
MFPS 2007, New Orleans

Normalization Martin-Löf type theory Normalization algorithm Decidability of equality

Normalization by Evaluation
for Martin-Löf Type Theory

with One Universe

Peter Dybjer, Göteborg
(with Andreas Abel, Munich, and Klaus Aehlig, Swansea)

MFPS XXIII, New Orleans
11-14 April, 2007

MFPS 2007, New Orleans

Normalization Martin-Löf type theory Normalization algorithm Decidability of equality

Partial evaluation of programs

Let us define power m n = mn.

power :: int -> int -> int

power m 0 = 1
power m (Succ n) = m * (power m n)

In Gödel System T

power m n = rec 1 (\x y -> m * y) n

Let n = 3. Simplify:

power m 3 = m * (m * m)

by using the reduction rules for power, *, and +.

MFPS 2007, New Orleans

Normalization Martin-Löf type theory Normalization algorithm Decidability of equality

Partial evaluation of types

In Martin-Löf type theory we can define the type-valued function
Power A n = An. Set is the type of small types - a universe:

Power :: Set -> Nat -> Set

Power A 0 = 1
Power A (Succ n) = A * (Power A n)

Power A n = rec 1 (\x y -> A * y) n

Let n = 3. Simplify:

Power A 3 = A * (A * (A * 1))

by using the reduction rules for Power. Can we simplify further?

MFPS 2007, New Orleans

Normalization Martin-Löf type theory Normalization algorithm Decidability of equality

Normalization during type-checking

To check that

(2007,(4,(12,()))) :: Power Nat 3

we need to normalize the type:

(2007,(4,(12,()))) :: Nat * (Nat * (Nat * 1))

MFPS 2007, New Orleans

Normalization Martin-Löf type theory Normalization algorithm Decidability of equality

Programming normalization – by evaluation

Normalization as a program! Constructive metamathematics is
meta-programming!

An elegant way is to normalize by “evaluating” a term in a model, and
then extracting the normal form:

syntax
[[−]]

-�
↓

model

nbet = ↓ [[t]]

In this talk we shall view the model as the model of normal forms in
higher-order abstract syntax.

MFPS 2007, New Orleans

Normalization Martin-Löf type theory Normalization algorithm Decidability of equality

Plan

Martin-Löf type theory with one universe and untyped conversion
(like Martin-Löf 1972 + η-rule). Syntax, reduction, normal forms,
and inference rules.

Normalization algorithms for terms and types:

nbeA
Γt = ↓

[[A]]ρΓ
|Γ| [[t]]ρΓ

NbeΓA = ⇓|Γ| [[A]]ρΓ

Correctness of normalization algorithm for terms and types
means decidability of equality:

If Γ ` t, t ′ : A then t =βη t ′ iff nbeA
Γt ≡ nbeA

Γt ′ ∈ Tm.
If Γ ` A,A′ then A =βη A′ iff NbeΓA≡ NbeΓA′ ∈ Tm.

MFPS 2007, New Orleans

Normalization Martin-Löf type theory Normalization algorithm Decidability of equality

Martin-Löf Type Theory

Types and terms with de Bruijn indices (types are terms - universe à la
Russell)

Tm 3 r ,s, t,z,A,B ::= vi de Bruijn index
| λt abstracting 0th variable
| r s application
| Zero natural number “0”
| Succ t successor
| Rec Az s t primitive recursion
| ΠAB dependent function type
| Nat natural number type
| Set universe

We can add other set constructors too: ΣAB,A+B,0,1, and
inductively defined datatypes. (E.g example with Power -types used
×.)

MFPS 2007, New Orleans

Normalization Martin-Löf type theory Normalization algorithm Decidability of equality

Reduction and conversion

One-step βη-reduction t −→ t ′ is given as the congruence-closure of
the following contractions.

(λt)s −→ t[s] (β-λ)
λ.(⇑1t)v0 −→ t (η)

Rec Az s Zero −→ z (β-Rec-Zero)
Rec Az s (Succ r) −→ s r (Rec Az s r) (β-Rec-Succ)

Its reflexive-transitive closure −→∗ is confluent, so we can define
t =βη t ′ as ∃s.t −→∗ s ∗←− t ′.

MFPS 2007, New Orleans

Normalization Martin-Löf type theory Normalization algorithm Decidability of equality

Judgement forms

Γ ` Γ is a well-formed context
Γ ` A A is a well-formed type in context Γ
Γ ` t : A t has type A in context Γ

We follow Martin-Löf 1972: basis is conversion of untyped terms (does
not count as judgement):

t =βη t ′

Martin-Löf 1973 and onwards instead has typed equality judgements

Γ ` A = A′

Γ ` t = t ′ : A

MFPS 2007, New Orleans

Normalization Martin-Löf type theory Normalization algorithm Decidability of equality

Some inference rules

We only give the rules for well-formed sets

Γ ` Nat : Set

Γ ` A : Set Γ,A ` B : Set

Γ `ΠAB : Set

well-formed types

Γ ` A : Set

Γ ` A

Γ `
Γ ` Set

Γ ` A Γ,A ` B

Γ `ΠAB

and the type conversion rule:

Γ ` t : A Γ ` A′

Γ ` t : A′
A =βη A′

There are also introduction and elimination rules for Π and Nat , and
rules for context formation and assumption.

MFPS 2007, New Orleans

Normalization Martin-Löf type theory Normalization algorithm Decidability of equality

Semantics: normal forms in higher order abstract syntax

First-order syntax of normal and neutral (well-formed) types and
(well-typed) terms:

A,B, t,u ::= ΠAB | Nat | Set | λt | Zero | Succ t | s
s ::= vi | s t | Rec At u s

"There is no model of normal forms; normality is not closed under
application (and recursion)".
Define a domain D of normal forms in higher-order abstract syntax
with the following "constructors":

Pi : D× [D→ D]→ D
Nat : D
Set : D

Lam : [D→ D]→ D
Zero : D
Succ : D→ D
Ne : TM⊥→ D

where TM = N→ TmZ (See paper for strictness issues.)

MFPS 2007, New Orleans

Normalization Martin-Löf type theory Normalization algorithm Decidability of equality

Haskell datatypes for terms and normal forms in hoas

data Tm = Var Int | App Tm Tm | Lam Tm
| Zero | Succ Tm | Rec Tm Tm Tm Tm
| Nat | Pi Tm Tm | Set
deriving (Show,Eq)

type TM = Int -> Tm

data D = PiD D (D -> D) -- dependent function type
| NatD -- natural number type
| SetD -- type of sets
| LamD (D -> D) -- function
| ZeroD -- 0
| SuccD D -- successor
| NeD TM -- neutral terms

MFPS 2007, New Orleans

Normalization Martin-Löf type theory Normalization algorithm Decidability of equality

Nbe functions in Haskell

A context is a list of types

type Cxt = [Tm]

Normalization of a term wrt a type and a context:

nbe :: Cxt -> Tm -> Tm -> Tm

Normalization of a type wrt a context

nbeT :: Cxt -> Tm -> Tm

MFPS 2007, New Orleans

Normalization Martin-Löf type theory Normalization algorithm Decidability of equality

Evaluation function

[[_]]_ : Tm→ [[N→ D]→ D]

[[vi]]ρ = ρ(i)
[[λt]]ρ = Lam(d 7→ [[t]]ρ,d)
[[r s]]ρ = [[r]]ρ · [[s]]ρ
[[Zero]]ρ = Zero

[[Succ t]]ρ = Succ [[t]]ρ
[[Rec Az s t]]ρ = rec (d 7→ [[A]]ρ,d) [[z]]ρ [[s]]ρ [[t]]ρ
[[ΠAB]]ρ = Pi [[A]]ρ (d 7→ [[B]]ρ,d)
[[Nat]]ρ = Nat

[[Set]]ρ = Set

MFPS 2007, New Orleans

Normalization Martin-Löf type theory Normalization algorithm Decidability of equality

Application of normal forms in hoas

We define application on D as the function

app : [D→ [D→ D]]
(Lam f) ·d = f d
e ·d = ⊥ if e is not Lam f

where in the following “default ⊥ clauses” like the last one are always
tacitly assumed.
In Haskell:

appD :: D -> D -> D
appD (LamD f) d = f d

We also need to define primitive recursion rec in the model, but first
we need reification and reflection.

MFPS 2007, New Orleans

Normalization Martin-Löf type theory Normalization algorithm Decidability of equality

Reification - translating hoas to foas

⇓ : [D→ TM⊥]

⇓k (Piag) = Π(⇓k a)(⇓k+1 g (↑a v̂−(k+1)))

⇓k Nat = Nat

⇓k Set = Set

⇓k(Ne t̂) = t̂(k)

↓ : [D→ [D→ TM⊥]]

↓Set
k a = ⇓k a

↓Piag
k (Lam f) = λ(↓g(↑a v̂−(k+1))

k+1 (f (↑a v̂−(k+1))))

↓Nat
k Zero = Zero

↓Nat
k (Succd) = Succ (↓Nat

k d)

↓c
k(Ne t̂) = t̂(k) if c 6=⊥,c 6= Pi . . .

MFPS 2007, New Orleans

Normalization Martin-Löf type theory Normalization algorithm Decidability of equality

Reflection

Mapping neutral terms (including variables) to D:

↑ : [D→ [TM⊥→ D]]

↑Piag t̂ = Lam(d 7→ ↑g(d)(t̂ ↓a d))
↑c t̂ = Ne t̂ if c 6=⊥,c 6= Pi . . .

We perform η-expansion. Hence we need the first argument which is a
normal type in hoas - an element of D.

MFPS 2007, New Orleans

Normalization Martin-Löf type theory Normalization algorithm Decidability of equality

Primitive recursion on normal forms in hoas

rec : [[D→ D]→ [D→ [D→ [D→ D]]]]

rec adz ds Zero = dz

rec adz ds (Succe) = ds ·e · (rec adz ds e)
rec adz ds (Ne t̂) = ↑a(Ne t̂)(k 7→ Rec (⇓k+1 a(Nev−(k+1)))

(↓aZero
k dz)

(↓ΠNat(d 7→ad⇒a(Succd))
k ds)

t̂(k))

Here we use reification ↓ and reflection ↑.

MFPS 2007, New Orleans

Normalization Martin-Löf type theory Normalization algorithm Decidability of equality

The normalization function

Normalization by evaluation for terms and types is now implemented
by these two functions:

nbeA
Γt := ↓

[[A]]ρΓ
|Γ| [[t]]ρΓ

NbeΓA := ⇓|Γ| [[A]]ρΓ

where ρΓ is the identity valuation which is obtained by reflection of the
identity substitution.

MFPS 2007, New Orleans

Normalization Martin-Löf type theory Normalization algorithm Decidability of equality

Correctness of normalization function

Correctness means decidability of equality (convertibility of types and
terms).

If Γ ` t, t ′ : A then t =βη t ′ iff nbeA
Γt ≡ nbeA

Γt ′ ∈ Tm.

If Γ ` A,A′ then A =βη A′ iff NbeΓA≡ NbeΓA′ ∈ Tm.

We split it up into two parts

Completeness

If Γ ` t, t ′ : A and t =βη t ′, then
nbeA

Γt ≡ nbeA
Γt ′ ∈ Tm.

If Γ ` A,A′ and A =βη A′, then
NbeΓA≡ NbeΓA′ ∈ Tm.

Soundness

If Γ ` t : A then t =βη nbeA
Γt .

If Γ ` A then A =βη NbeΓA.

We will only discuss the former. The latter is shown by defining a
Kripke logical relation between terms and their normal forms in hoas.

MFPS 2007, New Orleans

Normalization Martin-Löf type theory Normalization algorithm Decidability of equality

PER of natural numbers and PER of functions

We inductively define N at ∈ Per by the following rules.

Zero = Zero ∈N at

d = d ′ ∈N at

Succd = Succd ′ ∈N at Ne t̂ = Ne t̂ ∈N at

If we have a PER A and a family of PERs G(d) indexed by d in the
domain of A , then we can build a PER of functions:

ΠA G = {(e,e′) | (e ·d ,e′ ·d ′) ∈ G(d) for all (d ,d ′) ∈ A}.

MFPS 2007, New Orleans

Normalization Martin-Löf type theory Normalization algorithm Decidability of equality

Inductive-recursive definition of PER of small types

We simultaneously define the PER Set ∈ Rel and the family of PERS
[a] for a in the domain of Set by the following rules.

a = a′ ∈ Set g(d) = g′(d ′) ∈ Set for all d = d ′ ∈ [a]
Piag = Pia′ g′ ∈ Set

Nat = Nat ∈ Set Ne t̂ = Ne t̂ ∈ Set

[Piag] = Π [a] (d 7→ [g(d)])
[Nat] = N at
[Ne t̂] = Ne.

MFPS 2007, New Orleans

Normalization Martin-Löf type theory Normalization algorithm Decidability of equality

Inductive-recursive definition as monotone inductive
definition

We define the graph T⊆ P (D×Per) of [_] inductively by the following
rules.

(a,A) ∈ T (g(d),G(d)) ∈ T for all d ∈ A
(Piag,ΠA G) ∈ T

(Nat,N at) ∈ T (Ne t̂,Ne) ∈ T

This is a monotone inductive definition using Aczel’s rule sets (see
Handbook of Mathematical Logic).

MFPS 2007, New Orleans

Normalization Martin-Löf type theory Normalization algorithm Decidability of equality

Inductive-recursive definition of the PER of all types

This is like the definition of small types with some extra clauses:

c = c′ ∈ Set

c = c′ ∈ T ype Set = Set ∈ T ype

a = a′ ∈ T ype g(d) = g′(d ′) ∈ T ype for all d = d ′ ∈ [a]
Piag = Pia′ g′ ∈ T ype

[Piag] = Π [a] (d 7→ [g(d)])
[Nat] = N at
[Ne t̂] = Ne.
[Set] = Set

MFPS 2007, New Orleans

Normalization Martin-Löf type theory Normalization algorithm Decidability of equality

Reification and reflection preserve equality

1 If c = c′ ∈ T ype then ↑c t̂ = ↑c′ t̂ ∈ [c].
2 If c = c′ ∈ T ype then ⇓c ≡ ⇓c′ ∈ TM.

3 If c = c′ ∈ T ype and e = e′ ∈ [c] then ↓c e ≡ ↓c′ e′ ∈ TM.

MFPS 2007, New Orleans

Normalization Martin-Löf type theory Normalization algorithm Decidability of equality

Convertible terms are semantically related

If Γ ` A,A′ and A =βη A′ then Γ |= A = A′.

If Γ ` t, t ′ : A and t =βη t ′ then Γ |= t = t ′ : A.

where

Γ |= A = A′ :⇐⇒ Γ |= and ∀ρ = ρ′ ∈ [Γ]. [[A]]ρ = [[A′]]ρ′ ∈ T ype

Γ |= t = t ′ : A :⇐⇒ Γ |= A and ∀ρ = ρ′ ∈ [Γ]. [[t]]ρ = [[t ′]]ρ′ ∈ [[[A]]ρ]

MFPS 2007, New Orleans

Normalization Martin-Löf type theory Normalization algorithm Decidability of equality

Completeness of NbE

1 If Γ ` t, t ′ : A and t =βη t ′ then nbeA
Γt ≡ nbeA

Γt ′ ∈ Tm.

2 If Γ ` A,A′ and A =βη A′ then NbeΓA≡ NbeΓA′ ∈ Tm.

It follows that NbE is terminating on well-typed terms.

MFPS 2007, New Orleans

Normalization Martin-Löf type theory Normalization algorithm Decidability of equality

Conclusion

Key point. With nbe we get better tool for metatheory of type theory. It
is more practical and more elegant.

Extend Berger-Schwichtenberg style nbe to dependent types:
normalize types as well as terms. Show that we can get eta for
universe a la Russell. Key point for justifying Agda system.

Cf work by Martin-Löf 1973, 2004. Also work by Danielsson 2006.

Key obstacle was overcome by starting with untyped nbe. (Note
also that the algorithm for MLTT with only beta-conversion is
more straightforward.)

Future work. Equality judgments (LiCS 2007). Cwfs. Correctness
of type-checking. Meta-theorems.

	Normalization
	Martin-Löf type theory
	Normalization algorithm
	Decidability of equality

