Inductive and Recursive Definitions
in Constructive Type Theory

Peter Dybjer
Chalmers Tekniska Hogskola

TYPES summer school
Goteborg
August 2005

Some questions

What is an inductive definition of a set? What is a recursive definition
of a function? Classically? Constructively?

What are the differences and similarities wrt recursive data types in
functional languages?

What is the role of inductive definitions in the foundations of constructive
mathematics? What is Martin-Lof type theory? What is the role of inductive
definitions in Martin-Lof type theory? What other foundational systems
for constructive mathematics are there? What is the role of inductive
definitions for them?

What is the nature of Martin-Lof's meaning explanations? What is the
syntactico-semantical approach to constructive foundations?

More questions

What inductive definitions are constructively acceptable? The versatility
of the constructive notion of an inductive definition. What are inductive
families (indexed inductive definitions)? What are generalized inductive
definitions? What are inductive-recursive definitions?

What recursive definitions are constructively acceptable? What are the
differences and similarities wrt recursive function definitions in functional
languages? What is the role of pattern matching? What is the role of
well-founded recursion vs structural recursion? What is the relationship
between Martin-Lof type theory and Agda? How do you program with
inductive definitions?

How can you axiomatize a general theory of inductive and recursive
definitions in Martin-Lof type theory with a minimum of coding?

Plan

1. Martin-Lof type theory with one universe (MLTTy). Rules for natural
numbers. Large elimination.

2. What is an inductive definition?
(a) Examples

(b) Classical definition. Rule sets. Monotone operators.

3. What is the language of constructive mathematics? What is the data?
What is the role of inductive definitions?

4. Ordinary inductive definitions.

(a) Inductive sets. Lists, binary trees, propositional formulas. General
schema.
(b) Inductive families. Family of theorems. General schema.

5. Generalized inductive definitions.

(a) Brouwer ordinals.
(b) Well-orderings. Hereditarily finite sets. Aczel's V and CZF.
(c) Well-founded part of a relation. Termination of programs.

6. Induction-recursion. More about meaning explanations.

7. (Finite axiomatization of inductive and inductive-recursive definitions, if
time permits)

Terminology

later Martin-Lof lecture notes
type sort

set type
extensional set set

function operation

extensional function function

We here follow later Martin-Lof. The “lecture notes’ above refer to
“Type-theoretic Foundations of Constructive Mathematics” by Coquand,

Dybjer, Palmgren, and Setzer.

Bishop

preset

set
operation
function

early Martin-Lof

category
type

function

other
kind
setoid, E-set

setoid map,

Original Martin-Lof type theory with one universe
(MLTTy)

e Set formers for predicate logic: 0,1, +, x, —, >, I
e Natural numbers N.

e Universe of small sets U.

All these were introduced in Martin-Lof 1972.

More set formers

Identity I (Martin-Lof 1973) - an inductive family/predicate
Well-orderings W (Martin-Lof 1979) - a generalized inductive definition
Hierarchy of universes Uy, U, Us,

Universe a la Tarski (Martin-Lof 1984) U, T - an inductive-recursive
definition

Rules for natural numbers

Formation rule:

N : Set

Introduction rules:

0O : N
Sucec : N —= N

Elimination and equality rules for natural numbers

Elimination rule:

R : (C:N—=Set) >C0— ((z:N)—>Cz— C (Succzx)) —
(n:N)—=Cn

Dependent elimination rule = rule for building proofs by mathematical
induction = rule for typing functions from natural numbers where the target
Is a dependent type.

Equality rules:

RCdeO = d:CO0
R C d e (Succ n) en(RCden):C (Succn)

10

Primitive recursive schema

If C:N — Set,d:C0,e:(x:N)—Cazxz— C (Succ x), and

fo = d
f (Succ n) en (fn)

then we can define

f=RCde:(n:N)—=>Cn

11

Exercise: define some functions in MLT Ty

1. addition, subtraction, and multiplication of natural numbers

2. the half function:

half 0 = 0
half (Succ0) = 0
half (Succ (Succn)) = Succ (half n)

3. division of natural numbers

12

Equality of natural numbers

Define

eqy : N — N — Bool

by pattern matching on constructors

eqyn 00
eqn 0 (Succ n)
eqn (Succm) 0

eqy (Succ m) (Succ n)

True
False
False

eqn M n

13

Exercise: define equality of natural numbers in MLT Ty

Hint. Use the elimination rule for N and define it by primitive recursion
of higher type (primitive recursive functional) as follows. Define

eqy m : N — Bool

by induction on m : N. The base case is “to be equal to zero” and the step
case is to define “to be equal to m + 1" in terms of “to be equal to m”.

Note that in MLT Ty we define Bool =1 + 1.

14

Recursive function definitions in Agda

The Alf/Agda philosophy: we do not limit ourselves to the primitive
recursive schema formalized by N-elimination, but allow more general
recursion patterns. There is a termination checker which checks that the

recursive calls refer to “structurally smaller” arguments.

For example, the above definition of equality is accepted as a good
definition (syntax may use case analysis) since it passes the termination
checker. There is ongoing research on extending the termination checker.

15

Recursive definitions of sets

Define
Vect : Set — N — Set
abbreviated A™ = Vect A n

A = 1
ASuccn — A x A™

This definition is directly accepted by Agda (using case). Can we define it
in MLTTy? Note that we cannot use R directly. Why?

16

Large elimination

If we modify R, so that the result type is Set instead of a set C' n, then
we get a large elimination rule

Rlrg&e . Set — (N — Set — Set) — N — Set
Now we can define

A" = RPe1 Nz, X.Ax X)n

17

The universe of small sets

Large elimination rules are not part of MLTTy. Instead we show how
to use the universe U to approximate the effect of large elimination. We
here choose the formulation a la Tarski (Aczel 1974, Martin-Lof 1984),
where we have a set U of codes for small sets, and a decoding function T

U : Set
T : U — Set

Remark: earlier versions of Martin-Lof type theory used universes a la
Russell, where a : Set if a : U.

18

Inductive-recursive definition of the universe a la Tarski

We have one introduction rule for U and one equality rule for T for each
small set former:

N : U TN = N
0 : U TO = 0
1 U Tl = 1
(+) U—-U—=TU T(atb) = Ta+Th
(%) U—-U—U T (axb) = TaxTh
S ¢ (@:U)=» (Ta—=U)—>U T(Zab)

- Y (Ta) (Mz.T (bx))

Note that U is not a small set.

19

The universe at work

Now we can define
A" =T (R (A\z.U) 1 (\z, X.AXX) n)

for A : U. (Note that we only define A™ for small A!)

Exercise: Define a family
Fin : N — Set

so that Fin n is a set with n elements.

20

The equality proposition

We would like to have
Eqy : N —= N — Set

so that Eqy m n is inhabited iff eqy m n = True. How is this defined in
MLTTvy? In Agda we can define directly (using case)

Eqy 00 = 1
Eqy (Sucem)0 = 0
Eqx 0 (Succn) = 0

Eqy (Succ m) (Succn) = Eqymmn

21

Exercise: some uses large elimination for truth values

Define the following functions in MLTTy:

1. the following function which converts a truth value to a proposition:

Tgoor : Bool — Set
Tgool True = 1
Tgool False = 0

2. Eqy : N = N — Set.

22

Lists and other inductive definitions

List is not a primitive set former in MLTTy. Can we encode it?

Martin-Lof 1984: “We can follow the same pattern used to define
natural numbers to introduce other inductively defined sets. We see here
the example of lists”. Exercise: write down the rules for list (formation,
introduction, elimination, and equality rules).

Martin-Lof 1972: “The type N is just the prime example of a type
introduced by an ordinary inductive definition. However, it seems preferable
to treat this special case rather than to give a necessarily much more
complicated general formulation which would include (X € A)B(z), A+ B,
N,, and N as special cases. See Martin-Lof 1971 for a general formulation of
inductive definitions in the language of ordinary first order predicate logic.”

23

Inductive definitions — examples

the rules for generating natural numbers by zero and successor
the rules for generating well-formed formulas of a logic

the axioms and inference rules generating theorems of the logic
the productions of a context-free grammar

the computation rules for a programming language

the reflexive-transitive closure of a relation

24

Inductive definitions and recursive datatypes

lists generated by Nil and Cons

binary trees generated by EmptyTree and MkTree

algebraic types in general: parameterized, many sorted term algebras
infinitely branching trees; Brouwer ordinals; etc.

inductive dependent types (vectors of a certain length, trees of a certain
height, balanced trees, etc)

inductive-recursive definitions (sorted lists, freshlists, etc)

25

Reflexive and nested datatypes

Note that recursive datatypes in functional languages (e g Haskell)
include reflexive datatypes

data Lambda = Nil | Lambda (Lambda -> Lambda)
and nested datatypes

data Nest a = Nil | Cons a (Nest (a,a))
data Bush a = Nil | Cons a (Bush (Bush a))

Neither is accepted verbatim as an inductive definition in Martin-Lof type
theory.

26

What is an inductive definition in general, classically?

Two equivalent notions of inductive definition of subset of a set V via

o rulesetson V

e monotone operators on subsets of V

See Aczel 1977: “An Introduction to Inductive Definitions” in Handbook of
Mathematical Logic.

27

Sets inductively generated by rule sets

X)’

A rule on a base set V' in Aczel's sense is a pair (X, z) (also written =-

suchthat X CV andz € V.
Let ® be a set of rules on V. A set Y is &-closed if for all % cod
XCY>DzeY
The set inductively generated by ® is defined to be the least ®-closed set
Z(P) = ﬂ{Y CV|Y ®-closed},
The induction principle for Z(®) is “if Y is ®-closed, then Z(®) C Y".
The introduction rules are “Z(®) is ®-closed, that is, if X C Z(®) then

z € I(d)".

28

Example: reflexive-transitive closure of a relation

Rules for inductively generating R* C A x A from R C A x A:

xR*y yR*z xRy
rR*x rR*z rR*y

Formal rule set (in the sense of Aczel) on V = A x A:

e A}U{{(w,y),(y,z)}m,y’Z € AV U

{ (z,2)

(z,y) € R}

(x,x) (z,y)

29

Example: inference rules for minimal logic

=y -
-y Fr= Y=o Fr=>y=>2) =2 (=>y) ==z

The corresponding rule set on V = Form (the set of formulas)

{r =y, x})
,y€EF U ,y€F U
{ lz,y € Form} {:1: g x\x y € Form}

0

(r=y=2)=@=>y) =>r=2

{

z,y, 2z € Form}U

30

The w-rule is

Infinitary rules

(F fl?z')z'ew
- /\iEw Lq
We have the rule set
{{lez < w}\xz € Form for all i € w}

We here assume that /\

/\iEw X

1EW

(

x; € Form whenever x; € Form for all © € w.

31

Rules for generating natural numbers

Type-theoretic introduction rules

0O : N
Succ : N —=N

Rule set (What is V7 N is given by a fundamental inductive definition)

(5 U gt € V)

Monotone operator ¢ : P(V) — P(V') which generates natural numbers:
d(X)={0}U{Succ(n)ln e X} =1+ X

32

Inductively defined sets
generated by monotone operators

Let ¢ : P(V) — P(V) be monotone, that is, if X C Y C V, then
d(X) C p(Y) CV. Then ¢ has a least prefixed point

I(¢) = X C V|¢(X) C X}

The induction principle is “if $(X) C X then Z(¢) C X". The introduction
rule is “¢(Z(9)) C T(4)"-

Exercise. Show that inductive generation by rule sets and monotone
operators are equivalent.

33

Inductive definitions and constructive foundations

Classically, inductive definitions are understood as least fixed points of
monotone operators (or least sets closed under a set of rules).

P. Aczel (An introduction to inductive definitions, Handbook of Mathe-
matical Logic, 1976, pp 779 and 780.):

An alternative approach is to take induction as a primitive notion,
not needing justification in terms of other methods. ... It would be
interesting to formulate a coherent conceptual framework that made
induction the principal notion.

No universal principle. We may discover new stronger inductive generation
principles.

34

Inductive definitions and the notion of set
in Martin-Lof type theory

Martin-Lof type theory is such a coherent conceptual framework.

“(1) a set A is defined by prescribing how a canonical element of
A is formed as well as how two equal canonical elements of A are
formed.”

Per Martin-Lof (p8 in Intuitionistic Type Theory, Bibliopolis 1984)

This is the same as saying that a set is defined by its introduction rules, i
e, the rules for inductively generating its members.

35

Towards a language for constructive mathematics

Constructivism:

e Functions are computable
e Proofs of implications are computable functions (“methods”)
e A proof of a disjunction is either a proof of left or of right disjunct

e A proof of existence gives a witness

Hence, not excluded middle, not double negation.

36

What is the data?

e Kleene's partial recursive functions: natural numbers
e Turing machines: strings of characters

e Lambda calculus (untyped): lambda expressions (mix program and data)

Code natural numbers as strings of characters or as lambda expressions.

Code functions, pairs, etc as natural numbers (Godel coding). Even
coding proofs as natural numbers (Kleene realizability).

37

Types of data

Natural numbers N

Higher order functions A — B (cf Godel's T)

Propositions. Church type theory. Cf type U of small types.
More types? Cf development of programming languages.

In logic. Curry-Howard: 0,1, A+ B,A X B,¥,.4B,11,.4B.

This yields Martin-Lof type theory 1972. (Cf also Scott 1970: Construc-
tive validity - check. Has also version of W-type.).

38

Martin-Lof type theory and inductive definitions

Basic set formers: 1I,X,+,I,N,N,,, W, U,

Adding new set formers with their rules when there is a need for them:

lists, binary trees, the well-founded part of a relation,

Exactly what is a good inductive definition? Schemata for inductive

definitions, indexed inductive definitions, inductive-recursive definitions

Generic formulation: universes for inductive definitions, indexed inductive

definitions, inductive-recursive definitions

39

Formulae of minimal propositional logic

Another example of an ordinary inductive definition acceptable as a
primitive notion in Martin-Lof type theory:

Form : Set
Atom : N — Form
= : Form — Form — Form

Can it be defined in MLTTy?

40

Schema for ordinary inductive definitions of sets

Ordinary as opposed to generalized inductive definitions
Sets as opposed to families of sets.

We can introduce a new set P with finitely many constructors, where
each constructor has finitely many arguments, the types of which are either
P itself (an inductive argument/premise) or a set A (a side condition/non-
inductive premise). The set A may depend on previous side-conditions, and
may also make use of previously defined constants. It may not contain P.

The conclusion has type P.

41

Parameterized ordinary inductive definitions of sets

A definition can moreover depend on parameters which can have arbitrary
types (including the type of sets). This is a third kind of argument to a
constructor. The parameters always come before the side-conditions and
the inductive arguments. (Inductive arguments and side-conditions can be
mixed.)

All parameters appear as the initial arguments in formation, introduction,
and elimination rules for P.

Remark: more general schemata exist for inductive families, generalized
induction, and induction-recursion.

42

Lists as an example of a parameterized ordinary
inductive definition of a set

Example, lists are given by a parameterized ordinary inductive definition
of a set. The constructor

Cons : (A:Set) > A— [A] — [4]

has three arguments: A : Set is a parameter, a : A is a side-condition,
as : [A] is an inductive argument.

Exercise: Analyse the constructors of natural numbers, binary trees with
information in the leaves, the set Form of formulas of minimal logic above.
Analyse also x and X! What about — and II?

43

The inductive family of theorems

Thm : Form — Set

K : (a,b:Form) — Thm (a = b= a)
S : (a,b,c:Form) — Thm ((e == b=1¢) = (a = b) = a=c)
Mp : (a,b:Form)— Thm (¢ = b) - Thm ¢ — Thm b

Exercise. By Curry-Howard, Thm represents an inductively defined
predicate. Define the predicate Thm in MLT Ty up to logical equivalence!

44

Elimination rule for Thm

(C : (a : Form) = Thm a — Set) —

((a,b:Form) - C (a=b=a) (Kab)) —

((a,b,c:Form) - C ((a=b=c¢)=(a=b) =a=c¢) (Sabc)) —

((a,b: Form) = (p: Thm (¢ = b)) = (¢ : Thm a) —
Cla=bp—-Caq—>CbMpabpq)) —

(a : Form) = (p: Thma) > Cap

1:{Thm

45

Classical soundness of Thm

Exercise: use the elimination rules for Form and Thm to write the
follwoing two functions:

eval : (N — Bool) - Form — Bool

sound : (p:N — Bool) — (a: Form) — Thm a — (eval p a =g, True)

eval assigns classical semantics in Bool to each formula.

sound is a proof that all theorems are evaluated to True under this
semantics:

46

Equality rules for Thm

Rrim Cde f(a=b=a) (Kab) = dab

Rrim Cde f((a=b=c)=(a=0b)=a))(Sabc) = eabc

Rraim Cde foO(Mpabpq) = fabRmmCdef(a=0b)p)(RmmCde faq)

47

Schema for ordinary inductive definitions of families of
sets

Like for sets, except that we have indices (cf Martin-Lof 1971):

We can introduce a new family of sets P : I — Set with finitely many
constructors, where each constructor has finitely many arguments, the types
of which are either P p (an inductive argument/premise) or a set A (a
side condition/non-inductive premise). The index p : I and the set A may
depend on previous side-conditions, and may also make use of previously
defined constants. (A must not contain P.)

The conclusion has the type P q, where again ¢ : I may depend
on previous side-conditions, and may also make use of previously defined
constants.

48

Inductive families in Agda

One can use idata in Agda for defining inductive families.

If the index ¢ (in the conclusion type P q) is a variable, then one can
also use data in Agda.

49

A generalized inductive definition: the Brouwer ordinals

O : Set

0(9 . O
Succo : O —0
Supp, : N—0)—= 0O

Note that the type of the argument of Sup, is a function type, representing
the fact that it has an infinite number of (inductive) arguments. Note that
O appears strictly positively in the argument type.

50

Aczel rule set for Brouwer ordinals

We get set-theoretic semantics of (O by taking the set inductively
generated by the following rule set:

5Vl la e ViU R E s e vy 1)

51

Elimination rule

ordrec : (C:0 — Set) —
C 0o —
((r:0) = Cz— C (Succo) —
(f N 0) > ((:N) > C (f 2)) = C (Supo f)) =
(c:0) —
Cc

Exercise: write down the equality rules.

52

Some Brouwer ordinals

w = Supyp (Ananon): O
Nno N—O
ino 0 = Op
iNno (Succn) = Succo (tno n)

Why is
2w = Supy (An.R (An.0) w (Ay, z.Succe 2))?

Exercise. Do some more ordinals, eg w?, w¥, €g. Do ordinal addition.

53

Well-orderings

W : (A:Set) —» (A — Set) — Set

(A : Set) —

(B: A — Set) —
(a:A4)—
(Ba— W AB) —
W AB

Sup

Exercise: write down the elimination and equality rules.

54

Schema for generalized inductive definitions

Inductive arguments of constructors in a generalized inductive definition
of a set P can have types

(x1:41)—> ...~ A, —> P

where P does not appear in A;. (A; may depend on previous arguments,
etc.)

It is also possible to encode all sets given by a generalized inductive
definition in terms of W up to extensional equality.

Exercise: Find A and B so that W A B encodes N. Similar question
for the Brouwer ordinals. (See Martin-Lof 1984)

55

The set of finitely branching trees

We can define the set of finitely branching trees with arbitrary finite
branching degree (no information in the nodes)

Vo = W N Fin

56

Hereditarily finite iterative sets

The elements of Vg, can represent the hereditarily finite sets, i e, finite
sets all of whose elements are also hereditarily finite sets. However, when
comparing two hereditarily finite sets for equality, order and repetition of
elements do not matter. We define extensional equality as bisimilarity:

SUP N b =ext Supn' b = Vi:Finn. 3¢ :Finn'. bi=cx b ¢/ A

Vi :Finn'. 3 :Finn. b’ i/ =ext b1

(Note: we have omitted the two parameter arguments of Sup.)

Extensional membership is defined by

A Eext SUupnb = di:Finn.a =ex b1

57

Operations on hereditarily finite sets

Exercise: Define the empty hereditarily finite set. Define union and
intersection, and power set of a hereditarily finite set! Define the finite
ordinals.

58

Aczel’s constructive cumulative hierarchy V

Vin only contains hereditarily finite iterative sets. In a similar way we
can define Aczel’s set V of iterative sets by

V=WUT

The branching can now be indexed by an arbitrary (possibly infinite) small
set T a. The definitions of extensional equality and extensional membership
are analogous to those for Vgy,.

Aczel gives axioms for a constructive version CZF of ZF set theory,
where the axioms hold for V with extensional equality and extensional
membership.

59

Exercise: constructions in V

Check that the subset relation, the operations of union and intersection,
and the finite ordinals are defined in the same way as in Vgy,.

Construct the first infinite ordinal w : V!

What happens if we try to define the powerset of an arbitrary element
in V?

60

Constructive foundations

Predicative constructive systems:

Type theory. Martin-Lof type theory

Lambda calculus (untyped). Aczel's first order theory of combinators
(logical theory of constructions etc.). Use intuitionistic predicate logic
and inductive predicates on domain of lambda expressions. Cf Feferman’s
explicit mathematics.

Set theory. Aczel's Constructive ZF - use axioms for V

Category theory. Moerdijk - Palmgren’s predicative topos - axioms for the
category of setoids in Martin-Lof type theory

61

The well-founded part of a relation

Given a set A and a binary relation (>) on A an element z is in the
well-founded part of (>) if there is no infinite descending chain z > z; >
a:2 > « ..

An alternative definition is by a generalized inductive definition: z is in
the well-founded part of (>) provided all elements =’ which are “smaller”
(z > z') are in the well-founded part. In particular each “smallest” element
is in the well-founded part.

Wip : A — Set

Sup : (z:4)—= ((¢':A) = (z>2") > Wipz') > Wipx

62

Exercise: correspondence between the two definitions of
well-foundedness

Prove that the inductive definition implies the no-infinite descending
chain definition in Martin-Lof type theory!

Wip on the previous page was defined for a fixed set A and a fixed
relation (>). Rewrite the definiton so that A and (>) become parameters!

63

Using the well-founded part to encode general recursive
definitions

Encode general recursive function
f : A ->B

by
fli(x:A) - WipA(>¢)z— B

where (>:) is the recursive call relation: = >¢ ' whenever the computation
of £ = will generate a call £ '

64

Encoding division

For example, the partial recursive division function
divmn = if (n < m) then 0 else (divm (n - m))

has the recursive call relation (>g4ivy ,,,), Where

n>divm P = N=NmM+D

What is Wip (>giv .,)? What happens if m =y 07

65

Inductive-recursive definitions

Recall the inductive-recursive definition of the universe 4 la Tarski. We
only display one constructor to show the inductive-recursive nature of the
definition:

U : Set
T : U — Set

> ¢ (a:U)= (Ta—=U)—=U
T(Xab) = Xz:TaT(bax)

Why is such a strange definition constructively valid? Use Martin-Lof style
meaning explanations!

66

Inductive-recursive definition of ordered lists

OrdList : Set
Ilb : N — OrdList — Bool

Nil : OrdList
Cons : (x:N)— (zsp:OrdList) - T (Ib x zsp) — OrdList

Ibxz Nil = True
bz (Consyzspq) = <y

67

Set-theoretic semantics of the universe a la Tarski

Rule set

{{(a’jA)}U{(b(x),B(x)NxEA}|a,7AEVJ),BEA—)V}U

A

(X(a,b), Xz B(x))

Exercise: give similar set-theoretic semantics to the inductive-recursive
definition of sorted lists with the lower bound function!

68

Some references

e P. Aczel, An introduction to inductive definitions, chapter C.7 in the
Handbook of Mathematical Logic, North-Holland 1977.

e Inductive and inductive-recursive definitions in Martin-Lof type theory:
http://www.cs.chalmers.se/ “peterd/papers/inductive.html
e The calculus of inductive constructions:

http://pauillac.inria.fr/cdrom/www/coq/doc/node.0.3.html

69

