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CoVer:Combining Veri�ation Methodsin Software Development

Goal: to build a system for verifying Haskell programs using aombination of� interative theorem proving� automati theorem proving� random testingAknowledgement: The Programatia projet at Oregon Graduate Institutein Portland. 2



Combining Three Researh Groups at Chalmers

Programming Logi: Martin-L�of Type Theory. Proof assistant Agda withwindow interfae Alfa. Automati proof searh using the Agsy tool.Formal Methods: SAT-solvers and automati �rst order logi theoremprovers. Appliations espeially in hardware veri�ation.Funtional Programming: Lazy funtional language Haskell. Randomtesting tool QuikChek.
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How to do it?

Combining the languages of three di�erent kinds of tools:Agda: Proof assistant for onstrutive type theory: dependent types, totalfuntions.FOL: Automati theorem provers for lassial �rst order logi.Haskell: Lazy funtional language with Hindley-Milner types, partialreursive funtions. A \real" language, but we use Haskell ore.And QuikChek has its own \property language" ...
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Three subgroups

Haskell - FOL: To translate a Haskell program into a �rst order theory ofombinators. Call external automati �rst order prover (Gandalf, Otter,...) to prove properties of the Haskell program.Haskell - Agda: To translate a Haskell program into Agda and use Agdato interatively prove properties of it.Agda - FOL: To translate suitable Agda types to �rst order formulas. Callexternal automati �rst order prover (Gandalf, Otter, ...) to prove theseformulas. Talk by Thierry Coquand about AgdaLight with FOL-pluginand QuikChek plugin.
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Haskell - FOL

A Haskell program generates a �rst order theory of ombinators. Wehave one binary funtion symbol for appliation and one onstant for eahHaskell funtion.The translation is done in two steps:The Glasgow Haskell Compiler translates Haskell program into a orelanguage program (\the gh external ore").The CoverTranslator translates a ore program into a list of equationsbetween ombinator terms.Work in progress on the representation of types in �rst order logi, and onproof by indution. 6



Haskell - Agda

Haskell and Agda has an important ommon subset (modulo polymorphiprograms). Moreover, several ideas how to treat Haskell programs outsidethis subset:� Represent systematially general reursive Haskell program f :: A ! Bby domain prediate D :: A! Set and total funtionf 0 :: (x :: A)! D x! B� Use Agda as a logial framework for a �rst order theory of ombinators� Monadi translation of Haskell programs into Agda. Instantiate toMaybe-monad or to Identity-monad (or potentially other monads whihan deal with general reursion) 7



Haskell - QuikChek

A simple example of a property de�nition isprop_RevRev xs = reverse (reverse xs) == xswhere types = xs::[Int℄To hek the property, we load this de�nition in to hugs and then invokeMain> quikChek prop_RevRevOK, passed 100 tests.
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Haskell - QuikChek (2)

Another QuikChek propertyprop_Insert x xs = ordered xs ==> ordered (insert x xs)where types = (x::Int, xs::[Int℄)and anotherprop_Insert2 x = forAll orderedList $ \xs -> ordered (insert x xs)where types = x::Int

9



Haskell - QuikChek (3)

To QuikChek onditional formulasp ==> qwhere types = (x1::t1,...,xn::tn)1. randomly generate (x1::t1,...,xn::tn)2. hek whether p is true, if not generate new (x1::t,...,xn::tn)3. hek whether q is true, if not we have a ounterexample, otherwise wehave a suessful test
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QuikChek - FOL

QuikChek properties orrespond to formulas in a �rst order theory ofombinators generated by a Haskell program. For example,forAll orderedList $ \xs -> ordered (insert x xs)where types = x::Intorresponds to the �rst order formula8x:Int(x)) 8xs:OrderedList(xs)) ordered�((insert�x)�xs) = True
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QuikChek - Agda

QuikChek-style properties an also be de�ned in Agda, using thedependent type system and the Curry-Howard isomorphism. For example,forAll orderedList $ \xs -> ordered (insert x xs)where types = x::Intorresponds to the type(x :: Int) -> (xs :: OrderedList) -> ordered (insert x xs) = Truein Agda. But note the following ...
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QuikChek - Agda (2)

(x :: Int) -> (xsp :: OrderedList) -> ordered (insert x xsp) = Truewhereinsert :: Int -> OrderedList -> OrderedListordered :: OrderedList -> Boolso alwaysordered xsp = TrueMoreover, xsp ontains proof information, it's not just a list.We have replaed testing by proving! But we an ombine them(Haysahi)! 13



QuikChek - Agda (3)

PhD thesis of Qiao Haiyan 2003 supervised by M. Takeyama and PD.� QuikChek-plugin using Alfa's plugin interfae. There is now alsoQuikChek-plugin for AgdaLight (Ulf Norell 2004).� Random generators written in Agda/Alfa� Experiments with ombining testing and proving in Agda/Alfa:{ errors in the program{ errors in the spei�ation{ errors in the random generatorall are roughly equally ommon! 14



Three de�nitions of ordered lists

Reursive de�nitionOrderedList = (xs :: [Int℄, p :: ordered xs = True)Indutive de�nitionSingle :: (x :: Int) -> OrderedListHd xCons :: (x :: Int) -> OrderedListHd y -> Lte x y ->OrderedListHd xNil :: OrderedListConsHd :: (x :: Int) -> OrderedListHd x -> OrderedListIndutive-reursive de�nition ... 15



Indutive-reursive de�nition of ordered lists

Nil :: OrderedListCons :: (x :: Int) -> (xsp :: OrderedList) -> lb x xsp = True ->OrderedListlb :: Int -> OrderedList -> Boollb x Nil = Truelb x (Cons y xsp q) = x <= y
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Test data generation and indutive de�nitions

Indutive de�nitions are generators: \indutively generated". A naiveanonial generator for an indutively de�ned data type is obtained byseleting a onstrutor at random, and then ontinue and randomly generatethe arguments.This works for �rst order datatypes (algebrai datatypes) whereonstrutors are �rst order funtions.In onstrutive type theory we have indutively de�ned families of types(\indutive families"). The same basi priniple of hoosing a onstrutorat random works, but we may need to baktrak. Use relationship betweenHorn indutive families and logi programs (Hagiya and Sakurai 1984).
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Generating theorems

Horn lauses orresponding to to the axioms and inferene rules of asystem due to Lukasiewiz:thm((P => Q) => ((Q => R) => (P => R))).thm((~P => P) => P).thm(P => (~P => Q)).thm(Q) :- thm(P), thm(P => Q).Running the query thm(X) on a Prolog implementation, we an obtaintheorems (shemas) as solutions for X; for exampleX = (((_A => _B) => (_C => _B)) => _D) => ((_C => A) => _D)
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Type theory and logi programs

Type theory Logi programmingFamily of sets P :: D ! Set Prediate Pan introdution rule a Horn lauseindutive de�nition of P logi program de�ning P

We all an indutive family arising from a logi program a Horn indutivefamily. This is a subset of the general lass of indutive families onsideredin type theory.
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An indutive family of theorems

Formula is an indutively de�ned set of formulas.Thm :: Formula -> Set = dataax1 (p, q, r :: Formula):: Thm ((p => q) => ((q => r) => (p => r)))| ax2 (p :: Formula):: Thm ((-p => p) => p)| ax3 (p, q :: Formula):: Thm (p => (-p => q))| mp (p, q :: Formula) (x :: Thm p) (y :: Thm (p => q)):: Thm q
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Another onnetion between indutive familiesand logi programs

nat(zero).nat(su(X)) :- nat(X).formula(var(P)) :- nat(P).formula(~P) :- formula(P).formula(P => Q) :- formula(P), formula(Q).thm1((P => Q) => ((Q => R) => (P => R)), ax1(P,Q,R)):- formula(P), formula(Q), formula(R).thm1((~P => P) => P, ax2(P)) :- formula(P).thm1(P => (~P => Q), ax3(P,Q)) :- formula(P), formula(Q).thm1(Q, mp(P,Q,X,Y)) :- thm1(P, X), thm1(P => Q, Y). 21



Conluding remarks

� When a set or a family is (Horn) indutively generated we an alsorandomly generate or reursively enumerate its elements.� This is a generi tehnique. A generator an be written for the wholelass of Horn indutive families. (EÆieny is not guaranteed, just likein Prolog.)� The tehnique does not only apply to dependent type theory. A variantan be used in prediate logi with indutively de�ned prediates.
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