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Random Generators in Agda/Alfa

A random generator for a type D is a fun
tionf :: Rand ! Dwhere Rand is the type of random seeds.A random generator for an indexed family of types P i for i :: I is afun
tion f :: Rand ! sig fi :: I; p ::P igRemark: P i 
an be empty.We fo
us on indu
tively de�ned dependent types (indu
tive families) 2



Binary trees as random seeds

Rand is implemented as the set of binary trees of natural numbers:Rand :: Set = data Leaf (k :: Nat) :: Rand| Node (k :: Nat) (l, r :: Rand) :: Rand
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A generator for lists

List(A::Set) :: Set = data nil :: List A| 
ons (a::A) (as::List A) :: List AgenList :: (A :: Set) -> (Rand -> A) -> Rand -> List AgenList A g (Leaf _) = nilgenList A g (Node _ l r) = 
ons (g l) (genList A g r)This is an instan
e of a generi
 strategy for parameterized term algebras(\algebrai
 data types"): randomly 
hoose a 
onstru
tor and generate itsarguments by using either parameter generators, or by the generators forpreviously de�ned simple sets, or by re
ursive 
alls, all using sub-seeds of thegiven seed. When the seed is not large enough, it terminates by 
hoosing anon-re
ursive 
onstru
tor. 4



Indu
tive families

General form of formation rule:P :: (A1 :: �1) ! � � � ! (AN :: �N) !(a1 :: �1) ! � � � ! (aM :: �M) !SetGeneral form of introdu
tion rule (ordinary, �nitary indu
tive de�nitions)intro :: (A1 :: �1) ! � � � ! (AN :: �N) !(b1 :: �1) ! � � � ! (bK :: �K) !(u1 :: P q11 : : : q1M) !� � �(uL :: P qL1 : : : qLM) !P p1 : : : pM

(P -Introintro)
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The indu
tive family of �nite sets

The indexed family Fin n (n :: Nat) of sets with n elements:Fin :: Nat -> Set= data C0 (n :: Nat) :: Fin (su

 n)| C1 (n :: Nat) (i :: Fin n) :: Fin (su

 n)Rules{ formation Fin :: Nat ! Set (N = 0; M = 1){ introdu
tion C0 :: (n :: Nat) ! Fin (su

n) (K = 1; L = 0)C1 :: (n :: Nat) ! Fin n ! Fin (su

n) (K = 1; L = 1)
6



The indu
tive family of untyped lambda terms

Termn (n :: Nat) represents the set of lambda terms with at most nfree variables (using de Bruijn indi
es).Term :: Nat -> Set= data var (n :: Nat) (i :: Fin (su

 n)) :: Term (su

 n)| abs (n :: Nat) (t :: Term (su

 n)) :: Term n| app (n :: Nat) (t1, t2 :: Term n) :: Term n
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The indu
tive family of ve
tors

An example with one parameter type A is the Nat-indexed family Ve
where elements of Ve
n are length-n ve
tors.Ve
 (A :: Set) :: Nat -> Set= data nil' :: Ve
 A zero| 
ons' (n :: Nat) (a :: A) (as :: Ve
 A n):: Ve
 A (su

 n)
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A generator for the indu
tive family of ve
tors

genVe
 :: (A :: Set) -> (Rand -> A) ->Rand -> sig { ind :: Nat; obj :: Ve
 A ind }genVe
 A g (Leaf _ ) = stru
t ind = zero; obj = nil'genVe
 A g (Node _ l r) = let { as = genVe
 A g r } instru
t ind = su

 as.indobj = 
ons' as.ind (g l) as.objThe generator maps the parameter generator g to the given tree seen as a(right-spine) list of (left) subtrees.
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The general form of a generator for parameterizedindu
tive families

A generator for the familyP :: (A1 :: Set) ! � � � ! (AN :: Set) !(a1 :: �1) ! � � � ! (aM :: �M) !Setis a fun
tiongenP :: (A1 :: Set) ! � � � ! (AN :: Set) !(g1 :: Rand ! A1) ! � � � ! (gN :: Rand ! AN) !Rand ! sig fa1 ::�1; � � � ; aM ::�M ; p ::P a1 : : : aMgwhere Ai are parameters and gi are parameter generators. 10



Generators for Inhabited Indu
tive Families

If P i is inhabited for all i :: I, then a surje
tive generatorgenP :: Rand ! sig find :: I; obj ::P indg
an be de�ned from a surje
tive generator genP 0 i for ea
h P i. It �rstgenerates an index using genI, then an element of P i using genP 0 i.
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A generator for �nite sets

Fin (su

n) is inhabited for all n :: Nat. A surje
tive generator for thisfamily 
an be de�ned by using a generator for Nat to generate the index nand use it as input for the following generator for the family:genFin' :: (n :: Nat) -> Rand -> Fin (su

 n)genFin' zero _ = C0 zerogenFin' (su

 m) (Leaf _) = C0 (su

 m)genFin' (su

 m) (Node _ l r) = C1 (su

 m) (genFin' m l)
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The indu
tive family of balan
ed binary trees

Bal :: (n :: Nat) -> Set = dataEmpty :: Bal zero| C00 (t1, t2 :: Bal n) :: Bal (su

 n)| C01 (t1 :: Bal n) (t2 :: Bal (su

 n)) :: Bal (su

 (su

 n))| C10 (t1 :: Bal (su

 n)) (t2 :: Bal n) :: Bal (su

 (su

 n))Bal n is inhabited for all n. So we 
an �rst generate an n and then anelement of Bal n using the generator genBal' on the next page.
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A generator for balan
ed binary trees

genBal' :: (n :: Nat) -> Rand -> Bal ngenBal' zero _ = EmptygenBal' (su

 zero) _ = C00 Empty EmptygenBal' (su

 (su

 n)) (Leaf k) =let t = genBal' (su

 n) (Leaf k) in C00 t tgenBal' (su

 (su

 n)) (Node k l r) =let b1 = genBal' (su

 n) lb2 = genBal' (su

 n) rb3 = genBal' n rin 
hoi
e3 k (C00 b1 b2) (C01 b3 b1) (C10 b1 b3)where 
hoi
e3 k a0 a1 a2 = a(kmod 3) 14



A generator for lambda terms

Term n is also inhabited for ea
h n. So again, a generator 
an be writtenby �rst generating an n and then using a generator:genTerm' :: (n :: Nat) -> Rand -> Term n
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genTerm' zero (Leaf _) = abs zero (var zero (C0 zero))genTerm' zero (Node k l r) =let t1 :: Term (su

 zero) = genTerm' (su

 zero) lt2 :: Term zero = genTerm' zero lt3 :: Term zero = genTerm' zero rin 
hoi
e2 k (abs zero t1) (app zero t2 t3)genTerm' (su

 m) (Leaf k) = var m (genFin' m (Leaf k))genTerm' (su

 m) (Node k l r) =let t1 :: Term (su

 (su

 m)) = genTerm' (su

 (su

 m)) lt2 :: Term (su

 m) = genTerm' (su

 m) lt3 :: Term (su

 m) = genTerm' (su

 m) rin 
hoi
e2 k (abs (su

 m) t1) (app (su

 m) t2 t3)
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Simple indu
tive families

� The formation rule P :: I ! Set has no parameter, and the single indexset I is simple.� Ea
h introdu
tion rule has the formintro :: (i1 :: I) ! � � � ! (iK :: I) !(u1 :: P i1) ! � � � (uK :: P iK) !P p� P is not empty; there must be a 
onstru
tor without arguments.� But P i 
an be empty for some i. 17



The indu
tive family (predi
ate) of even numbers

Even :: Nat -> Set= data C0 :: Even zero| C1 (n :: Nat) (p :: Even n) :: Even (su

 (su

 n))A generator of even numbers and proof obje
ts for evenness:genEven :: Rand -> sig { ind :: Nat; obj :: Even ind }genEven (Leaf k) = stru
t ind = zero; obj = C0genEven (Node k l r) = let g1 = genEven lin stru
t ind = su

 (su

 g1.ind)obj = C1 g1.ind g1.obj
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Another generator of elements of �nite sets

The indu
tive family of �nite sets is a simple indu
tive family so we 
anwrite a generator using the same te
hnique. In this 
ase, the generator hasthe type:genFin :: Rand -> sig ind :: Nat; obj :: Fin indand is de�ned as follows:genFin (Leaf k) = stru
t ind = genNat (Leaf k); obj = C0 indgenFin (Node k l r) = letg1 :: GFin = genFin rin stru
t ind = su

 g1.ind; obj = C1 g1.ind g1.obj
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Indu
tive De�nitions and Logi
 Programs

� The motivation for 
onsidering simple indu
tive families is to have asfew 
onstraints as possible between indi
es and elements, in order tofa
ilitate random generation.� However, representing intri
ate 
onstraints is often the very purpose ofde�ning an indexed family.� To 
over some of those 
ases, we introdu
e uni�
ation and ba
ktra
kingin a generation algorithm.� The idea is based on the relationship between indu
tive families and logi
programs (Hagiya and Sakurai 1984).
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Horn 
lauses for theorems

Horn 
lauses 
orresponding to to the axioms and inferen
e rules of asystem due to Lukasiewi
z:thm((P => Q) => ((Q => R) => (P => R))).thm((~P => P) => P).thm(P => (~P => Q)).thm(Q) :- thm(P), thm(P => Q).Running the query thm(X) on a Prolog implementation, we 
an obtaintheorems (s
hemas) as solutions for X; for exampleX = (((_A => _B) => (_C => _B)) => _D) => ((_C => A) => _D)
21



Type theory and logi
 programs

Type theory Logi
 programmingFamily of sets P :: D ! Set Predi
ate Pan introdu
tion rule a Horn 
lauseindu
tive de�nition of P logi
 program de�ning P

We 
all an indu
tive family arising from a logi
 program a Horn indu
tivefamily. This is a subset of the general 
lass of indu
tive families 
onsideredin type theory.
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An indu
tive family of theorems

Formula is an indu
tively de�ned set of formulas.Thm :: Formula -> Set = dataax1 (p, q, r :: Formula):: Thm ((p => q) => ((q => r) => (p => r)))| ax2 (p :: Formula):: Thm ((-p => p) => p)| ax3 (p, q :: Formula):: Thm (p => (-p => q))| mp (p, q :: Formula) (x :: Thm p) (y :: Thm (p => q)):: Thm q
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Another 
onne
tion between indu
tive familiesand logi
 programs

nat(zero).nat(su

(X)) :- nat(X).formula(var(P)) :- nat(P).formula(~P) :- formula(P).formula(P => Q) :- formula(P), formula(Q).thm1((P => Q) => ((Q => R) => (P => R)), ax1(P,Q,R)):- formula(P), formula(Q), formula(R).thm1((~P => P) => P, ax2(P)) :- formula(P).thm1(P => (~P => Q), ax3(P,Q)) :- formula(P), formula(Q).thm1(Q, mp(P,Q,X,Y)) :- thm1(P, X), thm1(P => Q, Y). 24



Generating theorems and derivations

We 
an obtain a theorem and its derivation as solutions for X and Y inthe query thm1(X, Y). For example,X = (var(zero) => var(zero)) =>((var(zero) => var(zero)) => (var(zero) => var(zero)))Y = ax1(var(zero), var(zero), var(zero))So the problem of generating a pair (X :: Formula, Y :: Thm X)in dependent type theory 
orresponds to the task of solving a querythm1(X, Y). In this way, we 
an use a Prolog interpreter to generateelements patterns of Horn indu
tive families. If we randomise the Prologinterpreter and randomly instantiate the patterns, then we get a randomgenerator for Horn indu
tive families. 25



A generator for theorems

It is based on a more general generator for theorem patterns, that is,formula patterns whose ground instantiations are all theorems.genTP :: Rand -> (t :: Pat) -> Maybe (� :: Subst, ThmPat t[�℄)generates theorem patterns whi
h �t into a given formula pattern t :: Pat.With a seed s, genTP s t either su

eeds and returns some Just (�; d), orfails and returns Nothing. In 
ase of su

ess, we have a theorem patternt[�℄ with derivation d :: ThmPat t[�℄.The type of formula patterns Pat is a simple set with four 
onstru
tors.We have the same three 
onstru
tors as Formula but also a fourth
onstru
tor X :: Nat ! Pat for pattern variables (logi
al variables denotingindeterminate formulas). 26



Con
luding remarks

� When a set or a family is (Horn) indu
tively generated we 
an alsorandomly generate or re
ursively enumerate its elements.� This is a generi
 te
hnique. A generator 
an be written for the whole
lass of Horn indu
tive families. (EÆ
ien
y is not guaranteed, just likein Prolog.)� The te
hnique does not only apply to dependent type theory. A variant
an be used in predi
ate logi
 with indu
tively de�ned predi
ates.
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