
Random Generators for Dependent Types

Peter Dybjer, Qiao Haiyan, and Makoto Takeyama

Cover meeting17 Mar
h, 2005

1

Random Generators in Agda/Alfa

A random generator for a type D is a fun
tionf :: Rand ! Dwhere Rand is the type of random seeds.A random generator for an indexed family of types P i for i :: I is afun
tion f :: Rand ! sig fi :: I; p ::P igRemark: P i
an be empty.We fo
us on indu
tively de�ned dependent types (indu
tive families) 2

Binary trees as random seeds

Rand is implemented as the set of binary trees of natural numbers:Rand :: Set = data Leaf (k :: Nat) :: Rand| Node (k :: Nat) (l, r :: Rand) :: Rand
3

A generator for lists

List(A::Set) :: Set = data nil :: List A|
ons (a::A) (as::List A) :: List AgenList :: (A :: Set) -> (Rand -> A) -> Rand -> List AgenList A g (Leaf _) = nilgenList A g (Node _ l r) =
ons (g l) (genList A g r)This is an instan
e of a generi
 strategy for parameterized term algebras(\algebrai
 data types"): randomly
hoose a
onstru
tor and generate itsarguments by using either parameter generators, or by the generators forpreviously de�ned simple sets, or by re
ursive
alls, all using sub-seeds of thegiven seed. When the seed is not large enough, it terminates by
hoosing anon-re
ursive
onstru
tor. 4

Indu
tive families

General form of formation rule:P :: (A1 :: �1) ! � � � ! (AN :: �N) !(a1 :: �1) ! � � � ! (aM :: �M) !SetGeneral form of introdu
tion rule (ordinary, �nitary indu
tive de�nitions)intro :: (A1 :: �1) ! � � � ! (AN :: �N) !(b1 :: �1) ! � � � ! (bK :: �K) !(u1 :: P q11 : : : q1M) !� � �(uL :: P qL1 : : : qLM) !P p1 : : : pM

(P -Introintro)
5

The indu
tive family of �nite sets

The indexed family Fin n (n :: Nat) of sets with n elements:Fin :: Nat -> Set= data C0 (n :: Nat) :: Fin (su

 n)| C1 (n :: Nat) (i :: Fin n) :: Fin (su

 n)Rules{ formation Fin :: Nat ! Set (N = 0; M = 1){ introdu
tion C0 :: (n :: Nat) ! Fin (su

n) (K = 1; L = 0)C1 :: (n :: Nat) ! Fin n ! Fin (su

n) (K = 1; L = 1)
6

The indu
tive family of untyped lambda terms

Termn (n :: Nat) represents the set of lambda terms with at most nfree variables (using de Bruijn indi
es).Term :: Nat -> Set= data var (n :: Nat) (i :: Fin (su

 n)) :: Term (su

 n)| abs (n :: Nat) (t :: Term (su

 n)) :: Term n| app (n :: Nat) (t1, t2 :: Term n) :: Term n
7

The indu
tive family of ve
tors

An example with one parameter type A is the Nat-indexed family Ve
where elements of Ve
n are length-n ve
tors.Ve
 (A :: Set) :: Nat -> Set= data nil' :: Ve
 A zero|
ons' (n :: Nat) (a :: A) (as :: Ve
 A n):: Ve
 A (su

 n)

8

A generator for the indu
tive family of ve
tors

genVe
 :: (A :: Set) -> (Rand -> A) ->Rand -> sig { ind :: Nat; obj :: Ve
 A ind }genVe
 A g (Leaf _) = stru
t ind = zero; obj = nil'genVe
 A g (Node _ l r) = let { as = genVe
 A g r } instru
t ind = su

 as.indobj =
ons' as.ind (g l) as.objThe generator maps the parameter generator g to the given tree seen as a(right-spine) list of (left) subtrees.

9

The general form of a generator for parameterizedindu
tive families

A generator for the familyP :: (A1 :: Set) ! � � � ! (AN :: Set) !(a1 :: �1) ! � � � ! (aM :: �M) !Setis a fun
tiongenP :: (A1 :: Set) ! � � � ! (AN :: Set) !(g1 :: Rand ! A1) ! � � � ! (gN :: Rand ! AN) !Rand ! sig fa1 ::�1; � � � ; aM ::�M ; p ::P a1 : : : aMgwhere Ai are parameters and gi are parameter generators. 10

Generators for Inhabited Indu
tive Families

If P i is inhabited for all i :: I, then a surje
tive generatorgenP :: Rand ! sig find :: I; obj ::P indg
an be de�ned from a surje
tive generator genP 0 i for ea
h P i. It �rstgenerates an index using genI, then an element of P i using genP 0 i.
11

A generator for �nite sets

Fin (su

n) is inhabited for all n :: Nat. A surje
tive generator for thisfamily
an be de�ned by using a generator for Nat to generate the index nand use it as input for the following generator for the family:genFin' :: (n :: Nat) -> Rand -> Fin (su

 n)genFin' zero _ = C0 zerogenFin' (su

 m) (Leaf _) = C0 (su

 m)genFin' (su

 m) (Node _ l r) = C1 (su

 m) (genFin' m l)
12

The indu
tive family of balan
ed binary trees

Bal :: (n :: Nat) -> Set = dataEmpty :: Bal zero| C00 (t1, t2 :: Bal n) :: Bal (su

 n)| C01 (t1 :: Bal n) (t2 :: Bal (su

 n)) :: Bal (su

 (su

 n))| C10 (t1 :: Bal (su

 n)) (t2 :: Bal n) :: Bal (su

 (su

 n))Bal n is inhabited for all n. So we
an �rst generate an n and then anelement of Bal n using the generator genBal' on the next page.
13

A generator for balan
ed binary trees

genBal' :: (n :: Nat) -> Rand -> Bal ngenBal' zero _ = EmptygenBal' (su

 zero) _ = C00 Empty EmptygenBal' (su

 (su

 n)) (Leaf k) =let t = genBal' (su

 n) (Leaf k) in C00 t tgenBal' (su

 (su

 n)) (Node k l r) =let b1 = genBal' (su

 n) lb2 = genBal' (su

 n) rb3 = genBal' n rin
hoi
e3 k (C00 b1 b2) (C01 b3 b1) (C10 b1 b3)where
hoi
e3 k a0 a1 a2 = a(kmod 3) 14

A generator for lambda terms

Term n is also inhabited for ea
h n. So again, a generator
an be writtenby �rst generating an n and then using a generator:genTerm' :: (n :: Nat) -> Rand -> Term n

15

genTerm' zero (Leaf _) = abs zero (var zero (C0 zero))genTerm' zero (Node k l r) =let t1 :: Term (su

 zero) = genTerm' (su

 zero) lt2 :: Term zero = genTerm' zero lt3 :: Term zero = genTerm' zero rin
hoi
e2 k (abs zero t1) (app zero t2 t3)genTerm' (su

 m) (Leaf k) = var m (genFin' m (Leaf k))genTerm' (su

 m) (Node k l r) =let t1 :: Term (su

 (su

 m)) = genTerm' (su

 (su

 m)) lt2 :: Term (su

 m) = genTerm' (su

 m) lt3 :: Term (su

 m) = genTerm' (su

 m) rin
hoi
e2 k (abs (su

 m) t1) (app (su

 m) t2 t3)
16

Simple indu
tive families

� The formation rule P :: I ! Set has no parameter, and the single indexset I is simple.� Ea
h introdu
tion rule has the formintro :: (i1 :: I) ! � � � ! (iK :: I) !(u1 :: P i1) ! � � � (uK :: P iK) !P p� P is not empty; there must be a
onstru
tor without arguments.� But P i
an be empty for some i. 17

The indu
tive family (predi
ate) of even numbers

Even :: Nat -> Set= data C0 :: Even zero| C1 (n :: Nat) (p :: Even n) :: Even (su

 (su

 n))A generator of even numbers and proof obje
ts for evenness:genEven :: Rand -> sig { ind :: Nat; obj :: Even ind }genEven (Leaf k) = stru
t ind = zero; obj = C0genEven (Node k l r) = let g1 = genEven lin stru
t ind = su

 (su

 g1.ind)obj = C1 g1.ind g1.obj

18

Another generator of elements of �nite sets

The indu
tive family of �nite sets is a simple indu
tive family so we
anwrite a generator using the same te
hnique. In this
ase, the generator hasthe type:genFin :: Rand -> sig ind :: Nat; obj :: Fin indand is de�ned as follows:genFin (Leaf k) = stru
t ind = genNat (Leaf k); obj = C0 indgenFin (Node k l r) = letg1 :: GFin = genFin rin stru
t ind = su

 g1.ind; obj = C1 g1.ind g1.obj
19

Indu
tive De�nitions and Logi
 Programs

� The motivation for
onsidering simple indu
tive families is to have asfew
onstraints as possible between indi
es and elements, in order tofa
ilitate random generation.� However, representing intri
ate
onstraints is often the very purpose ofde�ning an indexed family.� To
over some of those
ases, we introdu
e uni�
ation and ba
ktra
kingin a generation algorithm.� The idea is based on the relationship between indu
tive families and logi
programs (Hagiya and Sakurai 1984).

20

Horn
lauses for theorems

Horn
lauses
orresponding to to the axioms and inferen
e rules of asystem due to Lukasiewi
z:thm((P => Q) => ((Q => R) => (P => R))).thm((~P => P) => P).thm(P => (~P => Q)).thm(Q) :- thm(P), thm(P => Q).Running the query thm(X) on a Prolog implementation, we
an obtaintheorems (s
hemas) as solutions for X; for exampleX = (((_A => _B) => (_C => _B)) => _D) => ((_C => A) => _D)
21

Type theory and logi
 programs

Type theory Logi
 programmingFamily of sets P :: D ! Set Predi
ate Pan introdu
tion rule a Horn
lauseindu
tive de�nition of P logi
 program de�ning P

We
all an indu
tive family arising from a logi
 program a Horn indu
tivefamily. This is a subset of the general
lass of indu
tive families
onsideredin type theory.

22

An indu
tive family of theorems

Formula is an indu
tively de�ned set of formulas.Thm :: Formula -> Set = dataax1 (p, q, r :: Formula):: Thm ((p => q) => ((q => r) => (p => r)))| ax2 (p :: Formula):: Thm ((-p => p) => p)| ax3 (p, q :: Formula):: Thm (p => (-p => q))| mp (p, q :: Formula) (x :: Thm p) (y :: Thm (p => q)):: Thm q

23

Another
onne
tion between indu
tive familiesand logi
 programs

nat(zero).nat(su

(X)) :- nat(X).formula(var(P)) :- nat(P).formula(~P) :- formula(P).formula(P => Q) :- formula(P), formula(Q).thm1((P => Q) => ((Q => R) => (P => R)), ax1(P,Q,R)):- formula(P), formula(Q), formula(R).thm1((~P => P) => P, ax2(P)) :- formula(P).thm1(P => (~P => Q), ax3(P,Q)) :- formula(P), formula(Q).thm1(Q, mp(P,Q,X,Y)) :- thm1(P, X), thm1(P => Q, Y). 24

Generating theorems and derivations

We
an obtain a theorem and its derivation as solutions for X and Y inthe query thm1(X, Y). For example,X = (var(zero) => var(zero)) =>((var(zero) => var(zero)) => (var(zero) => var(zero)))Y = ax1(var(zero), var(zero), var(zero))So the problem of generating a pair (X :: Formula, Y :: Thm X)in dependent type theory
orresponds to the task of solving a querythm1(X, Y). In this way, we
an use a Prolog interpreter to generateelements patterns of Horn indu
tive families. If we randomise the Prologinterpreter and randomly instantiate the patterns, then we get a randomgenerator for Horn indu
tive families. 25

A generator for theorems

It is based on a more general generator for theorem patterns, that is,formula patterns whose ground instantiations are all theorems.genTP :: Rand -> (t :: Pat) -> Maybe (� :: Subst, ThmPat t[�℄)generates theorem patterns whi
h �t into a given formula pattern t :: Pat.With a seed s, genTP s t either su

eeds and returns some Just (�; d), orfails and returns Nothing. In
ase of su

ess, we have a theorem patternt[�℄ with derivation d :: ThmPat t[�℄.The type of formula patterns Pat is a simple set with four
onstru
tors.We have the same three
onstru
tors as Formula but also a fourth
onstru
tor X :: Nat ! Pat for pattern variables (logi
al variables denotingindeterminate formulas). 26

Con
luding remarks

� When a set or a family is (Horn) indu
tively generated we
an alsorandomly generate or re
ursively enumerate its elements.� This is a generi
 te
hnique. A generator
an be written for the whole
lass of Horn indu
tive families. (EÆ
ien
y is not guaranteed, just likein Prolog.)� The te
hnique does not only apply to dependent type theory. A variant
an be used in predi
ate logi
 with indu
tively de�ned predi
ates.
27

