
Random Generators for Dependent Types

Peter Dybjer, Qiao Haiyan, and Makoto Takeyama

Cover meeting17 Marh, 2005

1

Random Generators in Agda/Alfa

A random generator for a type D is a funtionf :: Rand ! Dwhere Rand is the type of random seeds.A random generator for an indexed family of types P i for i :: I is afuntion f :: Rand ! sig fi :: I; p ::P igRemark: P i an be empty.We fous on indutively de�ned dependent types (indutive families) 2

Binary trees as random seeds

Rand is implemented as the set of binary trees of natural numbers:Rand :: Set = data Leaf (k :: Nat) :: Rand| Node (k :: Nat) (l, r :: Rand) :: Rand
3

A generator for lists

List(A::Set) :: Set = data nil :: List A| ons (a::A) (as::List A) :: List AgenList :: (A :: Set) -> (Rand -> A) -> Rand -> List AgenList A g (Leaf _) = nilgenList A g (Node _ l r) = ons (g l) (genList A g r)This is an instane of a generi strategy for parameterized term algebras(\algebrai data types"): randomly hoose a onstrutor and generate itsarguments by using either parameter generators, or by the generators forpreviously de�ned simple sets, or by reursive alls, all using sub-seeds of thegiven seed. When the seed is not large enough, it terminates by hoosing anon-reursive onstrutor. 4

Indutive families

General form of formation rule:P :: (A1 :: �1) ! � � � ! (AN :: �N) !(a1 :: �1) ! � � � ! (aM :: �M) !SetGeneral form of introdution rule (ordinary, �nitary indutive de�nitions)intro :: (A1 :: �1) ! � � � ! (AN :: �N) !(b1 :: �1) ! � � � ! (bK :: �K) !(u1 :: P q11 : : : q1M) !� � �(uL :: P qL1 : : : qLM) !P p1 : : : pM

(P -Introintro)
5

The indutive family of �nite sets

The indexed family Fin n (n :: Nat) of sets with n elements:Fin :: Nat -> Set= data C0 (n :: Nat) :: Fin (su n)| C1 (n :: Nat) (i :: Fin n) :: Fin (su n)Rules{ formation Fin :: Nat ! Set (N = 0; M = 1){ introdution C0 :: (n :: Nat) ! Fin (sun) (K = 1; L = 0)C1 :: (n :: Nat) ! Fin n ! Fin (sun) (K = 1; L = 1)
6

The indutive family of untyped lambda terms

Termn (n :: Nat) represents the set of lambda terms with at most nfree variables (using de Bruijn indies).Term :: Nat -> Set= data var (n :: Nat) (i :: Fin (su n)) :: Term (su n)| abs (n :: Nat) (t :: Term (su n)) :: Term n| app (n :: Nat) (t1, t2 :: Term n) :: Term n
7

The indutive family of vetors

An example with one parameter type A is the Nat-indexed family Vewhere elements of Ven are length-n vetors.Ve (A :: Set) :: Nat -> Set= data nil' :: Ve A zero| ons' (n :: Nat) (a :: A) (as :: Ve A n):: Ve A (su n)

8

A generator for the indutive family of vetors

genVe :: (A :: Set) -> (Rand -> A) ->Rand -> sig { ind :: Nat; obj :: Ve A ind }genVe A g (Leaf _) = strut ind = zero; obj = nil'genVe A g (Node _ l r) = let { as = genVe A g r } instrut ind = su as.indobj = ons' as.ind (g l) as.objThe generator maps the parameter generator g to the given tree seen as a(right-spine) list of (left) subtrees.

9

The general form of a generator for parameterizedindutive families

A generator for the familyP :: (A1 :: Set) ! � � � ! (AN :: Set) !(a1 :: �1) ! � � � ! (aM :: �M) !Setis a funtiongenP :: (A1 :: Set) ! � � � ! (AN :: Set) !(g1 :: Rand ! A1) ! � � � ! (gN :: Rand ! AN) !Rand ! sig fa1 ::�1; � � � ; aM ::�M ; p ::P a1 : : : aMgwhere Ai are parameters and gi are parameter generators. 10

Generators for Inhabited Indutive Families

If P i is inhabited for all i :: I, then a surjetive generatorgenP :: Rand ! sig find :: I; obj ::P indgan be de�ned from a surjetive generator genP 0 i for eah P i. It �rstgenerates an index using genI, then an element of P i using genP 0 i.
11

A generator for �nite sets

Fin (sun) is inhabited for all n :: Nat. A surjetive generator for thisfamily an be de�ned by using a generator for Nat to generate the index nand use it as input for the following generator for the family:genFin' :: (n :: Nat) -> Rand -> Fin (su n)genFin' zero _ = C0 zerogenFin' (su m) (Leaf _) = C0 (su m)genFin' (su m) (Node _ l r) = C1 (su m) (genFin' m l)
12

The indutive family of balaned binary trees

Bal :: (n :: Nat) -> Set = dataEmpty :: Bal zero| C00 (t1, t2 :: Bal n) :: Bal (su n)| C01 (t1 :: Bal n) (t2 :: Bal (su n)) :: Bal (su (su n))| C10 (t1 :: Bal (su n)) (t2 :: Bal n) :: Bal (su (su n))Bal n is inhabited for all n. So we an �rst generate an n and then anelement of Bal n using the generator genBal' on the next page.
13

A generator for balaned binary trees

genBal' :: (n :: Nat) -> Rand -> Bal ngenBal' zero _ = EmptygenBal' (su zero) _ = C00 Empty EmptygenBal' (su (su n)) (Leaf k) =let t = genBal' (su n) (Leaf k) in C00 t tgenBal' (su (su n)) (Node k l r) =let b1 = genBal' (su n) lb2 = genBal' (su n) rb3 = genBal' n rin hoie3 k (C00 b1 b2) (C01 b3 b1) (C10 b1 b3)where hoie3 k a0 a1 a2 = a(kmod 3) 14

A generator for lambda terms

Term n is also inhabited for eah n. So again, a generator an be writtenby �rst generating an n and then using a generator:genTerm' :: (n :: Nat) -> Rand -> Term n

15

genTerm' zero (Leaf _) = abs zero (var zero (C0 zero))genTerm' zero (Node k l r) =let t1 :: Term (su zero) = genTerm' (su zero) lt2 :: Term zero = genTerm' zero lt3 :: Term zero = genTerm' zero rin hoie2 k (abs zero t1) (app zero t2 t3)genTerm' (su m) (Leaf k) = var m (genFin' m (Leaf k))genTerm' (su m) (Node k l r) =let t1 :: Term (su (su m)) = genTerm' (su (su m)) lt2 :: Term (su m) = genTerm' (su m) lt3 :: Term (su m) = genTerm' (su m) rin hoie2 k (abs (su m) t1) (app (su m) t2 t3)
16

Simple indutive families

� The formation rule P :: I ! Set has no parameter, and the single indexset I is simple.� Eah introdution rule has the formintro :: (i1 :: I) ! � � � ! (iK :: I) !(u1 :: P i1) ! � � � (uK :: P iK) !P p� P is not empty; there must be a onstrutor without arguments.� But P i an be empty for some i. 17

The indutive family (prediate) of even numbers

Even :: Nat -> Set= data C0 :: Even zero| C1 (n :: Nat) (p :: Even n) :: Even (su (su n))A generator of even numbers and proof objets for evenness:genEven :: Rand -> sig { ind :: Nat; obj :: Even ind }genEven (Leaf k) = strut ind = zero; obj = C0genEven (Node k l r) = let g1 = genEven lin strut ind = su (su g1.ind)obj = C1 g1.ind g1.obj

18

Another generator of elements of �nite sets

The indutive family of �nite sets is a simple indutive family so we anwrite a generator using the same tehnique. In this ase, the generator hasthe type:genFin :: Rand -> sig ind :: Nat; obj :: Fin indand is de�ned as follows:genFin (Leaf k) = strut ind = genNat (Leaf k); obj = C0 indgenFin (Node k l r) = letg1 :: GFin = genFin rin strut ind = su g1.ind; obj = C1 g1.ind g1.obj
19

Indutive De�nitions and Logi Programs

� The motivation for onsidering simple indutive families is to have asfew onstraints as possible between indies and elements, in order tofailitate random generation.� However, representing intriate onstraints is often the very purpose ofde�ning an indexed family.� To over some of those ases, we introdue uni�ation and baktrakingin a generation algorithm.� The idea is based on the relationship between indutive families and logiprograms (Hagiya and Sakurai 1984).

20

Horn lauses for theorems

Horn lauses orresponding to to the axioms and inferene rules of asystem due to Lukasiewiz:thm((P => Q) => ((Q => R) => (P => R))).thm((~P => P) => P).thm(P => (~P => Q)).thm(Q) :- thm(P), thm(P => Q).Running the query thm(X) on a Prolog implementation, we an obtaintheorems (shemas) as solutions for X; for exampleX = (((_A => _B) => (_C => _B)) => _D) => ((_C => A) => _D)
21

Type theory and logi programs

Type theory Logi programmingFamily of sets P :: D ! Set Prediate Pan introdution rule a Horn lauseindutive de�nition of P logi program de�ning P

We all an indutive family arising from a logi program a Horn indutivefamily. This is a subset of the general lass of indutive families onsideredin type theory.

22

An indutive family of theorems

Formula is an indutively de�ned set of formulas.Thm :: Formula -> Set = dataax1 (p, q, r :: Formula):: Thm ((p => q) => ((q => r) => (p => r)))| ax2 (p :: Formula):: Thm ((-p => p) => p)| ax3 (p, q :: Formula):: Thm (p => (-p => q))| mp (p, q :: Formula) (x :: Thm p) (y :: Thm (p => q)):: Thm q

23

Another onnetion between indutive familiesand logi programs

nat(zero).nat(su(X)) :- nat(X).formula(var(P)) :- nat(P).formula(~P) :- formula(P).formula(P => Q) :- formula(P), formula(Q).thm1((P => Q) => ((Q => R) => (P => R)), ax1(P,Q,R)):- formula(P), formula(Q), formula(R).thm1((~P => P) => P, ax2(P)) :- formula(P).thm1(P => (~P => Q), ax3(P,Q)) :- formula(P), formula(Q).thm1(Q, mp(P,Q,X,Y)) :- thm1(P, X), thm1(P => Q, Y). 24

Generating theorems and derivations

We an obtain a theorem and its derivation as solutions for X and Y inthe query thm1(X, Y). For example,X = (var(zero) => var(zero)) =>((var(zero) => var(zero)) => (var(zero) => var(zero)))Y = ax1(var(zero), var(zero), var(zero))So the problem of generating a pair (X :: Formula, Y :: Thm X)in dependent type theory orresponds to the task of solving a querythm1(X, Y). In this way, we an use a Prolog interpreter to generateelements patterns of Horn indutive families. If we randomise the Prologinterpreter and randomly instantiate the patterns, then we get a randomgenerator for Horn indutive families. 25

A generator for theorems

It is based on a more general generator for theorem patterns, that is,formula patterns whose ground instantiations are all theorems.genTP :: Rand -> (t :: Pat) -> Maybe (� :: Subst, ThmPat t[�℄)generates theorem patterns whih �t into a given formula pattern t :: Pat.With a seed s, genTP s t either sueeds and returns some Just (�; d), orfails and returns Nothing. In ase of suess, we have a theorem patternt[�℄ with derivation d :: ThmPat t[�℄.The type of formula patterns Pat is a simple set with four onstrutors.We have the same three onstrutors as Formula but also a fourthonstrutor X :: Nat ! Pat for pattern variables (logial variables denotingindeterminate formulas). 26

Conluding remarks

� When a set or a family is (Horn) indutively generated we an alsorandomly generate or reursively enumerate its elements.� This is a generi tehnique. A generator an be written for the wholelass of Horn indutive families. (EÆieny is not guaranteed, just likein Prolog.)� The tehnique does not only apply to dependent type theory. A variantan be used in prediate logi with indutively de�ned prediates.
27

