
PLPV, August 2006

Introduction History Haskell, Agda, and FOL Conclusion

Programming Languages
Meet

Program Verification

Peter Dybjer

Chalmers University, Göteborg, Sweden

Seattle, 21 August, 2006

PLPV, August 2006

Introduction History Haskell, Agda, and FOL Conclusion

Theme of workshop

Recent work is exploring alternative, language-based approaches to
program verification . In these approaches, the programming
language provides mechanisms which allow the programmer to
express, in some way, her knowledge of why her code meets its
specification. This knowledge is connected more intimately to the
code than is usually the case for theorem proving approaches .
One commonly used mechanism is dependent types. Specifications
are expressed as types, and the programming language allows proofs
of those specifications to be expressed as terms inhabiting those
types. Pre- and post-conditions of functions are recorded in their input
and return types, and the functions require and produce proofs of
those conditions as additional inputs and outputs. One exciting
possibility is that languages for programming with proofs may enable
developers to target a "continuum of correctness," through varying
amounts of effort on specification and verification.

PLPV, August 2006

Introduction History Haskell, Agda, and FOL Conclusion

Two main themes?

integrated vs external programming logic Curry-Howard, dependent
types, etc

continuum of correctness some properties can be proved
automatically or tested

PLPV, August 2006

Introduction History Haskell, Agda, and FOL Conclusion

The CoVer Project, Chalmers, 2003 - 2005

CoVer = Combining Verification Methods in Software Development.

System for verifying Haskell programs by testing and proving
(automatic and interactive)

When Programming Languages met Program Verification at
Chalmers

When Haskell (a programming language) met Agda (a program
verification system based on constructive type theory)

The CoVer team : Andreas Abel, Marcin Benke, Ana Bove, Koen
Claessen, Catarina Coquand, Thierry Coquand, Nils-Anders
Danielsson, Peter Dybjer, Grégoire Hamon, John Hughes, Fredrik
Lindblad, Patrik Jansson, Ulf Norell, Mary Sheeran

PLPV, August 2006

Introduction History Haskell, Agda, and FOL Conclusion

What is Agda?

A proof assistant for dependent type theory developed at Chalmers
since 1997 or so. Successor of the ALF system (1990 -). Especially
proof by pointing and clicking.
Agda is an implementation of

Martin-Löf constructive type theory? (with inductive definitions?)

Martin-Löf’s logical framework? (dependently typed lambda
calculus with a universe of sets)

A functional programming language with dependent types?

PLPV, August 2006

Introduction History Haskell, Agda, and FOL Conclusion

The CoVer project - Plan

History (2000 - 2006)

Contributions

Scientific issues

Principal debates

Socio-scientific issues

Lessons for the future

A personal view ...

PLPV, August 2006

Introduction History Haskell, Agda, and FOL Conclusion

History of CoVer

2000 The Programatica vision. Mark Jones visits Gothenburg.

2001 The CoVer proposal to SSF (Swedish Strategic
Research Foundation).

2002 A pre-study. Combining testing and proving for
Agda/Alfa.

2003 First steps. Which approach?

2004 Splitting up: into two subgroups, into three subgroups.

2005 Progress. CoVer-translator, AgdaLight, etc.

2006 Project finished. QuickCheck in industry. Agda in Japan.

PLPV, August 2006

Introduction History Haskell, Agda, and FOL Conclusion

The Programatica vision (2000)

Mark Jones (2000). Imagine it is 2010!

"Do you remember the days when we didn’t prove our
programs correct?"

PLPV, August 2006

Introduction History Haskell, Agda, and FOL Conclusion

Programatica

In the Programatica project, we are developing a new kind of program
development environment that actively supports and encourages its
users in thinking about, stating, and validating key properties of
software as an integral part of the programming process .

Critically, however, our environment will allow property assertions to be
annotated with “certificates” that provide evidence of validity. By
adopting a generic interface, many different forms of certificate will be
supported, offering a wide range of validation options —from
low-cost instrumentation and automated testing, to machine-assisted
proof and formal methods. Individual properties and certificates may
pass through several points on this spectrum as development
progresses, and as higher levels of assurance are required. To
complete the environment, a suite of "property management” tools
will provide users with facilities to browse or report on the status of
properties and associated certificates within a program, and to explore
different validation strategies.

PLPV, August 2006

Introduction History Haskell, Agda, and FOL Conclusion

The CoVer proposal (2001-2002)

Chalmers has three research groups with relevant knowledge for the
Programatica project.

Functional Programming Group Haskell. Random testing with
QuickCheck.

Programming Logic Group Martin-Löf type theory. Interactive proof
with Agda.

Formal Methods Group SAT-solvers, automatic theorem provers for
first order predicate logic (FOL). Applications in
hardware.

SSF call for research proposals in IT, summer 2001. We proposed to
build

Programatica-like system based on Agda (adding QuickCheck
and automatic methods to Agda)

... for Haskell!

It got funded (2002)!

PLPV, August 2006

Introduction History Haskell, Agda, and FOL Conclusion

Combining testing and proving in Agda/Alfa (2002-2003)

A QuickCheck property

prop x = p x ==> q x
where types = x :: a

Corresponding formula in typed predicate logic

∀x : a.px ⇒ qx

The corresponding type in Agda: a testable type provided there is a
generator for x :: a such that px = True

(x : a)→ (px =Bool True)→ (qx =Bool True)

testing as an aid to proving (Hayashi)

reasoning about test data generators

character of testable types

PLPV, August 2006

Introduction History Haskell, Agda, and FOL Conclusion

The project starts. Which approach? (2003)

Agda-centered. Embed Haskell somehow in Agda and prove
properties using Agda.

Haskell-centered. Prove properties about Haskell-programs by
translation into FOL and use off-the-shelf prover
(Vampire, Gandalf).

Dependent Haskell. Design extension of Haskell with dependent
types. A partial type theory !

Disadvantages and uncertainties with all approaches!

PLPV, August 2006

Introduction History Haskell, Agda, and FOL Conclusion

Splitting up (2004)

Automatic group Haskell-centered. (FP, FM).

Interactive group Agda-centered. (Proglog)

Not clear how to unify the results of these two groups.

PLPV, August 2006

Introduction History Haskell, Agda, and FOL Conclusion

Splitting up again (2004)

Haskell-FOL How to use automatic FOL-prover to prove
Agda-theorems?

Agda-FOL How to use automatic FOL-prover to prove
Agda-theorems?

Haskell-Agda How to use Agda for doing interactive proofs about
Haskell programs?

PLPV, August 2006

Introduction History Haskell, Agda, and FOL Conclusion

Haskell, Agda, and FOL. What is known about their
relationships?

Haskell - FOL first order combinatory terms from lambda terms
(lambda lifting)

Haskell - Agda encoding general recursive language in primitive
recursive language

FOL - Agda Curry-Howard. Agda as a logical framework

Agda - FOL Aczel-interpretation (of type theory into first order theory
of combinators; cf abstract realizability, per-model)

Haskell - Haskell Core by ghc compiler

A translation project!

PLPV, August 2006

Introduction History Haskell, Agda, and FOL Conclusion

First order theory of combinators (Aczel 1974)

Terms (one binary function symbol + two constants)

t ::= x | t t | K | S

Propositions (three unary predicate symbols + equality + logical
constants)

Φ ::= N (t) | P (t) | T (t) | t = t |
∀x .Φ | ∃x .Φ | Φ→Φ | Φ&Φ | Φ∨Φ | > | ⊥

(Alternative:
· · · | t =N t | t =P t

gives per-model)

PLPV, August 2006

Introduction History Haskell, Agda, and FOL Conclusion

First order theory of combinators

s = t means that s and t are convertible:

K x y = x

Sx y z = x z (y z)

N (t) means that t is equal to a Church numeral (λ-terms by
bracket abstraction). The rules are

N (0)
N (x) =⇒ N (Succx)

Φ[0] =⇒ (∀x .Φ[x] =⇒ Φ[Succx]) =⇒ ∀y .N (y) =⇒ Φ[y]

PLPV, August 2006

Introduction History Haskell, Agda, and FOL Conclusion

Internal propositions and truths

P (t) means that t is a code for a proposition. Such codes
(internal propositions) are also obtained by Church-style
encodings.

T (t) means that t is a code for a true proposition.

PLPV, August 2006

Introduction History Haskell, Agda, and FOL Conclusion

The interpretation of Martin-Löf type theory
in Aczel’s first order theory of combinators

Two examples:

f : N→ N as ∀x .N (x) =⇒ N (f x)
c : N×N as ∃x .∃y .N (x) & N (y) & c = (x ,y)

PLPV, August 2006

Introduction History Haskell, Agda, and FOL Conclusion

Haskell - FOL

Use automatic FOL prover for proving properties of real Haskell
programs

Compiler (ghc) translates Haskell programs to core language
programs

CoverTranslator translates core programs to first order theories
(lambda lifting, case lifting)

Discussion points

How to translate types?

How to prove properties by induction automatically?

Which axioms are most important for Haskell?

PLPV, August 2006

Introduction History Haskell, Agda, and FOL Conclusion

Agda - FOL

How to use a FOL-prover to build proofs in Agda? (Earlier tool Agsy -
the Agda synthesizer)
AgdaLight a new experimental implementation of Agda with the
following goals

a light and well-documented system suitable for collaborative
experimental work

connection to external tools for automatic proofs and tests.
Automatically generated proofs of universally quantified
propositional formulae

∀x .P

can be translated into Agda-derivations of types

(x : A)→ P∗

hidden arguments as alternative to ML-polymorphism. Agda is a
"monomorphic" language, but the type-checker can often infer
some of the arguments.

PLPV, August 2006

Introduction History Haskell, Agda, and FOL Conclusion

Haskell - Agda

Unlike Agda, Haskell has

partial functions

general recursion

lazy data structures

(reflexive and nested data structures)

polymorphism

and

it’s a real language, not an idealized one!

How can we use Agda for proving properties about Haskell programs.
There are several possibilities, but which one should we choose?

PLPV, August 2006

Introduction History Haskell, Agda, and FOL Conclusion

Haskell - Haskell core - Agda

Monadic translation of Haskell core into Agda:

identity monad when Haskell programs are sure to terminate

partiality monad when termination is decidable

general recursion monad ... not tried (cf work of Capretta)

PLPV, August 2006

Introduction History Haskell, Agda, and FOL Conclusion

Haskell - Agda: Andreas’ fairy tale

Once upon a time, in the year two thousend and two of the Lord, on a
fair Spring afternoon, King Haskell of Glasgow , regent of great
countries and many subordinates (including the Hackers in the Great
Green Forests), owner of great treasures, old and powerful scripts and
uncountable lines of code, fell deeply in love with Miss Agda, a young
and merry virgin from the small village of Gothenburg in the
remote Land of the Welldefined Pleasures . From one day to the
other, he could think of nothing but her graceful appearance, her fair
countenance and innocent, bubbling laughter. He knew that he would
have no rest until he and she lived under one roof and shared one
cover . His love was of such fervour that he immediately proposed to
her and started to prepare the grand wedding. Although the
preparations dragged along and many foreseeable complications had
to be overcome (how could such a great aristocrat of noble blood
marry a simple woman with no noteworthy dowry), the wedding was
finally arranged to be held on a bright October day in the year two
thousend and four of the Lord.
"The marriage contract says that King Haskell should be in control: His
programs should be translated to Miss Agda and she should attest
them welldefinedness. However, his language is much richer than
hers, and his short commands have to be turned into lengthy
descriptions which will only disturb the sensitive Miss Agda. Even if
she manages to unknot his distorted translations, but fails to attest
welldefinedness since his commands were flawed, all her toil will be
lost, since then he needs to change his order, let them translate again
and poor Miss Agda has to start over. By that time Miss Agda will
become very frustrated and stop verifying his orders. Thus, the
contract has to be changed. Miss Agda has to device the programs,
verify them herself and then give an extract to King Haskell which he
can execute."
"WHAT??!!", shouted King Haskell out of his mind of anger, "I, regent
of great countries and many subordinates (including the Hackers in the
Great Green Forests), owner of great treasures, old and powerful
scripts and uncountable lines of code, should obey the orders of my
wife, a poor girl from the village of nowhere? Never."

PLPV, August 2006

Introduction History Haskell, Agda, and FOL Conclusion

The moral of the story:

Translating Haskell into Agda for interacttive proving is not feasible.
One needs *one* source language to do all the work in. Either one
programs and specifies properties in Haskell and lets the properties be
automatically tested or proven by a batch tool (compiler like). Or one
programs in Agda where one can equip datastructures and functions
with informative invariants. Then one does the interactive proof where
one has written and can recognize ones programs. The human being
must be the front end, so making him the back end of a translator will
fail.

PLPV, August 2006

Introduction History Haskell, Agda, and FOL Conclusion

Cover achievements

Combining testing and proving in Agda

AgdaLight with plug-ins, FOL, QuickCheck,

QuickCheck improvements, QuickCheck for Erlang.

CoverTranslator for automatically proving properties of Haskell
programs using FOL-prover

monadic CoverTranslator for proving properties of Haskell
interactively using Agda.

Lack of progress: interactive proof of Haskell programs, case studies
combining different features. Darcs.

PLPV, August 2006

Introduction History Haskell, Agda, and FOL Conclusion

After CoVer (2006)

QuickCheck Application of QuickCheck for Erlang in industry. (Check
with John)

Agda 2 Integrated Verification System jointly being developed
by Chalmers and CVS-AIST in Japan. Builds on
AgdaLight experience (hidden arguments, connecting
external tools, light, well-documented system).

CoverTranslator Automatic proofs of properties of Haskell programs?
Case studies? Darcs system.

PLPV, August 2006

Introduction History Haskell, Agda, and FOL Conclusion

Scientific issues

What is the logic of Haskell? What is the semantics of Haskell?
What is the logic of an idealized lazy functional programming
language? What is the appropriate idealized lazy functional
programming language?

How do you implement the logic of Haskell? Can you deal with
the whole general recursive lazy language and still benefit from
dependent type theory style type-checking for a terminating
subset of the language?

What is the theory of combining proving and testing?
Connections between type theory and testing? What is the logical
basis of testing?

Can constructive type theory be a practical programming
language?

PLPV, August 2006

Introduction History Haskell, Agda, and FOL Conclusion

Principal debates

Shall we work with a real language (like Haskell) or with an
idealized language?

What should be the fundamental architecture of the system?
Shall we build a Haskell-centered system or an Agda-centered
system?

Can we use Agda to prove properties about Haskell? (Scientific
issues)?

Can we manually prove interesting properties about translated
code (full Haskell to external core)?

Is it important to be able to reason about non-termination in
Haskell?

Should we maintain advanced user interface (Alfa)?

Etc

PLPV, August 2006

Introduction History Haskell, Agda, and FOL Conclusion

Socio-scientific issues

CoVer - a software project based on front-line research! needs
advanced theory as well as programming wizardry! necesarily a
collaborative project - it must combine theorety and practice, logic and
programming - many people must collaborate.

culture clash (how do you get the union rather than the
intersection of people’s knowledge??)

academic system (financing of people, hierarchy,

motivations of researchers

research funding system (SSF)

when is a problem solved?

project management

PLPV, August 2006

Introduction History Haskell, Agda, and FOL Conclusion

Lessons for the future - my view

We probably tried to do too many new things at once

combine proving and testing

encode general recursion in constructive type theory (in a
practical way)

deal with a full real language with a complex structure.

But

Programatica - CoVer vision A good idea, but start with a clean subset
of Haskell!

Specify early Define the language and axioms early. Use standard
first order logic.

Implementation Try to use Agda as logical framework. Build support
for Haskell verification. (Alternatives, use Isabelle or
build dedicated prover.)

Testing and proving Experiment with external tools. There is probably
much to learn!

	Introduction
	History
	Haskell, Agda, and FOL
	Conclusion

