Universes for Inductive and Inductive-Recursive
Definitions in Martin-Lof Type Theory

Peter Dybjer
Chalmers Tekniska Hogskola

Stockholm-Uppsala Logic Seminar
3 September 2003

References

A finite axiomatization of inductive-recursive definitions (with Anton
Setzer). Pages 129 - 146 in Proceedings of TLCA 1999, LNCS 1581.

Induction-recursion and initial algebras (with Anton Setzer), 2001. To
appear in Annals of Pure and Applied Logic.

Indexed induction-recursion (with Anton Setzer). Pages 93-113 in Proof
Theory in Computer Science International Seminar, Dagstuhl Castle,
Germany, October 7-12, 2001, LNCS 2183.

Universes for generic programs and proofs in dependent type theory (with
Marcin Benke and Patrik Jansson), 2003. Accepted for publication in
Nordic Journal of Computing.

Inductive definitions — examples

the rules for generating well-formed formulas of a logic

the axioms and inference rules generating theorems of the logic
the productions of a context-free grammar

the computation rules for a programming language

the typing rules for a programming language

the natural numbers generated by 0 and successor

Recursive datatypes

lists generated by Nil and Cons

binary trees generated by EmptyTree and MkTree

algebraic types in general: parameterized, many sorted term algebras
infinitely branching trees; Brouwer ordinals; etc.

inductive dependent types (vectors of a certain length, trees of a certain
height, balanced trees, etc)

inductive-recursive defintions (freshlists, etc)

Recursive types in functional languages

Note that recursive types in functional languages (ML, Haskell) in-
clude reflexive datatypes and nested datatypes which have more complex
semantics.

Inductive definitions and foundations

Classically, inductive definitions are understood as least fixed points of
monotone operators (the Knaster-Tarski theorem).

P. Aczel (An introduction to inductive definitions, Handbook of Mathe-
matical Logic, 1976, pp 779 and 780.):

An alternative approach is to take induction as a primitive notion,
not needing justification in terms of other methods. ... It would be
interesting to formulate a coherent conceptual framework that made
induction the principal notion.

Inductive definitions and the notion of set
in Martin-Lof type theory

Martin-Lof type theory is such a coherent conceptual framework. Sets
are inductively defined: “to know a set is to know how its elements are
formed’ this is to know its introduction rules, i e, the rules for inductively
generating its members.

Martin-Lof type theory and inductive definitions

Basic set formers: 11,3, 4+,I,N,N,,, W, U,

Adding new set formers with their rules when there is a need for them:
lists, binary trees, the well-founded part of a relation,

Exactly what is a good inductive definition? Schemata for inductive
definitions, indexed inductive definitions, inductive-recursive definitions

Universes for inductive definitions, indexed inductive definitions,
inductive-recursive definitions

Plan

. A simple case: a universe for one-sorted term algebras

. Generic programming

. A universe for generalized inductive definitions

. Universes for indexed inductive definitions: general and restricted versions

. Universes for inductive-recursive definitions: induction-recursions and
algebras in slice categories

. Embeddings and equivalences between various theories

One-sorted term algebras

A one-sorted signature is a finite list of natural numbers, representing
the arities of the operations of the signature. Examples are

e the empty type with ¥ =[]

e the natural numbers with ¥ = [0, 1],
e the Booleans with ¥ = [0, 0],

e lists of Booleans with ¥ = [0,1,1],

e binary trees without information in the nodes with ¥ = [0, 2]

10

Signature = universe for one-sorted term algebras

We introduce the type of signatures
Sig : Type
and the decoding function
T : Sig — Set

which maps a signature X to (the carrier of) its term algebra T'y; : Set.

11

The initial X-algebra diagram

Introz
FETE TZ
Fg(itel‘g C d) iters; Cd
FsC y C
Pattern functor:
F[n1 nm]X = X™M 4 ...4 X"

12

A diagram for T'x-elimination

Introz
FETZ TZ
Fs,(id, recs C d) (id, Fp™? Tx; C (recs, C d)) (id, recs, C d)
FE(($:T2>X CZC)N (y:FETE)XFIZHTE Cy?(iL’Tg)ch

=% Tx,C

e(y,z) = (Introgy,dy=z)

13

Notation

Dependent function types are written

(x:A) — B

Dependent product types are written

(x:A) xB

14

Auxiliary constructions

F3': (X : Set) = (X — Set) = Fx X — Set
Fin g X C(Ing (21,...,2n,)) = Czy X -+ x C iy,

and

F&*® : (X :Set) > (C: X — Set)
S ((z:X)=C2) = (y:Fs X) 2 FE X Cy

pmap X Ch(In; (x1,...,2n,)) = (hz1,...,hay,,)

[nl,...,nm]

15

Introx

recs;

Equality rule

Generic rules for T

Set
FEJF2~—%5FE
(C:Tx — Set) = ((y: Fx Tx) = F3' Cy — C (Intros y))

—(x:Tyg) > Cx

recy, Cd (Introp y) = dy (Fy P C (recs C d) y)

16

Large elimination

We may add a large version of this elimination too, where C can be an
arbitrary family of types, that is,

Clx] Type (x:Tyx)

not just a family of sets.

17

Martin-Lof type theory with one-sorted term algebras

Start with logical framework (including at least dependent function and
product types, and 0,1,2). Add

arities formation, introduction, (and elimination and equality) rules for N

signatures formation, introduction (and elimination and equality) rules for
Sig, i.e., for lists of natural numbers

pattern functors defining rules for object and arrow parts of the functor
Fys, and the auxiliary F&! and FP

term algebras formation, introduction, elimination, and equality rules for
Ty with constants Introyx, and recs.

18

Generic programming

A generic size function.

A special case of the initial algebra diagram. Let ¥ = [nq, ..., ny).
Introy,
T + -+ TE™ Ts
sizest + - - - + sizeg™ sizes,
N1 4 .oo 4 N N

sizestepsy

19

Generic recursion step

The recusion step is defined by induction on the signature:

sizestep,,..s (Inlzs) = 1+ sum,xs

sizestep,,..s. (Inry) sizesteps: y

where

sum: (n:N) —- N" - N

is a function summing the elements of a vector of natural numbers.

20

Generic equality

. Intro
T8 4 4 T2 AN
ey + -+ + eqye™ eqs
(Ts; — Bool)" + - -- 4 (T — Bool)"™ Ty — Bool

eqstepy

21

Generic recursion step

egstepy, (In; (p1, - ., pn;)) (Intro (In; (y1,. .-, ¥n;))) =P1Y1 A -+ A PpYn,

and for ¢ #

egstepy; (In; (p1, . . -, Pn;)) (Intro (Inj (y1,...,yn,))) = False

can be defined by induction on the signature.

There are also generic proofs of reflexivity and substitutivity of equality.

22

Generalizing the notion of a signature

iterated inductive definitions
Cons : N — ListN — ListN

the first argument is a side-condition.

generalized inductive definitions
Sup: (N—-0O) = O
constructors with dependent types

Sup:(z:A) - (Bx—> W) > W

23

Parameterized inductive definitions

are important for generic programming, but not for formalizing inductive
definitions in Martin-Lof type theory, where parameterization is taken care
of by the logical framework.

24

Signatures for generalized inductive definitions

e : Sig
o : (A:Set) —» (A — Sig) — Sig
p : Set — Sig — Sig

FX =1
FUAzX = (CIZIA)XFExX
FpAzX = (A-)X)XFEX

25

Indexed inductive definitions; two versions

general ala “Inductive Families” (PD) and “Calculus of Inductive Construc-
tions” (Coquand and Paulin); based on a Curry-Howard interpretation of
Martin-Lof’'s “Intuitionistic Theory of lterated Inductive Definitions”

restricted a la Half and the original implementation of Agda (Coquand);
Haskell-like syntax and simplified pattern matching with dependent types;
also simpler set-theoretic (least fixed point of monotone operator) and
category-theoretic (initial algebra) semantics.

26

Two indexed inductive definitions of Even

General:

CO0 : EvenO

Cl : (m:N)— Evenm — Even (Succ (Succm))
Restricted:

CO : (mn:N)—= (n=0)— Evenn

Cl : (n:N)— (m:N)— (n=Succ(Succm)) - Evenm — Evenn

.. in Agda syntax:

data Evenn = CO(n =0) | C1(m : N) (n = Succ (Succm)) (Evenm)

27

Inductively defined equality

Only makes sense as general indexed inductive defintion:

Refly: (a: A) > TAaa

Restricted ...

Reflgy : (a,b: A) = (a=40) - 1Aab

Agda’s original approach is similar to Martin-Lof 1972: no general
equality proposition; equality has to be defined for each set separately. Eg
equality of natural numbers is defined by N-elimination.

28

The I-indexed initial algebra diagram

A diagram in the category of I-indexed families of sets:

. Introz))
FxTx1 Tsi

Fs (itel‘g d)) iters, d ¢
Fs.C1 7 C1

A diagram for the elimination rule — as for the non-indexed case.

29

Signatures for restricted /-indexed inductive definitions

e : Sigl
o : (A:Set) —» (A— Sigl) — Sigl
p : (A:Set) > (A—I)— Sigl — Sigl

30

Pattern functor for restricted /-indexed inductive

definitions
Fx+ X7 = Gy; X
where
G X =1
GUAEX = (LE:A)XGExX

GoasX = ((:4) = X(te)) xGs X

Generic rules for restricted /-indexed inductive definitions

Ty : I — Set
Introy, : (i:I) = Gg; Ty — Tx1
recy : (C:(i:1)— Txi— Set)
= ((i: 1) = (y:Gxg;Tx) = G T Cy — C (1x Txy) (Intros i y))
—(i: 1) = (z:Tgi) > Cix

Equality rule

recy, C di(Introgiy) = diy (Gy;® T C (recs Cd) y)

32

Example: signature for accessibility

Acc : I — Set
Acclntro : (i:I)—=> ((j:1)— (j <i) > Accj) — Acci

Signature (arity). Note that we get an uncurried version of the premise.

i = p((J:I)x(jJ<i))fste
Acclntro : (i:I)—= ((k:(j:1I)x(j <1)) — Acc(fstk)) — Acci

33

Example: signature for even numbers

Write oz : A. X for o A ((2)X).

Xn = o01:2.a4m
agn = op:(n=20).€

ain = om:N.op: (n = Succ(Succm)).pl((x)m)e

34

Generic rules for general I-indexed inductive definitions

Ty : I — Set
Introy, : (y:GgTx) = T (tx Ty y)
recy : (C:(i:1)— Txi— Set)
— ((y:GxTx) = G Ty Cy — C (1x Txy) (Intros y))
—(i:1) = (x:Txgi) > Cix

Equality rule

recy; Cd (tx Tey) (Intros y) = dy (Gx ¥ Tx C (recs C'd) y)

35

Signatures for general /-indexed inductive definitions

e : I —Sigl
o : (A:Set) —» (A— Sigl) — Sigl
p : (A:Set) > (A—I)— Sigl — Sigl

36

Example: signature for even numbers

Write oz : A. X for o A ((2)X).

> = o0t:2.04
g == €0

a; = om:N.pl((z)m) (e(Succ(Succm)))

37

Inductive-recursive definitions

Usually, we first define a set T's;, then we define a function

h =recsd: Ty — C

In an inductive-recursive definition the function h may appear in the
introduction rules for Tx.

How can this arise? As an example, we will see how inductive-recursive
definitions arise naturally when analyzing the termination of functions
defined by nested recursion (Bove and Capretta 2001).

38

Quicksort in Haskell

gSort :: [Nat] -> [Nat]

qSort [1 = []
gSort (x : xs)

= gSort (filter (< x) xs)
++ x : gSort (filter (>= x) xs)

(A more efficient version which partitions xs in one pass can be written.)

39

A termination predicate for quicksort

D :: [Nat] -> Set

CO :: D []

Cl :: (x :: Nat) -> (xs :: [Nat])
-> D (filter (< x) xs)
-> D (filter (>= x) xs)
-> D (x : x8)

A general indexed inductive definition!

40

Quicksort in Martin-Lof type theory

Quicksort can then be represented as a function of two arguments: a
list and a proof that quicksort terminates for this list.

gSort :: (xs :: [Nat]) -> D xs -> [Nat]

qSort [] CO = []
gSort (x : xs) (Cl x xs p q)
= gSort (filter (< x) xs) p
++ x : gSort (filter (>= x) xs) q

41

Termination of quicksort

Quicksort terminates for all lists:
gSortTerm :: (xs :: [Nat]) -> D xs
Hence

\xs -> gSort xs (gSortTerm xs)

[Nat]

-> [Nat]

42

McCarthy’s 91-function in Haskell

The Bove-Capretta method is applicable to nested recursion as well.
Haskell code for McCarthy's 91-function:

f91 :: Nat -> Nat

f91 n = if n > 100 then n - 10
else f91 (f91 (n + 11))

43

McCarthy’s 91-function
in Martin-Lof type theory

We get a restricted indexed inductive-recursive definition of the termi-
nation predicate and the structural recursive version of £91:

D :: Nat -> Set
f91 :: (n :: Nat) -> D n -> Nat

CO :: (n :: Nat) > T (n > 100) -> D n
Cl :: (n :: Nat) -=> T (n <= 100)
-> (p :: D(n+11)) ->D (f91 (n + 11) p) > D n

n - 10
f91 (£f91 (n + 11) p) g

f91 n (CO n r)
f91 n (Cl nr p q)

44

The first universe a la Tarski

First example of an inductive-recusive definition (Martin-Lof, 1984):

U : Set
T : U — Set

A simultaneous inductive-recursive definition

N
I : (¢a:U)=(b:Ta—U)—>U
N = N
T(Ilab) = II(Ta)(Tob)

45

Constructive analogues of large cardinals

universe inaccessible cardinal
superuniverse hyperinaccessible cardinal
Mahlo universe Mahlo cardinal

all example of inductive-recursive definitions and instances of our general
formulation.

Palmgren’s higher-order universes are given by an indexed inductive-
recursive definition.

46

A diagram for U and T

(a:U) x (Ta— 1) U
(a,b) — (Ta, Tob) T
(A : Set) x (A — Set) Set

This is not an initial algebra diagram, due to the simultaneous inductive-
recursive nature of U and T. But it is close to it!

47

Induction-recursion as a reflection principle

. Introc s 4
He s Te s diteresd Tes.a
/ . .
Hc,z Tos,d (1ter0,2 d) 1terc s d
ar
Ioh> g C

Inductive definitions are special cases of inductive-recursive ones, where
Hc s X f does not depend on f. In this case the above diagram degenerates
to the usual initial algebra diagram.

48

FyTx

FE (iterg C d)

FsC

Introy,

iterg Cd

C

49

Signatures for inductive-recursive definitions

€ : Sigpo
o : (A:Set) —» (A — Sigy) — Sigs
p : (A:Set) —» ((A— C)— Sigy) — Sigpy

ar _

Ce — 1
ar o . ar
CooAY — (z:A) x Heso

Eé*r,pAz = (fiA%C)XH?,{Ef

50

H. X h
HJAZXh
Hyas X h

(£IZ‘A) XFECEX}L
(fA%X) XFE(hof)

51

Example: a signature (arity)
for a universe closed under 11

Y =p1((A)p(A0)((B)e)) : Sigses

HZ, 5. (A:1 — Set) x (((A0) — Set) x 1)
HSet,ZH,HUT = (a 1 — U) X ((T(0,0) — U) X 1)

52

Generic rules for inductive-recursive definitions

Let C' be a type, X : Sig, and d : H%Y,Sig — C.

TC’,E,d . Set
iterc’g’d : TC’,E,d_>C

Introcsq : HexTesaltercsag— Teos.d

See the diagram for the equality rule. There is also an elimination rule (3
la universe elimination) with its own equality rule.

53

Set-theoretic semantics

The rules of Martin-Lof type theory (including inductive-recursive defi-
nitions) are valid under a “naive” interpretation of a constructive concept
as the corresponding classical concept with the same name.

Set is interpreted as (inductively defined) set; element as element; equal
elements as equal elements; function as function (graph); II as II; etc.

We get the semantics of (the recursive part of) an inductive-recursive
definition by iterating a monotone operator to a fixed point. The only
difficulty is to prove that such a fixed point exists. This can be done by
using the axiom that Mahlo cardinals exist.

An inaccessible cardinal M is Mahlo if every normal function f : M — M
has an inaccessible fixed point

54

Inductive-recursive definitions
as initial algebras in slice categories

Draw a commuting triangle instead of a square.

. Introc s 4
He s Te s aitere s d Tes.a
/ . .
HC’,E Tes.a (lterc,gl‘_fl) . 1terc s d
cik Tes.daiterc sq
ar C
>
C, 7

This is a Ho »-algebra in the slice category Type/C.

55

Reflection principle vs initial algebras

See P. Dybjer and A. Setzer "Induction-recursion and initial algebras”,
for details.

Theorem. Induction-recursion can be equivalently formalized as a

reflection principle and as the existence of initial algebras in slice categories.

The theories IRD™ TRD®"™ and IRD™Y can all be interpreted in each
other.

56

Metatheorems

See P. Dybjer and A. Setzer "Indexed induction-recursion”, 2002 (long
version, submitted for publication) for details.

Theorem. General and restricted indexed inductive-recursive definitions
are equivalent. The theories IIRD8.4; and IIRD" 4 can be interpreted in
each other.

Theorem. Indexed inductive-recursive definitions can be inter-

preted as non-indexed inductive-recursive definitions. The theories
ITIRD" o, IIRDS8.; and IRD.y: can be interpreted in each other.

Theorem. Small indexed inductive-recursive definitions can be inter-
preted as indexed inductive definitions. The theory IIRDcy; where C' is a
family of sets can be interpreted in the theory IIDy¢.

57

Accessibility as a fibred set

Replace
Acc: I — Set
by the fibred set
AccTot
proj
1

so that Acci is represented by (z : AccTot) x (projx =g 7).

58

Accessibility as an inductive-recursive definition

Acclntro : (i:1)
—(p:(j:1I)— (j <) = AccTot)
= ((:1) = (4 <9) = (proj(pjr) =1J))
— AccTot

proj (Acclntroipq) = 1
Cf indexed inductive definition:

Acclntro : (i:1)—= ((j:I) — (j <) = Accj) = Acci

59

