cdots\,\wedge\,p_{n_{i}}y_{n_{i}}$$
 and for $i\neq j$

$$\operatorname{eqstep}_{\Sigma}\left(\operatorname{In}_{i}\left(p_{1},\ldots,p_{n_{i}}\right)\right)\left(\operatorname{Intro}\left(\operatorname{In}_{j}\left(y_{1},\ldots,y_{n_{j}}\right)\right)\right)=\operatorname{\texttt{False}}$$

can be defined by induction on the signature.

There are also generic proofs of reflexivity and substitutivity of equality.

Generalizing the notion of a signature

iterated inductive definitions

$$Cons: N \to ListN \to ListN$$

the first argument is a side-condition.

generalized inductive definitions

$$Sup: (N \to \mathcal{O}) \to \mathcal{O}$$

constructors with dependent types

$$\operatorname{Sup}:(x:A)\to(B\,x\to\operatorname{W})\to\operatorname{W}$$

Parameterized inductive definitions

are important for generic programming, but not for formalizing inductive definitions in Martin-Löf type theory, where parameterization is taken care of by the logical framework.

Signatures for generalized inductive definitions

$$\epsilon$$
 : Sig

$$\sigma : (A : Set) \to (A \to Sig) \to Sig$$

$$\rho : \operatorname{Set} \to \operatorname{Sig} \to \operatorname{Sig}$$

$$F_{\epsilon} X = \mathbf{1}$$

$$F_{\sigma A \Sigma} X = (x : A) \times F_{\Sigma x} X$$

$$F_{\rho A \Sigma} X = (A \to X) \times F_{\Sigma} X$$

Indexed inductive definitions; two versions

general à la "Inductive Families" (PD) and "Calculus of Inductive Constructions" (Coquand and Paulin); based on a Curry-Howard interpretation of Martin-Löf's "Intuitionistic Theory of Iterated Inductive Definitions"

restricted à la Half and the original implementation of Agda (Coquand); Haskell-like syntax and simplified pattern matching with dependent types; also simpler set-theoretic (least fixed point of monotone operator) and category-theoretic (initial algebra) semantics.

Two indexed inductive definitions of Even

General:

C0 : Even 0

C1 : $(m : N) \rightarrow \text{Even } m \rightarrow \text{Even } (\text{Succ } (\text{Succ } m))$

Restricted:

 $C0 : (n : N) \rightarrow (n = 0) \rightarrow Even n$

C1 : $(n : N) \rightarrow (m : N) \rightarrow (n = Succ (Succ m)) \rightarrow Even m \rightarrow Even n$

... in Agda syntax:

data Even $n = \text{C0}(n = 0) \mid \text{C1}(m : \text{N})(n = \text{Succ}(\text{Succ} m)) \text{ (Even } m)$

Inductively defined equality

Only makes sense as general indexed inductive defintion:

$$\operatorname{Refl}_A:(a:A)\to\operatorname{I} A\,a\,a$$

Restricted ...

$$\operatorname{Refl}_A:(a,b:A)\to(a=_Ab)\to\operatorname{I} Aab$$

Agda's original approach is similar to Martin-Löf 1972: no general equality proposition; equality has to be defined for each set separately. Eg equality of natural numbers is defined by N-elimination.

The *I*-indexed initial algebra diagram

A diagram in the category of I-indexed families of sets:

A diagram for the elimination rule – as for the non-indexed case.

Signatures for restricted I-indexed inductive definitions

```
\epsilon : Sig I
```

$$\sigma : (A : \operatorname{Set}) \to (A \to \operatorname{Sig} I) \to \operatorname{Sig} I$$

$$\rho : (A : \operatorname{Set}) \to (A \to I) \to \operatorname{Sig} I \to \operatorname{Sig} I$$

Pattern functor for restricted I-indexed inductive definitions

$$F_{\Sigma} X i = G_{\Sigma i} X$$

where

$$G_{\epsilon} X = \mathbf{1}$$

$$G_{\sigma A \Sigma} X = (x : A) \times G_{\Sigma x} X$$

$$G_{\rho A \iota \Sigma} X = ((x : A) \to X (\iota x)) \times G_{\Sigma} X$$

Generic rules for restricted *I*-indexed inductive definitions

$$\begin{split} \mathbf{T}_{\Sigma} &: I \to \operatorname{Set} \\ \operatorname{Intro}_{\Sigma} &: (i:I) \to \operatorname{G}_{\Sigma\,i} \operatorname{T}_{\Sigma} \to \operatorname{T}_{\Sigma} i \\ \operatorname{rec}_{\Sigma} &: (C:(i:I) \to \operatorname{T}_{\Sigma} i \to \operatorname{Set}) \\ & \to ((i:I) \to (y:\operatorname{G}_{\Sigma\,i} \operatorname{T}_{\Sigma}) \to \operatorname{G}^{\operatorname{IH}}_{\Sigma\,i} \operatorname{T}_{\Sigma} C \, y \to C \, (\iota_{\Sigma} \operatorname{T}_{\Sigma} y) \, (\operatorname{Intro}_{\Sigma} i \, y)) \\ & \to (i:I) \to (x:\operatorname{T}_{\Sigma} i) \to C \, i \, x \end{split}$$

Equality rule

$$\operatorname{rec}_{\Sigma} C di (\operatorname{Intro}_{\Sigma} i y) = di y (G_{\Sigma i}^{\operatorname{map}} T_{\Sigma} C (\operatorname{rec}_{\Sigma} C d) y)$$

Example: signature for accessibility

$$Acc : I \rightarrow Set$$

AccIntro :
$$(i:I) \rightarrow ((j:I) \rightarrow (j < i) \rightarrow \mathrm{Acc}\, j) \rightarrow \mathrm{Acc}\, i$$

Signature (arity). Note that we get an uncurried version of the premise.

$$\Sigma i = \rho((j:I) \times (j < i)) \operatorname{fst} \epsilon$$

AccIntro :
$$(i:I) \rightarrow ((k:(j:I) \times (j < i)) \rightarrow \mathrm{Acc}\,(\mathrm{fst}\,k)) \rightarrow \mathrm{Acc}\,i$$

Example: signature for even numbers

Write $\sigma x : A. \Sigma$ for $\sigma A((x)\Sigma)$.

```
\Sigma n = \sigma i : \mathbf{2}. \alpha_i n
\alpha_0 n = \sigma p : (n = 0). \epsilon
\alpha_1 n = \sigma m : \mathbf{N}. \sigma p : (n = \operatorname{Succ}(\operatorname{Succ} m)). \rho \mathbf{1} ((x)m) \epsilon
```

Generic rules for general I-indexed inductive definitions

$$\begin{split} \mathrm{T}_{\Sigma} &: I \to \mathrm{Set} \\ \mathrm{Intro}_{\Sigma} &: (y: \mathrm{G}_{\Sigma} \, \mathrm{T}_{\Sigma}) \to \mathrm{T}_{\Sigma} \, (\iota_{\Sigma} \, \mathrm{T}_{\Sigma} \, y) \\ \mathrm{rec}_{\Sigma} &: (C: (i:I) \to \mathrm{T}_{\Sigma} \, i \to \mathrm{Set}) \\ & \to ((y: \mathrm{G}_{\Sigma} \, \mathrm{T}_{\Sigma}) \to \mathrm{G}_{\Sigma}^{\mathrm{IH}} \, \mathrm{T}_{\Sigma} \, C \, y \to C \, (\iota_{\Sigma} \, \mathrm{T}_{\Sigma} \, y) \, (\mathrm{Intro}_{\Sigma} \, y)) \\ & \to (i:I) \to (x: \mathrm{T}_{\Sigma} \, i) \to C \, i \, x \end{split}$$

Equality rule

$$\operatorname{rec}_{\Sigma} C d (\iota_{\Sigma} \operatorname{T}_{\Sigma} y) (\operatorname{Intro}_{\Sigma} y) = d y (\operatorname{G}_{\Sigma}^{\operatorname{map}} \operatorname{T}_{\Sigma} C (\operatorname{rec}_{\Sigma} C d) y)$$

Signatures for general I-indexed inductive definitions

$$\epsilon : I \to \operatorname{Sig} I$$

$$\sigma : (A : \operatorname{Set}) \to (A \to \operatorname{Sig} I) \to \operatorname{Sig} I$$

$$\rho : (A : \operatorname{Set}) \to (A \to I) \to \operatorname{Sig} I \to \operatorname{Sig} I$$

$$\iota_{\epsilon i} = i$$

Example: signature for even numbers

Write $\sigma x : A. \Sigma$ for $\sigma A((x)\Sigma)$.

$$\Sigma = \sigma i : \mathbf{2}. \alpha_i$$

$$\alpha_0 = \epsilon 0$$

$$\alpha_1 = \sigma m : \mathbf{N}. \rho \mathbf{1} ((x)m) (\epsilon (\operatorname{Succ} (\operatorname{Succ} m)))$$

Inductive-recursive definitions

Usually, we *first* define a set T_{Σ} , *then* we define a function

$$h = \operatorname{rec}_{\Sigma} d : \operatorname{T}_{\Sigma} \to C$$

In an inductive-recursive definition the function h may appear in the introduction rules for T_{Σ} .

How can this arise? As an example, we will see how inductive-recursive definitions arise naturally when analyzing the termination of functions defined by nested recursion (Bove and Capretta 2001).

Quicksort in Haskell

A termination predicate for quicksort

A general indexed inductive definition!

Quicksort in Martin-Löf type theory

Quicksort can then be represented as a function of two arguments: a list and a proof that quicksort terminates for this list.

Termination of quicksort

```
Quicksort terminates for all lists:

qSortTerm :: (xs :: [Nat]) -> D xs

Hence
```

\xs -> qSort xs (qSortTerm xs) :: [Nat] -> [Nat]

McCarthy's 91-function in Haskell

The Bove-Capretta method is applicable to nested recursion as well.

Haskell code for McCarthy's 91-function:

McCarthy's 91-function in Martin-Löf type theory

We get a restricted indexed inductive-recursive definition of the termination predicate and the structural recursive version of f91:

The first universe à la Tarski

First example of an inductive-recusive definition (Martin-Löf, 1984):

$$T~:~U\to Set$$

A *simultaneous* inductive-recursive definition

$$\hat{\mathbf{N}}$$
 : \mathbf{U}

$$\hat{\mathbf{\Pi}}$$
 : $(a:\mathbf{U}) \rightarrow (b:\mathbf{T} a \rightarrow \mathbf{U}) \rightarrow \mathbf{U}$

$$\mathbf{T} \hat{\mathbf{N}} = \mathbf{N}$$

$$\mathbf{T} (\hat{\mathbf{\Pi}} a b) = \mathbf{\Pi} (\mathbf{T} a) (\mathbf{T} \circ b)$$

Constructive analogues of large cardinals

universe inaccessible cardinal

superuniverse hyperinaccessible cardinal

Mahlo universe Mahlo cardinal

all example of inductive-recursive definitions and instances of our general formulation.

Palmgren's higher-order universes are given by an indexed inductiverecursive definition.

A diagram for U and T

$$(a: \mathbf{U}) \times (\mathbf{T} \, a \to \mathbf{U}) \xrightarrow{\hat{\Pi}} \mathbf{U}$$

$$(a,b) \mapsto (\mathbf{T} \, a, \mathbf{T} \circ b) \Big| \mathbf{T}$$

$$(\mathbf{A}: \mathbf{Set}) \times (\mathbf{A} \to \mathbf{Set}) \xrightarrow{\Pi} \mathbf{Set}$$

This is not an initial algebra diagram, due to the simultaneous inductive-recursive nature of U and T. But it is close to it!

Induction-recursion as a reflection principle

Inductive definitions are special cases of inductive-recursive ones, where $H_{C,\Sigma} X f$ does not depend on f. In this case the above diagram degenerates to the usual initial algebra diagram.

Signatures for inductive-recursive definitions

```
\epsilon: \operatorname{Sig}_{C}
\sigma: (A:\operatorname{Set}) \to (A \to \operatorname{Sig}_{C}) \to \operatorname{Sig}_{C}
\rho: (A:\operatorname{Set}) \to ((A \to C) \to \operatorname{Sig}_{C}) \to \operatorname{Sig}_{C}
```

$$\mathbf{H}_{C,\epsilon}^{\mathrm{ar}} = \mathbf{1}$$
 $\mathbf{H}_{C,\sigma A \Sigma}^{\mathrm{ar}} = (x:A) \times \mathbf{H}_{C,\Sigma x}^{\mathrm{ar}}$
 $\mathbf{H}_{C,\rho A \Sigma}^{\mathrm{ar}} = (f:A \to C) \times \mathbf{H}_{C,\Sigma f}^{\mathrm{ar}}$

$$H_{\epsilon} X h = \mathbf{1}$$

$$H_{\sigma A \Sigma} X h = (x : A) \times F_{\Sigma x} X h$$

$$H_{\rho A \Sigma} X h = (f : A \to X) \times F_{\Sigma (h \circ f)}$$

Example: a signature (arity) for a universe closed under Π

$$\Sigma_{\Pi} = \rho \mathbf{1} ((A)\rho (A 0) ((B)\epsilon)) : \operatorname{Sig}_{\operatorname{Set}}$$

$$\begin{aligned} \mathrm{H}^{\mathrm{ar}}_{\mathrm{Set},\Sigma_\Pi} &= & (A:\mathbf{1} \to \mathrm{Set}) \times (((A\,0) \to \mathrm{Set}) \times \mathbf{1}) \\ \mathrm{H}_{\mathrm{Set},\Sigma_\Pi,\Pi} \, U \, T &= & (a:\mathbf{1} \to U) \times ((T\,(a\,0) \to U) \times \mathbf{1}) \end{aligned}$$

Generic rules for inductive-recursive definitions

Let C be a type, $\Sigma : \operatorname{Sig}_C$, and $d : \operatorname{H}^{\operatorname{ar}}_{C,\operatorname{Sig}} \to C$.

 $T_{C,\Sigma,d}$: Set

 $iter_{C,\Sigma,d} : T_{C,\Sigma,d} \to C$

 $\operatorname{Intro}_{C,\Sigma,d} : \operatorname{H}_{C,\Sigma} \operatorname{T}_{C,\Sigma,d} \operatorname{iter}_{C,\Sigma,d} \to \operatorname{T}_{C,\Sigma,d}$

See the diagram for the equality rule. There is also an elimination rule (à la universe elimination) with its own equality rule.

Set-theoretic semantics

The rules of Martin-Löf type theory (including inductive-recursive definitions) are valid under a "naive" interpretation of a constructive concept as the corresponding classical concept with the same name.

Set is interpreted as (inductively defined) set; element as element; equal elements as equal elements; function as function (graph); Π as Π ; etc.

We get the semantics of (the recursive part of) an inductive-recursive definition by iterating a monotone operator to a fixed point. The only difficulty is to prove that such a fixed point exists. This can be done by using the axiom that Mahlo cardinals exist.

An inaccessible cardinal M is Mahlo if every normal function $f:M\to M$ has an inaccessible fixed point

Inductive-recursive definitions as initial algebras in slice categories

Draw a commuting triangle instead of a square.

This is a $H_{C,\Sigma}$ -algebra in the slice category \mathbf{Type}/C .

Reflection principle vs initial algebras

See P. Dybjer and A. Setzer "Induction-recursion and initial algebras", for details.

Theorem. Induction-recursion can be equivalently formalized as a reflection principle and as the existence of initial algebras in slice categories. The theories $\mathbf{IRD}^{\mathrm{refl}}_{\mathrm{ext}}$, $\mathbf{IRD}^{\mathrm{elim}}_{\mathrm{ext}}$, and $\mathbf{IRD}^{\mathrm{init}}_{\mathrm{ext}}$ can all be interpreted in each other.

Metatheorems

See P. Dybjer and A. Setzer "Indexed induction-recursion", 2002 (long version, submitted for publication) for details.

Theorem. General and restricted indexed inductive-recursive definitions are equivalent. The theories $\mathbf{IIRD^g}_{ext}$ and $\mathbf{IIRD^r}_{ext}$ can be interpreted in each other.

Theorem. Indexed inductive-recursive definitions can be interpreted as non-indexed inductive-recursive definitions. The theories $\mathbf{IIRD^r_{ext}}, \mathbf{IIRD^g_{ext}}$ and $\mathbf{IRD_{ext}}$ can be interpreted in each other.

Theorem. Small indexed inductive-recursive definitions can be interpreted as indexed inductive definitions. The theory $\mathbf{IIRD_{ext}}$ where C is a family of sets can be interpreted in the theory $\mathbf{IID_{ext}}$.

Accessibility as a fibred set

Replace

$$Acc: I \to Set$$

by the fibred set

so that $\operatorname{Acc} i$ is represented by $(x : \operatorname{AccTot}) \times (\operatorname{proj} x =_I i)$.

Accessibility as an inductive-recursive definition

$$\begin{array}{lll} \operatorname{AccIntro} & : & (i:I) \\ & \to (p:(j:I) \to (j < i) \to \operatorname{AccTot}) \\ & \to ((j:I) \to (j < i) \to (\operatorname{proj}\,(p\,j\,r) =_I j)) \\ & \to \operatorname{AccTot} \end{array}$$
 proj (AccIntro $i\,p\,q) & = & i$

Cf indexed inductive definition:

AccIntro :
$$(i:I) \rightarrow ((j:I) \rightarrow (j < i) \rightarrow \operatorname{Acc} j) \rightarrow \operatorname{Acc} i$$