Combining Testing and Proving
in Dependent Type Theory

Peter Dybjer Qiao Haiyan
Makoto Takeyama

Department of Computing Science
Chalmers University of Technology

TPHOL 2003, Rome

10 September

Dijkstra:

Testing can never prove the absence of errors
— only the presence of them ...

Program specification
in Martin-Lof type theory

The program f : A — B satisfies the input-output
relation R under the precondition P:

Vr: A Px D Rzx(fx)

In Martin-Lof type theory (used as an external logic)
this becomes the type:

(x :: A) >Px >R x (f
Here

P ::
R ::

A -> Set

A -> B -> Set

do not need to be computable; they can e g use
quantifiers and inductive definitions.

Testable specifications

If we have shown that R is computable by defining
r :: A -> B -> Bool

such that
Rxy<>T (rxy)

where

T :: Bool —-> Set

Unit -- one-element set
Empty -- empty set

T True
T False

then the specification is testable provided we have a
complete enumeration

a0, al, a2,

of all correct inputs a :: A suchthat P a is true.

Random testing

Pragmatically, it might be better to choose random
inputs, as long as all inputs in the enumeration indeed
have a chance to be chosen:

QuickCheck a tool for random testing of Haskell
programs, K. Claessen and J. Hughes, ICFP 2000.

We here extend

Agda proof assistant for Martin-Lof style type theory,
C. Coquand.

Alfa window interface for Agda, T. Hallgren.

by a QuickCheck-like testing tool. But specification
language and test-data generation now becomes
internal to Martin-Lof type theory!

Generating test-cases

Test-data generator for a datatype D has type
genD :: BT -> D
rather than genD :: N -> D .

Library of generators for common datatypes
(opportunity for generic programming?)

If the precondition is computable, i e there is
p : A -> Bool such that P x <-> T (p x) ,
then we can overestimate and automatically discard
test-cases that do not satisfy the precondition (cf

QuickCheck)

If the precondition P is given as an inductively
defined predicate (a la Prolog) then we can use a
Prolog-like technique for generating test-cases

Three kinds of errors

e error in the program
e error in the specification

e error in the generation of test-data

The last is most treacherous! This is a reason for
writing test-data generators inside Agda/Alfa, so that
we can prove surjectivity i e correctness of test-data
generators.

Combining testing and proving

e Testing is helpful during proof development

— Debug programs and specifications
— Check speculative steps

e Proving helps testing:

— Decompose a testing task into simpler testing
tasks

— Build consequences of tested properties

— Correctness of test-data generation

Testing Example

In Haskell:

reverse::[a] -> [a]
reverse [] = []
reverse (x:xs) = reverse xs ++ [x]

A property in QuickCheck:

prop_RevRev xs = reverse (reverse xs) == xs
where types = xs::[Int]

QuickCheck the property:

Main> quickCheck prop_RevRev

0K, passed 100 tests.

Testing does not guarantee correctness (Dijkstra ...)

Proving The Property

The property in Agda/Alfa:
(xs::[Nat]) -> T (reverse(reverse xs) == Xs)

The property can be proved by induction. In the step
case, it follows from the following lemma:

(xs::[Nat]) -> (x::Nat) ->
T (reverse (xs++[x]) == x:(reverse xs8))

We can try to prove it.

But, it has testable form so why not test it before
proving it? Helps us avoid trying to prove false goals.

Our Testing Tool for Agda/Alfa

|

Menu | .

@ [TE:shrd] TEST: show test result using domain-based generators
@ [TE:sod] TEST: solve goal using domain-based generators

Jusers/cs/qiao/Agda/NewBinTree/Reverse.agd

Tt o R o o e e e e S T T
i

File [E]

Edit [z] | view (=] | Options (= | Utils [E]

lem € {xs € [Nat],x € Nat) —

T{reuer&re {:x:&r -+ [::]] - {x : Feverse :x:a]]

lem = 72

. looks for standard generators for lists and natural

numbers and generates test data (xs, x)

. computes

reverse (xs++[x]) == x:(reverse xs)

. if false, returns the counterexample (xs, x)

. if true, repeat the process a given number of times

10

Generation of test data

In Haskell

BT

rnd

randomly generated
by QuickCheck

In Agda/Alfa
BT D
genD
rnd’ d
binary tree elemen

in Agda/Alfa

11

Testing Conditional Properties

|

Menu |4

i@ [TE:shrs] TEST: show test result using special-purpose generator
@ [TE:sos] TEST: solve goal using special-purpose generator

Y

i — Jusers/cs/qiao/Agda/B5T1 .agda
File (] | Edit] | view [| Options (] | Utils]

 bst € [mmmﬂm € Nat t€ BT, key € Nat,]
p € IsBST min max t ~

T'(binSearch t key == member t key)
bet = 75

e With standard “domain-based” generator, most test
data are discarded (do not satisfy the precondition)

e Interested in those (min, max, t, key) which
satisfies the condition (isBST min max t)

e “Special’ generator generates dependent records:
(min, max, t, key, p::T (isBST min max t))

12

A larger example: AVL-insertion

AVL-tree: balanced binary search tree

Balanced Empty = True

Balanced (Branch root 1t rt) =
|#1t - #rt| <=1
&& Balanced 1t && Balanced rt

insert::BT -> a -> BT
insert (Branch root 1t rt) key
| key < root =
insert_1 key root (insert 1t key) rt

insert_1 key root (Branch root’ 1lt’ rt’) rt
= let newlt = Branch root’ 1lt’ rt’

t’ = Branch root newlt rt
in if (#newlt - #rt == 2)
then if (#1t’ > #rt’)
then rotatelLeft t’

else doubleRotatelLeft t’

13

insert preserves balanced (1)

We show a testing-proving interaction for proving

(t::BT) -> Balanced t -> (key::Nat)
-> Balanced (insert t key)

1. We first do the top-level testing of the property.
(No point to prove a property with bugs!)

2. Then we start proving by induction on t and case-
analysis. We will look at the case where

- t = Branch root 1t rt
- key < root
- #(insert 1t key) - #rt /= 2

Agda generates the subgoal
Balanced (Branch root 1t rt)

-> T (#(insert 1t key) - #rt /= 2)
-> Balanced (Branch root (insert 1t key) rt)

14

insert preserves balanced (2)

3. Disposing easy parts, it becomes

T ([#1t - #rt]| <= 1)
-> T (#(insert 1t key) - #rt /= 2)
-> T (|#(insert 1t key) - #rt| <= 1)

4. Abstracting from heights to numbers, we speculate
a lemma

(x,y,z::Nat)

> T (ly - z| <= 1)

> T (x -2z /=2)

> T (lx - z| <= 1) (A)

((x,y,2) < (#(insert 1t key),#1t, #rt))

15

insert preserves balanced (3)

5. Test of the speculated lemma (A) failed with
counterexample (x,y,z) = (3,1,0).

6. Analysing the counterexample, we realise that
#(insert 1t key) — #1t = 2 cannot happen.
We revise the speculation (A) to two subgoals:

(1t::BT)-> Balanced 1t
-> #(insert 1t key) - #1t <=1 (B1)

(x,y,z::Nat)
-> T (ly - z| <= 1)
> T (x -2z /=2)
> T(x-y <=1)
-> T (lx - z| <= 1) (B2)

7. Test: (B1) passed the test, but (B2) failed with
a counterexample (x,y,z) = (0,1, 2).
But #(insert 1t key) < #1t cannot happen.

d

16

insert preserves balanced (4)

8. Reformulating (B2) to

(1t::BT)-> Balanced 1t
-> #(insert 1t key) >= #1t (C1)

(x,y,z::Nat)
> T (ly - z| <= 1)
> T (x -2z /= 2)
> T (x-y <=1)
-> T (x >=vy)
> T (lx - z| <= 1) (C2)

9. Test (C1) and (C2), no counterexample is returned.

17

Finally

Testing and proving guided us from the original goal
to proving the following simpler properties:

(B1) (1t::BT)-> Balanced 1t
-> #(insert 1t key) - #1lt <= 1

(C1) (1t::BT)-> Balanced 1t
-> #(insert 1t key) >= #1t

(C2) (x,y,z::Nat)
> T (ly - z| <=1)
> T (x -2z /=2)
> T (x-y <=1)
-> T (x >= y)
-> T (Ix - z| <= 1)

18

The Generators (1)

The generator for type D is an Agda/Alfa function:

genD::BT -> D
where
data BT = Empty
| Branch (root::Nat) (1t::BT) (rt::BT)

Example: Generating balanced trees

genBBT: :Nat -> BT -> BT
genBBT Zero Empty = Empty
genBBT (Succ Zero) (Branch root 1 r) =
Branch root Empty Empty
genBBT (Succ (Succ n)) (Branch root 1 r) =
let 1t = genBBT n 1; rt = genBBT n r
1t’ = genBBT (Succ n) 1
rt’ = genBBT (Succ n) r
in choice3 root
(Branch root 1t rt’)
(Branch root 1t’ rt)
(Branch root 1t’ rt?’)

19

The Generators (2)

Then we can define the following generator:

genBBT’ :: BT -> BT

genBBT’ Empty = Empty

genBBT’ (Branch root 1 r) =
genBBT root 1

and prove that only balanced trees are generated:

(r::BT) -> Balanced (genBBT’ r)

Furthermore, we can prove all balanced trees can be

generated, that is, the generator is surjective.

20

Proving Surjectivity

Define surjectivity:

Surj (genD::BT->D)::Set
= (x::D) -> 4 rnd::BT. genD rnd == x

i.e., any object in the type can be generated.
The generator genBBT’ s surjective:
Surj genBBT’

The proof can be done by induction.

21

Related Work

Hayashi pioneering work in the 1980-ies where he used
testing to debug lemmas while doing proofs in his
PX-system

Programatica project at Oregon Graduate Institute:
building a Haskell-based system that integrates
testing and proving (informal and formal, interactive
and automatic)

Cover project at Chalmers: similar goals
Also

Okasaki is developing Edison (an efficient functional
data structure library) by using QuickCheck.

Parent Proof of correnctness of AVL insertion in Coq.

22

Conclusions

More case studies have been done: proving
properties of BDDs and a tableau prover.

Testing is helpful during proof development, for
example, for finding correct formulations of lemmas.

Proving can decompose a property into simpler
properties to be tested

Proving can improve “coverage” of testing.

Can prove properties of generators (surjectivity,
satisfaction of preconditions)

23

