
Combining Veri�ation Methodsin Software Development:an Overview of a Researh Projet at Chalmers

Peter Dybjer

Workshop on Automati and Interative Veri�ationSenri, Japan18 April 2005

1

CoVer:Combining Veri�ation Methodsin Software Development

Goal: to build a system for verifying Haskell programs using aombination of� interative theorem proving� automati theorem proving� random testingAknowledgement: The Programatia projet at Oregon Graduate Institutein Portland. 2

Combining Three Researh Groups at Chalmers

Programming Logi: Martin-L�of Type Theory. Proof assistant Agda withwindow interfae Alfa. Automati proof searh using the Agsy tool.Formal Methods: SAT-solvers and automati �rst order logi theoremprovers. Appliations espeially in hardware veri�ation.Funtional Programming: Lazy funtional language Haskell. Randomtesting tool QuikChek.

3

How to do it?

Combining the languages of three di�erent kinds of tools:Agda: Proof assistant for onstrutive type theory: dependent types, totalfuntions.FOL: Automati theorem provers for lassial �rst order logi.Haskell: Lazy funtional language with Hindley-Milner types, partialreursive funtions. A \real" language, but we use Haskell ore.And QuikChek has its own \property language" ...

4

Three subgroups

Haskell - FOL: To translate a Haskell program into a �rst order theory ofombinators. Call external automati �rst order prover (Gandalf, Otter,...) to prove properties of the Haskell program.Haskell - Agda: To translate a Haskell program into Agda and use Agdato interatively prove properties of it.Agda - FOL: To translate suitable Agda types to �rst order formulas. Callexternal automati �rst order prover (Gandalf, Otter, ...) to prove theseformulas. Talk by Thierry Coquand about AgdaLight with FOL-pluginand QuikChek plugin.

5

Haskell - FOL

A Haskell program generates a �rst order theory of ombinators. Wehave one binary funtion symbol for appliation and one onstant for eahHaskell funtion.The translation is done in two steps:The Glasgow Haskell Compiler translates Haskell program into a orelanguage program (\the gh external ore").The CoverTranslator translates a ore program into a list of equationsbetween ombinator terms.Work in progress on the representation of types in �rst order logi, and onproof by indution. 6

Haskell - Agda

Haskell and Agda has an important ommon subset (modulo polymorphiprograms). Moreover, several ideas how to treat Haskell programs outsidethis subset:� Represent systematially general reursive Haskell program f :: A ! Bby domain prediate D :: A! Set and total funtionf 0 :: (x :: A)! D x! B� Use Agda as a logial framework for a �rst order theory of ombinators� Monadi translation of Haskell programs into Agda. Instantiate toMaybe-monad or to Identity-monad (or potentially other monads whihan deal with general reursion) 7

Haskell - QuikChek

A simple example of a property de�nition isprop_RevRev xs = reverse (reverse xs) == xswhere types = xs::[Int℄To hek the property, we load this de�nition in to hugs and then invokeMain> quikChek prop_RevRevOK, passed 100 tests.

8

Haskell - QuikChek (2)

Another QuikChek propertyprop_Insert x xs = ordered xs ==> ordered (insert x xs)where types = (x::Int, xs::[Int℄)and anotherprop_Insert2 x = forAll orderedList $ \xs -> ordered (insert x xs)where types = x::Int

9

Haskell - QuikChek (3)

To QuikChek onditional formulasp ==> qwhere types = (x1::t1,...,xn::tn)1. randomly generate (x1::t1,...,xn::tn)2. hek whether p is true, if not generate new (x1::t,...,xn::tn)3. hek whether q is true, if not we have a ounterexample, otherwise wehave a suessful test

10

QuikChek - FOL

QuikChek properties orrespond to formulas in a �rst order theory ofombinators generated by a Haskell program. For example,forAll orderedList $ \xs -> ordered (insert x xs)where types = x::Intorresponds to the �rst order formula8x:Int(x)) 8xs:OrderedList(xs)) ordered�((insert�x)�xs) = True
11

QuikChek - Agda

QuikChek-style properties an also be de�ned in Agda, using thedependent type system and the Curry-Howard isomorphism. For example,forAll orderedList $ \xs -> ordered (insert x xs)where types = x::Intorresponds to the type(x :: Int) -> (xs :: OrderedList) -> ordered (insert x xs) = Truein Agda. But note the following ...

12

QuikChek - Agda (2)

(x :: Int) -> (xsp :: OrderedList) -> ordered (insert x xsp) = Truewhereinsert :: Int -> OrderedList -> OrderedListordered :: OrderedList -> Boolso alwaysordered xsp = TrueMoreover, xsp ontains proof information, it's not just a list.We have replaed testing by proving! But we an ombine them(Haysahi)! 13

QuikChek - Agda (3)

PhD thesis of Qiao Haiyan 2003 supervised by M. Takeyama and PD.� QuikChek-plugin using Alfa's plugin interfae. There is now alsoQuikChek-plugin for AgdaLight (Ulf Norell 2004).� Random generators written in Agda/Alfa� Experiments with ombining testing and proving in Agda/Alfa:{ errors in the program{ errors in the spei�ation{ errors in the random generatorall are roughly equally ommon! 14

Three de�nitions of ordered lists

Reursive de�nitionOrderedList = (xs :: [Int℄, p :: ordered xs = True)Indutive de�nitionSingle :: (x :: Int) -> OrderedListHd xCons :: (x :: Int) -> OrderedListHd y -> Lte x y ->OrderedListHd xNil :: OrderedListConsHd :: (x :: Int) -> OrderedListHd x -> OrderedListIndutive-reursive de�nition ... 15

Indutive-reursive de�nition of ordered lists

Nil :: OrderedListCons :: (x :: Int) -> (xsp :: OrderedList) -> lb x xsp = True ->OrderedListlb :: Int -> OrderedList -> Boollb x Nil = Truelb x (Cons y xsp q) = x <= y

16

Test data generation and indutive de�nitions

Indutive de�nitions are generators: \indutively generated". A naiveanonial generator for an indutively de�ned data type is obtained byseleting a onstrutor at random, and then ontinue and randomly generatethe arguments.This works for �rst order datatypes (algebrai datatypes) whereonstrutors are �rst order funtions.In onstrutive type theory we have indutively de�ned families of types(\indutive families"). The same basi priniple of hoosing a onstrutorat random works, but we may need to baktrak. Use relationship betweenHorn indutive families and logi programs (Hagiya and Sakurai 1984).
17

Generating theorems

Horn lauses orresponding to to the axioms and inferene rules of asystem due to Lukasiewiz:thm((P => Q) => ((Q => R) => (P => R))).thm((~P => P) => P).thm(P => (~P => Q)).thm(Q) :- thm(P), thm(P => Q).Running the query thm(X) on a Prolog implementation, we an obtaintheorems (shemas) as solutions for X; for exampleX = (((_A => _B) => (_C => _B)) => _D) => ((_C => A) => _D)
18

Type theory and logi programs

Type theory Logi programmingFamily of sets P :: D ! Set Prediate Pan introdution rule a Horn lauseindutive de�nition of P logi program de�ning P

We all an indutive family arising from a logi program a Horn indutivefamily. This is a subset of the general lass of indutive families onsideredin type theory.

19

An indutive family of theorems

Formula is an indutively de�ned set of formulas.Thm :: Formula -> Set = dataax1 (p, q, r :: Formula):: Thm ((p => q) => ((q => r) => (p => r)))| ax2 (p :: Formula):: Thm ((-p => p) => p)| ax3 (p, q :: Formula):: Thm (p => (-p => q))| mp (p, q :: Formula) (x :: Thm p) (y :: Thm (p => q)):: Thm q

20

Another onnetion between indutive familiesand logi programs

nat(zero).nat(su(X)) :- nat(X).formula(var(P)) :- nat(P).formula(~P) :- formula(P).formula(P => Q) :- formula(P), formula(Q).thm1((P => Q) => ((Q => R) => (P => R)), ax1(P,Q,R)):- formula(P), formula(Q), formula(R).thm1((~P => P) => P, ax2(P)) :- formula(P).thm1(P => (~P => Q), ax3(P,Q)) :- formula(P), formula(Q).thm1(Q, mp(P,Q,X,Y)) :- thm1(P, X), thm1(P => Q, Y). 21

Conluding remarks

� When a set or a family is (Horn) indutively generated we an alsorandomly generate or reursively enumerate its elements.� This is a generi tehnique. A generator an be written for the wholelass of Horn indutive families. (EÆieny is not guaranteed, just likein Prolog.)� The tehnique does not only apply to dependent type theory. A variantan be used in prediate logi with indutively de�ned prediates.
22

