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What is a normalization proof? 2

What is a normalization proof?

Traditional approach: prove about reduction
e (weak) normalization - existence
® Church-Rosser - uniqueness

Reduction-free approach: prove about conversion
(~): there is an algorithm n f such that

et~nft
oet~t' DOnft=nft
Corollary - solution of the word problem:

et~t onft=nft
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Normalization by intuitionisticrepresentation theorem 3

Normalization by intuitionistic
representation theorem

Syntax is free model (7', ~) (classically, T'/~).

Find “strict” model M with (left) inverse of unique
interpretation map:

[-]

—1

(T, ~) (M, =)

that is
nft=[[t]"" ~¢
t~t' Dt =[] DOnft=nft

Intuitionistic framework (Martin-Lof Type Theory,
etc): function = algorithm!
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Normalization by Yoneda embedding? 4

Normalization by Yoneda embedding?

The functor Y : C — Setc™”
YB = C(—,B)
Yg = go-—

induces a bijection of hom-sets:

C(A, B) Y - Set” (YA, YB)
—A tdg

Monoids - one object categories:

M y - {¢ € MM |¢ natural}
— 1

Groups - Cayley’s representation theorem:

G y - {¢ € G%|¢ natural iso}

— 1d
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Normalization by Yoneda embedding? 5

Constructive Yoneda: functor = algorithm. But

y cor
C(A, B) - - SetC” (YA, YB)
—A tdy
only maps g € C(A, B) to g o id 4!

Syntax = free category (monoid) 7/ ~. Unique
interpretation functor:

T/~ . C

For presheaves, if [—] = Y for atoms, then

1=y .
(T/~)(A, B) = - Set'T/™™(yA, yB)
—A t0A
and now nf g = [g] ida!!

(For cccs, unique means up to isomorphism!)
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Plan 6

Plan

1. Earlier work

2. Constructive algebra: P-sets and P-monoids

3. The word problem for monoids

4. Constructive category theory: P-categories,
P-Yoneda for P-cccs

5. The word problem for cccs

6. Conclusion
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Earlier work 7

Earlier work

e Martin-Lof (1973, 1974): normalization by in-
tuitionistic model construction (combinators
and weak type theory).

e Berger and Schwichtenberg (1991): normal-
ization for A\B7n by inverting set-theoretic in-
terpretation; Friedman’s theorem.

e T. Coquand and Dybjer (1993): footnote to
Martin-Lof (1973, 1974) (algebraic aspects).

e C. Coquand (1993): normalization for A3n by
inverting Kripke interpretation.

e Altenkirch, Hofmann, and Streicher (1995):
normalization for A371 by Yoneda and glueing.
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Sets with equality 8

Sets with equality
Bishop’s distinction between preset and set.

An E-set (setoid) is a set A with an equivalence
relation ~.

An E-map from (A, ~) to (A’,~') is a function
from A to A’ which preserves equivalence.

Want better separation of “algorithmic” and “log-

ical” properties - P-sets encode both “subsets”

and “quotients”:
A P-set is a set A with a per ~.

A P-map from (A,~) to (A’,~') is a function
from A to A’ which preserves pers.
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P-monoid 9

P-monoid

e a P-set (M, ~);

e a binary P-map o on (M, ~);

e an element 2d in M;

e such that
(Bod)o~y ~ Bo(do~)
’idO’y ~Y ’7
yoid ~

for 0 in the domain of ~, that is, 68 ~ 0, etc.
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The word problem for monoids 10

The word problem for monoids

T is the set of binary trees generated by a set X
of atoms x.

tu=tot|id| x

~ is the congruence relation between elements of
T generated by identity and associativity laws.

(T, ~) is a P-free P-monoid generated by X (and
an E-free E-monoid!).

Decide t ~ ¢'!
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The word problem for monoids 11

Use the constructive P-iso
— 1d

(Ta N) (TT, N)

analogue of
[-]
— 1d
Hence nf t = [t] «d ~ ¢

T/~ {¢ € (T/N)T/N|q5 natural}

But we also have

@,~) L7 =

where ¢ = ¢’ iff the underlying functions are ex-
tensionally equal and natural! Hence, if t ~ t/,

then [t =[t']and nf t=nft.
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Strict notions

Strict notions

12

(TT, =) is a strict monoid: if p = ¢’ then ¢ = ¢’.

(T, ~) and (TT, ~) are non-strict.

Suggestive terminology?

non-strict | strict
abstract | concrete
syntactic | semantic
formal real
static dynamic

Compare category theory: = vs =!
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The word problem for groups? 13

The word problem for groups?
G is the set of “group-expressions”:
tu=tot|id |t ! x

~ is the congruence relation so that (G, ~) is a
P-free P-group.

Try nf t = [t] «d ~ t! Still get nf t ~ t.

But we do not have t ~ t/ implies nf t = nf t'.
Because

[xf] =Y x =x0 —

is only a “formal” ~-iso but not a “real” —=-iso!
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P-categories 14

P-categories
e A set of objects;
e hom-P-sets;
e composition is a P-map;
e the category axioms refer to ~.

Object equality? Not part of the definition of P-
category, but objects form a P-set (and E-set) un-
der P-isomorphism.
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P-categories 15

The P-category analogue PSet of the ordinary
category of sets

e P-sets as objects

e PSet((A,~4),(B,~p)) = (B4, ~54), where
¢ ~pa ¢ iffa ~y o implies p a ~p ¢’ d'.

P-functor, P-natural transformations, P-functor P-
category, P-presheaf, P-ccc, P-free, ...
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Yoneda and cccs 16

Yoneda and cccs

e The Yoneda functor)y : C — Set¢™ preserves
ccc-structure.

If 7 is a free ccc then there is a natural iso-
morphism

[—]
T q i q—i SetT™
v k

where [—] = Y on atoms.

P-version gives normal form algorithm!

o Set®” is a ccc for any category C.

P-version helps proving uniqueness of normal
forms!
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Normal form algorithm for cccs 17

Normal form algorithm for cccs

74, B) UL pses™ (141, 18])

—1
Y gqB © —0(qgy

—A tdy

PSet” (Y A,y B)
is a commuting diagram of P-sets and P-maps.
Hence

nft=qpa ([t] (ga4 ida)) ~t
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Normal form algorithm for cccs

[<f, 9>

[7]c (a,a’)

[#'1c (a,a’)
(If*1lc a@)p (g;a’)
[e]c (6,a)

18

= [glc(lflc a)

a

()
([[.f]]C a, [[g]]C a’)

a

/
a

[f1p ([A] g a,a’)
Oc (id,a)
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Normal form algorithm for cccs 19

axcf = f
q1,c () !
qaxB,c (a,b)

<qa,c a,9B,c b>

—1
da=B,c 0 = (aB,cxa (Ocxa (7C,A>94,0x
qXC f =17
qlc f = ()
—1 —1
qAxB cf = (qA,C (WA,BOf)a aB.c (Wf4,3<
-1 —1
(@4a=B,c f)D9* = aB,p (€a,Bo<fog,q4,D T>)
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T3y - a P-free P-ccc from the typed ABn-calculus 20

Uniqueness of normal forms?
What about

t~t' DOnft=nft?
It depends on what P-free P-ccc we choose!

If 7 is built up by ccc-expressions (categorical
combinators) under the congruence generated by
the ccc-laws, then No!

If 7 is built up from the typed A\3n-calculus, then
Yes - nf will return the 1-long normal form of a

term.
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T3y - a P-free P-ccc from the typed ABn-calculus 21

T3n - a P-free P-ccc from the typed
ABn-calculus

objects: sequences of types I' = (Aq1,...,Am)

arrows: sequences of terms

1.0 1t
(Al,...,laxm)(1 n)

'(B]_, e o o ,Bn)
equivalence of arrows: pointwise 3n-convertibility

P-ccc structure:

1 = ()
' x A ', A

(B, Bm)" = (Bi,...,Bp,)

where

B(Ala---aAm) =—A >+ — A, > B
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Ta - the a-congruence P-category 22

Ta - the a-congruence P-category

T is the P-category of sequences of \-terms un-
der a-congruence =.

T3n and T, have the same data part!

PSetTa” is a P-ccc. Hence t ~ t’ implies [t] =

[t].

To prove that this entails nf t = nf t/ it remains
to prove that qp 4 and qg’lA preserve =. This
uses that 7, is a P-cartesian P-category which
also satisfies the ccc-law which corresponds to sub-
stitution under \:

t*ou=(to{uom,n'))*
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More related work 23

More related work

e Categorical coherence proofs: Lafont (1988),
Power (1987), Beylin and Dybjer (1995).

e Computational category theory:

Burstall and Rydeheard (1988): category the-
ory in ML.

Aczel (1993), Huet and Saibi (1995): E-category
theory in Lego and Coq.

e Extracting programs from intuitionistic proofs.

Various methods including realizability mod-
els, Berger (1993).

e Other calculi: system F; linear \-calculus; de-
pendent types; ...?
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