Normalization by Yoneda embedding

Djordje Čubrić, Cambridge Peter Dybjer, Göteborg Phil Scott, Ottawa

August 16, 1996

What is a normalization proof?

Traditional approach: prove about reduction

- (weak) normalization existence
- Church-Rosser uniqueness

Reduction-free approach: prove about *conversion* (\sim) : there is an algorithm nf such that

- $t \sim nf t$
- $t \sim t' \supset nf \ t = nf \ t'$

Corollary - solution of the word problem:

•
$$t \sim t' \leftrightarrow nf \ t = nf \ t'$$

Normalization by intuitionistic representation theorem

Syntax is free model (T, \sim) (classically, T/\sim).

Find "strict" model M with (left) inverse of unique interpretation map:

that is

$$nf \ t = [\![t]\!]^{-1} \sim t$$

$$t \sim t' \supset \llbracket t
rbracket = \llbracket t'
rbracket \supset nf \ t = nf \ t'$$

Intuitionistic framework (Martin-Löf Type Theory, etc): function = algorithm!

Normalization by Yoneda embedding?

The functor $\mathcal{Y}:\mathcal{C} o\mathcal{S}et^{\mathcal{C}^{op}}$

$$\mathcal{Y}B = \mathcal{C}(-,B)$$

$$\mathcal{Y}g = g \circ -$$

induces a bijection of hom-sets:

$$\mathcal{C}(A,B) \stackrel{\mathcal{Y}}{=_A id_A} \mathcal{S}et^{\mathcal{C}^{op}}(\mathcal{Y}A,\mathcal{Y}B)$$

Monoids - one object categories:

$$M = rac{\mathcal{Y}}{-id} \; \{\phi \in M^M | \phi \; \mathsf{natural} \}$$

Groups - Cayley's representation theorem:

$$G = Id \quad \{\phi \in G^G | \phi \text{ natural iso}\}$$

Constructive Yoneda: functor = algorithm. But

$$\mathcal{C}(A,B) \stackrel{\mathcal{Y}}{=_A id_A} \mathcal{S}et^{\mathcal{C}^{op}}(\mathcal{Y}A,\mathcal{Y}B)$$

only maps $g \in \mathcal{C}(A,B)$ to $g \circ id_A!$

Syntax = free category (monoid) \mathcal{T}/\sim . Unique interpretation functor:

For presheaves, if $\llbracket - \rrbracket = \mathcal{Y}$ for atoms, then

$$(\mathcal{T}/\!\!\sim)(A,B) \xrightarrow{\llbracket -
rbracket}^{} \mathcal{S}et^{(\mathcal{T}/\!\!\sim)^{op}}(\mathcal{Y}A,\mathcal{Y}B)$$

and now $nf \ g = \llbracket g
rbracket id_A!!$

(For cccs, unique means up to isomorphism!)

Plan 6

Plan

- 1. Earlier work
- 2. Constructive algebra: P-sets and P-monoids
- 3. The word problem for monoids
- 4. Constructive category theory: P-categories, P-Yoneda for P-cccs
- 5. The word problem for cccs
- 6. Conclusion

Earlier work

Earlier work

 Martin-Löf (1973, 1974): normalization by intuitionistic model construction (combinators and weak type theory).

- Berger and Schwichtenberg (1991): normalization for $\lambda\beta\eta$ by inverting set-theoretic interpretation; Friedman's theorem.
- T. Coquand and Dybjer (1993): footnote to Martin-Löf (1973, 1974) (algebraic aspects).
- C. Coquand (1993): normalization for $\lambda\beta\eta$ by inverting Kripke interpretation.
- Altenkirch, Hofmann, and Streicher (1995): normalization for $\lambda\beta\eta$ by Yoneda and glueing.

Sets with equality

Bishop's distinction between preset and set.

An *E-set* (*setoid*) is a set A with an equivalence relation \sim .

An *E-map* from (A, \sim) to (A', \sim') is a function from A to A' which preserves equivalence.

Want better separation of "algorithmic" and "logical" properties - P-sets encode both "subsets" and "quotients":

A *P-set* is a set A with a per \sim .

A *P-map* from (A, \sim) to (A', \sim') is a function from A to A' which preserves pers.

P-monoid 9

P-monoid

- ullet a P-set (M, \sim) ;
- ullet a binary P-map \circ on (M,\sim) ;
- ullet an element id in M;
- such that

$$egin{array}{lll} (heta\circ\delta)\circ\gamma &\sim & heta\circ(\delta\circ\gamma) \ id\circ\gamma &\sim & \gamma \ & \gamma\circ id &\sim & \gamma \end{array}$$

for θ in the domain of \sim , that is, $\theta \sim \theta$, etc.

The word problem for monoids

T is the set of binary trees generated by a set X of atoms x.

$$t ::= t \circ t \mid id \mid x$$

 \sim is the congruence relation between elements of T generated by identity and associativity laws.

 (T, \sim) is a P-free P-monoid generated by X (and an E-free E-monoid!).

Decide $t \sim t'!$

Use the constructive P-iso

$$(T,\sim) \stackrel{\llbracket -
bracket}{-id} (T^T,\sim)$$

analogue of

$$T/\!\sim \xrightarrow{ \llbracket -
rbracket} \; \{\phi \in (T/\!\sim)^{T/\!\sim} |\phi \; ext{natural} \}$$

Hence $nf\ t = \llbracket t
rbracket{id} \sim t$

But we also have

$$(T,\sim) \stackrel{\llbracket -
bracket}{\longrightarrow} (T^T,\equiv)$$

where $\phi \equiv \phi'$ iff the *underlying* functions are extensionally equal and natural! Hence, if $t \sim t'$, then $[\![t]\!] \equiv [\![t']\!]$ and nf t = nf t'.

Strict notions 12

Strict notions

 (T^T,\equiv) is a *strict* monoid: if $\phi\equiv\phi'$ then $\phi=\phi'$.

 (T,\sim) and (T^T,\sim) are non-strict.

Suggestive terminology?

~	
non-strict	strict
abstract	concrete
syntactic	semantic
formal	real
static	dynamic

Compare category theory: \cong vs =!

The word problem for groups?

G is the set of "group-expressions":

$$t ::= t \circ t \mid id \mid t^{-1} \mid x$$

 \sim is the congruence relation so that (G, \sim) is a P-free P-group.

Try $nf\ t = \llbracket t \rrbracket\ id \sim t!$ Still get $nf\ t \sim t.$

But we do not have $t \sim t'$ implies $nf \ t = nf \ t'$. Because

$$[\![x]\!] = \mathcal{Y} \ x = x \circ -$$

is only a "formal" \sim -iso but not a "real" =-iso!

P-categories 14

P-categories

- A set of objects;
- hom-P-sets;
- composition is a P-map;
- ullet the category axioms refer to \sim .

Object equality? Not part of the definition of P-category, but objects form a P-set (and E-set) under P-isomorphism.

P-categories 15

The P-category analogue $\mathcal{PS}et$ of the ordinary category of sets

- P-sets as objects

P-functor, P-natural transformations, P-functor P-category, P-presheaf, P-ccc, P-free, ...

Yoneda and cccs 16

Yoneda and cccs

ullet The Yoneda functor ${\cal Y}:{\cal C}
ightarrow {\cal S}et^{{\cal C}^{op}}$ preserves ccc-structure.

If \mathcal{T} is a free ccc then there is a natural isomorphism

$$\mathcal{T} \stackrel{\llbracket -
rbracket}{\longrightarrow} \mathcal{S}et^{\mathcal{T}^{op}}$$

where $\llbracket - \rrbracket = \mathcal{Y}$ on atoms.

P-version gives normal form algorithm!

ullet $\mathcal{S}et^{\mathcal{C}^{op}}$ is a ccc for any category \mathcal{C} .

P-version helps proving uniqueness of normal forms!

Normal form algorithm for cccs

$$\mathcal{T}(A,B) \xrightarrow{ \llbracket -
rbracket \mathcal{T}^{op}} \mathcal{PS}et^{\mathcal{T}^{op}}(\llbracket A
rbracket, \llbracket B
rbracket) \ q_B \circ - \circ q_A^{-1} \ \mathcal{PS}et^{\mathcal{T}^{op}}(\mathcal{Y}|A,\mathcal{Y}|B)$$

is a commuting diagram of P-sets and P-maps. Hence

$$nf \ t = q_{BA} \ (\llbracket t
rbracket \ (q_{AA}^{-1} \ id_A)) \sim t$$

$$egin{array}{lll} & g \circ f \ C & a & = & [g] \ C([f] \ C & a) \ & [id] \ C & a & = & a \ & [!] \ C & a & = & () \ & [s,g>] \ C & a & = & ([f] \ C & a, [g] \ C & a) \ & [\pi] \ C & (a,a') & = & a \ & [\pi'] \ C & (a,a') & = & a' \ & ([f^*] \ C & a)_D & (g,a') & = & [f] \ D & ([A] \ g & a,a') \ & [arepsilon] \ C & (\theta,a) & = & \theta_C & (\mathrm{id},a) \ \end{array}$$

$$q_{X,C} f = f$$
 $q_{1,C} () = !$
 $q_{A imes B,C} (a,b) = \langle q_{A,C} a, q_{B,C} b \rangle$
 $q_{A \Rightarrow B,C} \theta = (q_{B,C imes A} (\theta_{C imes A} (\pi_{C,A}, q_{A,C imes}^{-1}))$
 $q_{A,C}^{-1} f = f$
 $q_{A,C}^{-1} f = ()$
 $q_{A imes B,C}^{-1} f = (q_{A,C}^{-1} (\pi_{A,B} \circ f), q_{B,C}^{-1} (\pi_{A,B}' \circ f))$
 $(q_{A \Rightarrow B,C}^{-1} f)_D g x = q_{B,D}^{-1} (\varepsilon_{A,B} \circ \langle f \circ g, q_{A,D} x \rangle)$

Uniqueness of normal forms?

What about

$$t \sim t' \supset nf \ t = nf \ t'$$
?

It depends on what P-free P-ccc we choose!

If \mathcal{T} is built up by ccc-expressions (categorical combinators) under the congruence generated by the ccc-laws, then No!

If $\mathcal T$ is built up from the typed $\lambda\beta\eta$ -calculus, then Yes - nf will return the η -long normal form of a term.

$\mathcal{T}_{eta\eta}$ - a P-free P-ccc from the typed $\lambdaeta\eta$ -calculus

objects: sequences of types $\Gamma = (A_1, \ldots, A_m)$

arrows: sequences of terms

$$(A_1,\ldots,A_m) \xrightarrow{(t_1,\ldots,t_n)} (B_1,\ldots,B_n)$$

equivalence of arrows: pointwise $\beta\eta$ -convertibility

P-ccc structure:

$$egin{array}{lll} 1&=&()\ \Gamma imes\Delta&=&\Gamma,\Delta\ (B_1,\ldots,B_m)^\Gamma&=&(B_1^\Gamma,\ldots,B_m^\Gamma) \end{array}$$

where

$$B^{(A_1,...,A_m)}=A_1 o\cdots o A_m o B$$

\mathcal{T}_{α} - the lpha-congruence P-category

 \mathcal{T}_{α} is the P-category of sequences of λ -terms under α -congruence \equiv .

 $\mathcal{T}_{eta\eta}$ and \mathcal{T}_{lpha} have the same data part!

 $\mathcal{PS}et^{\mathcal{T}_{lpha}^{op}}$ is a P-ccc. Hence $t\sim t'$ implies $[\![t]\!]\equiv [\![t']\!].$

To prove that this entails nf $t \equiv nf$ t' it remains to prove that $q_{B,A}$ and $q_{B,A}^{-1}$ preserve \equiv . This uses that \mathcal{T}_{α} is a P-cartesian P-category which also satisfies the ccc-law which corresponds to substitution under λ :

$$t^* \circ u \equiv (t \circ \langle u \circ \pi, \pi' \rangle)^*$$

More related work 23

More related work

- Categorical coherence proofs: Lafont (1988),
 Power (1987), Beylin and Dybjer (1995).
- Computational category theory:

Burstall and Rydeheard (1988): category theory in ML.

Aczel (1993), Huet and Saibi (1995): E-category theory in Lego and Coq.

- Extracting programs from intuitionistic proofs.
 Various methods including realizability models, Berger (1993).
- Other calculi: system F; linear λ -calculus; dependent types; ...?