Random Generators for Dependent Types

Peter Dybjer, Qiao Haiyan, and Makoto Takeyama

Cover meeting 17 March, 2005

Random Generators in Agda/Alfa

A random generator for a type D is a function

 $f:: \operatorname{Rand} \to D$

where Rand is the type of random seeds.

A random generator for an indexed family of types $P \ i$ for i :: I is a function

 $f :: \operatorname{Rand} \to \operatorname{sig} \{i :: I; p :: P \ i\}$

Remark: P i can be empty.

We focus on inductively defined dependent types (inductive families)

Binary trees as random seeds

Rand is implemented as the set of binary trees of natural numbers:

```
Rand :: Set = data Leaf (k :: Nat) :: Rand
| Node (k :: Nat) (1, r :: Rand) :: Rand
```

A generator for lists

```
List(A::Set) :: Set = data nil :: List A

| cons (a::A) (as::List A) :: List A

genList :: (A :: Set) -> (Rand -> A) -> Rand -> List A

genList A g (Leaf _) = nil
```

```
genList A g (Node _ 1 r) = cons (g 1) (genList A g r)
```

This is an instance of a generic strategy for parameterized term algebras ("algebraic data types"): randomly choose a constructor and generate its arguments by using either parameter generators, or by the generators for previously defined simple sets, or by recursive calls, all using sub-seeds of the given seed. When the seed is not large enough, it terminates by choosing a non-recursive constructor.

Inductive families

General form of formation rule:

$$P :: (A_1 :: \sigma_1) \to \dots \to (A_N :: \sigma_N) \to (a_1 :: \alpha_1) \to \dots \to (a_M :: \alpha_M) \to \mathsf{Set}$$

General form of introduction rule (ordinary, finitary inductive definitions)

$$intro :: (A_1 :: \sigma_1) \to \dots \to (A_N :: \sigma_N) \to (b_1 :: \beta_1) \to \dots \to (b_K :: \beta_K) \to (u_1 :: P q_{11} \dots q_{1M}) \to \dots (P-\mathsf{Intro}_{intro}) \dots (u_L :: P q_{L1} \dots q_{LM}) \to P p_1 \dots p_M$$

$$(P-\mathsf{Intro}_{intro}) \to P p_1 \dots p_M$$

The inductive family of finite sets

```
The indexed family Fin n (n :: Nat) of sets with n elements:
```

```
Fin :: Nat -> Set

= data CO (n :: Nat) :: Fin (succ n)

| C1 (n :: Nat) (i :: Fin n) :: Fin (succ n)
```

Rules

 $\begin{array}{ll} - \text{ formation} & \text{Fin}:: \operatorname{Nat} \to \operatorname{Set} & (N = 0, \ M = 1) \\ - \text{ introduction} & \operatorname{C}_0 & :: (n :: \operatorname{Nat}) \to \operatorname{Fin}(\operatorname{succ} n) & (K = 1, \ L = 0) \\ & \operatorname{C}_1 & :: (n :: \operatorname{Nat}) \to \operatorname{Fin} n \to \operatorname{Fin}(\operatorname{succ} n) & (K = 1, \ L = 1) \end{array}$

The inductive family of untyped lambda terms

Term n (n :: Nat) represents the set of lambda terms with at most n free variables (using de Bruijn indices).

```
Term :: Nat -> Set
= data var (n :: Nat) (i :: Fin (succ n)) :: Term (succ n)
| abs (n :: Nat) (t :: Term (succ n)) :: Term n
| app (n :: Nat) (t1, t2 :: Term n) :: Term n
```

The inductive family of vectors

An example with one parameter type A is the Nat-indexed family Vec where elements of Vec n are length-n vectors.

A generator for the inductive family of vectors

The generator maps the parameter generator g to the given tree seen as a (right-spine) list of (left) subtrees.

The general form of a generator for parameterized inductive families

A generator for the family

$$P :: (A_1 :: \mathtt{Set}) \to \dots \to (A_N :: \mathtt{Set}) \to (a_1 :: \alpha_1) \to \dots \to (a_M :: \alpha_M) \to \mathtt{Set}$$

is a function

$$\begin{array}{rl} genP::& (A_1::\texttt{Set}) \to \dots \to (A_N::\texttt{Set}) \to \\ & (g_1::\texttt{Rand} \to A_1) \to \dots \to (g_N::\texttt{Rand} \to A_N) \to \\ & \texttt{Rand} \to \texttt{sig} \; \{a_1::\alpha_1;\; \dots;\; a_M::\alpha_M;\; p::P\; a_1\; \dots\; a_M\} \end{array}$$

where A_i are parameters and g_i are parameter generators.

Generators for Inhabited Inductive Families

If P i is inhabited for all i :: I, then a surjective generator

 $genP :: \texttt{Rand} \to \texttt{sig} \{ind :: I; obj :: P ind\}$

can be defined from a surjective generator genP' i for each P i. It first generates an index using genI, then an element of P i using genP' i.

A generator for finite sets

Fin $(\operatorname{succ} n)$ is inhabited for all $n :: \operatorname{Nat}$. A surjective generator for this family can be defined by using a generator for Nat to generate the index n and use it as input for the following generator for the family:

```
genFin' :: (n :: Nat) -> Rand -> Fin (succ n)
genFin' zero _ = C0 zero
genFin' (succ m) (Leaf _) = C0 (succ m)
genFin' (succ m) (Node _ l r) = C1 (succ m) (genFin' m l)
```

The inductive family of balanced binary trees

Bal n is inhabited for all n. So we can first generate an n and then an element of Bal n using the generator genBal' on the next page.

A generator for balanced binary trees

```
genBal' :: (n :: Nat) -> Rand -> Bal n
genBal' zero _____ = Empty
genBal' (succ zero) _____ = COO Empty Empty
genBal' (succ (succ n)) (Leaf k) =
    let t = genBal' (succ n) (Leaf k) in COO t t
genBal' (succ (succ n)) (Node k l r) =
    let b1 = genBal' (succ n) l
    b2 = genBal' (succ n) r
    b3 = genBal' n r
    in choice3 k (COO b1 b2) (CO1 b3 b1) (C10 b1 b3)
```

where choice3 $k a_0 a_1 a_2 = a_{(k \mod 3)}$

A generator for lambda terms

Term n is also inhabited for each n. So again, a generator can be written by first generating an n and then using a generator:

genTerm' :: (n :: Nat) -> Rand -> Term n

genTerm' zero (Leaf _) = abs zero (var zero (CO zero)) genTerm' zero (Node k l r) = let t1 :: Term (succ zero) = genTerm' (succ zero) 1 zero = genTerm' t2 :: Term zero l t3 :: Term zero = genTerm' zero r in choice2 k (abs zero t1) (app zero t2 t3) genTerm' (succ m) (Leaf k) = var m (genFin' m (Leaf k)) genTerm' (succ m) (Node k l r) = let t1 :: Term (succ (succ m)) = genTerm' (succ (succ m)) 1 t2 :: Term (succ m) = genTerm' (succ m) 1 t3 :: Term (succ m) = genTerm' (succ m) r in choice2 k (abs (succ m) t1) (app (succ m) t2 t3)

Simple inductive families

- The formation rule $P :: I \to \text{Set}$ has no parameter, and the single index set I is simple.
- Each introduction rule has the form

intro ::
$$(i_1 :: I) \to \cdots \to (i_K :: I) \to$$

 $(u_1 :: P \ i_1) \to \cdots (u_K :: P \ i_K) \to$
 $P \ p$

- *P* is not empty; there must be a constructor without arguments.
- But *P i* can be empty for some *i*.

The inductive family (predicate) of even numbers

A generator of even numbers and proof objects for evenness:

Another generator of elements of finite sets

The inductive family of finite sets is a simple inductive family so we can write a generator using the same technique. In this case, the generator has the type:

genFin :: Rand -> sig ind :: Nat; obj :: Fin ind

and is defined as follows:

```
genFin (Leaf k) = struct ind = genNat (Leaf k); obj = C0 ind
genFin (Node k l r) = let
g1 :: GFin = genFin r
in struct ind = succ g1.ind; obj = C1 g1.ind g1.obj
```

Inductive Definitions and Logic Programs

- The motivation for considering simple inductive families is to have as few constraints as possible between indices and elements, in order to facilitate random generation.
- However, representing intricate constraints is often the very purpose of defining an indexed family.
- To cover some of those cases, we introduce unification and backtracking in a generation algorithm.
- The idea is based on the relationship between inductive families and logic programs (Hagiya and Sakurai 1984).

Horn clauses for theorems

Horn clauses corresponding to to the axioms and inference rules of a system due to Lukasiewicz:

Running the query thm(X) on a Prolog implementation, we can obtain theorems (schemas) as solutions for X; for example

$$X = (((_A \implies _B) \implies (_C \implies _B)) \implies _D) \implies ((_C \implies A) \implies _D)$$

Type theory and logic programs

Type theory	Logic programming
Family of sets $P :: D \to \mathtt{Set}$	$Predicate\ P$
an introduction rule	a Horn clause
inductive definition of P	logic program defining P

We call an inductive family arising from a logic program a Horn inductive family. This is a subset of the general class of inductive families considered in type theory.

An inductive family of theorems

Formula is an inductively defined set of formulas.

Another connection between inductive families and logic programs

Generating theorems and derivations

We can obtain a theorem and its derivation as solutions for X and Y in the query thm1(X, Y). For example,

So the problem of generating a pair (X :: Formula, Y :: Thm X) in dependent type theory corresponds to the task of solving a query thm1(X, Y). In this way, we can use a Prolog interpreter to generate elements patterns of Horn inductive families. If we randomise the Prolog interpreter and randomly instantiate the patterns, then we get a random generator for Horn inductive families.

A generator for theorems

It is based on a more general generator for theorem *patterns*, that is, formula patterns whose ground instantiations are all theorems.

genTP :: Rand -> (t :: Pat) -> Maybe (σ :: Subst, ThmPat t[σ])

generates theorem patterns which fit into a given formula pattern t :: Pat. With a seed s, genTP st either succeeds and returns some Just (σ, d) , or fails and returns Nothing. In case of success, we have a theorem pattern $t[\sigma]$ with derivation $d :: ThmPat t[\sigma]$.

The type of formula patterns Pat is a simple set with four constructors. We have the same three constructors as Formula but also a fourth constructor X :: Nat \rightarrow Pat for *pattern variables* (logical variables denoting indeterminate formulas).

Concluding remarks

- When a set or a family is (Horn) inductively generated we can also randomly generate or recursively enumerate its elements.
- This is a generic technique. A generator can be written for the whole class of Horn inductive families. (Efficiency is not guaranteed, just like in Prolog.)
- The technique does not only apply to dependent type theory. A variant can be used in predicate logic with inductively defined predicates.