Random Generators for Dependent Types

Peter Dybjer, Qiao Haiyan, and Makoto Takeyama

Cover meeting
17 March, 2005

Random Generators in Agda/Alfa

A random generator for a type D is a function
f ::Rand — D

where Rand is the type of random seeds.

A random generator for an indexed family of types P ¢ for ¢ :: [is a
function
f ::Rand — sig{i::I; p:: P i}

Remark: P 2 can be empty.

We focus on inductively defined dependent types (inductive families)

Binary trees as random seeds

Rand is implemented as the set of binary trees of natural numbers:

Rand :: Set = data Leaf (k :: Nat) :: Rand
| Node (k :: Nat) (1, r :: Rand) :: Rand

A generator for lists

List(A::Set) :: Set = data nil :: List A
| cons (a::A) (as::List A) :: List A

genlList :: (A :: Set) -> (Rand -> A) -> Rand -> List A
genlist A g (Leaf _) = nil
genlList A g (Node _ 1 r) = cons (g 1) (genlList A g r)

This is an instance of a generic strategy for parameterized term algebras
(“algebraic data types”): randomly choose a constructor and generate its
arguments by using either parameter generators, or by the generators for
previously defined simple sets, or by recursive calls, all using sub-seeds of the
given seed. When the seed is not large enough, it terminates by choosing a
non-recursive constructor.

Inductive families

General form of formation rule:

P: (Ay:01)— = (AN 1 0nN)
(ay ::ap) = -+ = (ap :: app)
Set

General form of introduction rule (ordinary, finitary inductive definitions)

(A1 ::01) > -+ = (An i on) —
(by :: 1) —» -+ = (bx = Pr) —
(u1 IZqul q1M)_>

ntro ::

(P—Intromtm)

(uL::Pqu QLM)%
Ppi ... pm

The inductive family of finite sets

The indexed family Fin n (n :: Nat) of sets with n elements:

Fin :: Nat —-> Set

= data CO (n :: Nat) :: Fin (succ n)
| C1 (n :: Nat) (i :: Fin n) :: Fin (succ n)
Rules
— formation ~ Fin :: Nat — Set (N=0,M=1)
— introduction Cy :: (n :: Nat) — Fin (succn) (K=1,L=0)
C: ::(n:Nat) - Finn — Fin(succn) (K =1, L=1)

The inductive family of untyped lambda terms

Termn (n :: Nat) represents the set of lambda terms with at most n
free variables (using de Bruijn indices).

Term :: Nat -> Set

= data var (n :: Nat) (i :: Fin (succ n)) :: Term (succ n)
| abs (n :: Nat) (t :: Term (succ n)) :: Term n
| app (n :: Nat) (t1, t2 :: Term n) :: Term n

The inductive family of vectors

An example with one parameter type A is the Nat-indexed family Vec
where elements of Vec n are length-n vectors.

Vec (A :: Set) :: Nat -> Set
= data nil’ :: Vec A =zero
| cons’ (n :: Nat) (a :: A) (as :: Vec A n)
:: Vec A (succ n)

A generator for the inductive family of vectors

genVec :: (A :: Set) -> (Rand -> A) ->

Rand -> sig { ind :: Nat; obj:

genVec A g (Leaf _) = struct ind =
genVec A g (Node _ 1 r)

struct ind =
obj =

The generator maps the parameter generator g to
(right-spine) list of (left) subtrees.

:Vec A ind }

zero; obj = nil’

let { as = genVec A g r } in

succ as.ind
cons’ as.ind (g 1) as.obj

the given tree seen as a

The general form of a generator for parameterized
inductive families

A generator for the family

P: (A;:Set)—---— (Ay :: Set) —
(a1 > 1) = -+ = (ap ::app) —
Set

is a function

genP :: (A;::Set) —» -+ — (Ayn :: Set) —
(g1 :: Rand — A7) = --- = (gn :: Rand — Ayn) —
Rand — sig {ay::aq; -5 apyapy; pPay ... ap}

where A; are parameters and g; are parameter generators.

10

Generators for Inhabited Inductive Families

If P2 is inhabited for all 7 :: I, then a surjective generator
genP :: Rand — sig {ind:: I; obj:: Pind}

can be defined from a surjective generator genP’ i for each P i. It first
generates an index using genl, then an element of P ¢ using genP’ 1.

11

A generator for finite sets

Fin (succn) is inhabited for all n :: Nat. A surjective generator for this
family can be defined by using a generator for Nat to generate the index n
and use it as input for the following generator for the family:

genFin’ :: (n :: Nat) -> Rand -> Fin (succ n)
genFin’ zero _ = CO =zero
genFin’ (succ m) (Leaf _) = CO (succ m)

genFin’ (succ m) (Node _ 1 r) = C1 (succ m) (genFin’ m 1)

12

The inductive family of balanced binary trees

Bal :: (n :: Nat) -> Set = data
Empty :: Bal zero
| COO0 (t1, t2 :: Bal n) :: Bal (succ n)

| CO1 (t1 :: Bal n) (t2 :: Bal (succ n)) :: Bal (succ (succ n))
| C10 (t1 :: Bal (succ n)) (t2 :: Bal n) :: Bal (succ (succ n))

Bal n is inhabited for all n. So we can first generate an n and then an
element of Bal n using the generator genBal’ on the next page.

13

A generator for balanced binary trees

genBal’ :: (n :: Nat) -> Rand -> Bal n
genBal’ zero _ = Empty
genBal’ (succ zero) _ = COO0 Empty Empty

genBal’ (succ (succ n)) (Leaf k) =
let t = genBal’ (succ n) (Leaf k) in COO0 t t
genBal’ (succ (succ n)) (Node k¥ 1 r) =
let bl = genBal’ (succ n) 1
b2 = genBal’ (succ n) r
b3 = genBal’ n r
in choice3 k (C00 bl b2) (CO1 b3 bl) (C10 bl b3)

where choice3 k ag a1 a2 = A(k mod 3)

14

A generator for lambda terms

Term n is also inhabited for each n. So again, a generator can be written
by first generating an n and then using a generator:

genTerm’ :: (n :: Nat) -> Rand -> Term n

15

genTerm’ zero (Leaf _) = abs zero (var zero (CO zero))
genTerm’ zero (Node k 1 r) =

let t1 :: Term (succ zero) = genTerm’ (succ zero) 1
t2 :: Term zero = genTerm’ zero 1
t3 :: Term zero = genTerm’ Zero r
in choice2 k (abs zero tl) (app zero t2 t3)
genTerm’ (succ m) (Leaf k) = var m (genFin’ m (Leaf k))
genTerm’ (succ m) (Node k 1 r) =
let t1 :: Term (succ (succ m)) = genTerm’ (succ (succ m)) 1
t2 :: Term (succ m) = genTerm’ (succ m) 1
t3 :: Term (succ m) = genTerm’ (succ m) r

in choice2 k (abs (succ m) tl1) (app (succ m) t2 t3)

16

Simple inductive families

The formation rule P :: I — Set has no parameter, and the single index
set [is simple.

Each introduction rule has the form

intro:: (i) — - — (ig = I)—
(up :: Piy) = - (ug = Pig) —
Pp

P is not empty; there must be a constructor without arguments.

But P can be empty for some 1.

17

The inductive family (predicate) of even numbers

Even :: Nat -> Set
= data CO

| C1 (n :: Nat) (p ::

:: Even zero

A generator of even numbers and proof objects for evenness:

genEven :: Rand -> sig { ind :: Nat; obj :: Even ind }
genEven (Leaf k) = struct ind = zero; obj = CO

genEven (Node k 1 r)
in struct ind
ob]

let gl = genkven 1
succ (succ gl.ind)
Cl gl.ind gl.obj

Even n) :: Even (succ (succ n))

18

Another generator of elements of finite sets

The inductive family of finite sets is a simple inductive family so we can
write a generator using the same technique. In this case, the generator has
the type:

genFin :: Rand -> sig ind :: Nat; obj :: Fin ind
and is defined as follows:

genFin (Leaf k) = struct ind = genNat (Leaf k); obj = CO ind
genFin (Node k 1 r) = let
gl :: GFin = genFin r
in struct ind = succ gl.ind; obj = C1 gl.ind gl.obj

19

Inductive Definitions and Logic Programs

The motivation for considering simple inductive families is to have as
few constraints as possible between indices and elements, in order to
facilitate random generation.

However, representing intricate constraints is often the very purpose of
defining an indexed family.

To cover some of those cases, we introduce unification and backtracking
in a generation algorithm.

The idea is based on the relationship between inductive families and logic
programs (Hagiya and Sakurai 1984).

20

Horn clauses for theorems

Horn clauses corresponding to to the axioms and inference rules of a
system due to Lukasiewicz:

thm((P => Q) => ((Q => R) => (P => R))).
thm((~P => P) => P).

thm(P => (P => Q)).

thm(Q) :- thm(P), thm(P => Q).

Running the query thm(X) on a Prolog implementation, we can obtain
theorems (schemas) as solutions for X; for example

X = (((LA=>_B) => (_.C=>_B)) => _D) => ((_LC => A) => _D)

21

Type theory and logic programs

Type theory Logic programming
Family of sets P :: D — Set | Predicate P

an introduction rule a Horn clause

inductive definition of P logic program defining P

We call an inductive family arising from a logic program a Horn inductive
family. This is a subset of the general class of inductive families considered
in type theory.

22

An inductive family of theorems

Formula is an inductively defined set of formulas.

Thm :: Formula -> Set = data
axl (p, q, r :: Formula)
:: Thm ((p => @) => ((@ => 1) => (p => 1)))

| ax2 (p :: Formula)
:: Thm ((—p => p) => p)
| ax3 (p, q :: Formula)
:: Thm (p => (-p => q))
| mp (p, q :: Formula) (x :: Thm p) (y :: Thm (p => q))

:: Thm q

23

Another connection between inductive families
and logic programs

nat (zero).

nat(succ(X)) :- mnat((X).

formula(var(P)) :- nat(P).

formula(~P) :- formula(P).

formula(P => Q) :- formula(P), formula(Q).

thm1 ((P => Q) => ((Q => R) => (P => R)), ax1(P,Q,R))

:— formula(P), formula(Q), formula(R).
thml1 ((~P => P) => P, ax2(P)) :- formula(P).
thm1i (P => (~P => Q), ax3(P,Q)) :- formula(P), formula(Q).
thm1(Q, mp(P,Q,X,Y)) :- thmi(P, X), thmi(P => Q, Y).

24

Generating theorems and derivations

We can obtain a theorem and its derivation as solutions for X and Y in
the query thm1 (X, Y). For example,

X = (var(zero) => var(zero)) =>
((var(zero) => var(zero)) => (var(zero) => var(zero)))
Y = axl(var(zero), var(zero), var(zero))

So the problem of generating a pair (X :: Formula, Y :: Thm X)
in dependent type theory corresponds to the task of solving a query
thm1 (X, Y). In this way, we can use a Prolog interpreter to generate
elements patterns of Horn inductive families. If we randomise the Prolog
interpreter and randomly instantiate the patterns, then we get a random
generator for Horn inductive families.

25

A generator for theorems

It is based on a more general generator for theorem patterns, that is,
formula patterns whose ground instantiations are all theorems.

genTP :: Rand -> (t :: Pat) -> Maybe (o :: Subst, ThmPat tl[o])

generates theorem patterns which fit into a given formula pattern ¢ :: Pat.
With a seed s, genTP st either succeeds and returns some Just (o, d), or
fails and returns Nothing. In case of success, we have a theorem pattern
t|o| with derivation d :: ThmPat t[o].

The type of formula patterns Pat is a simple set with four constructors.
We have the same three constructors as Formula but also a fourth
constructor X :: Nat — Pat for pattern variables (logical variables denoting
indeterminate formulas).

26

Concluding remarks

e When a set or a family is (Horn) inductively generated we can also
randomly generate or recursively enumerate its elements.

e This is a generic technique. A generator can be written for the whole
class of Horn inductive families. (Efficiency is not guaranteed, just like
in Prolog.)

e The technique does not only apply to dependent type theory. A variant
can be used in predicate logic with inductively defined predicates.

27

