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Partial evaluation of programs

Let us define power m n = mn.

power :: int -> int -> int

power m 0 = 1
power m (Succ n) = m * (power m n)

In Gödel System T

power m n = rec 1 (\x y -> m * y) n

Let n = 3. Simplify:

power m 3 = m * (m * m)

by using the reduction rules for power, *, and +.
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Partial evaluation of types

In Martin-Löf type theory we can define the type-valued function
Power A n = An. Set is the type of small types - a universe:

Power :: Set -> Nat -> Set

Power A 0 = 1
Power A (Succ n) = A * (Power A n)

Power A n = rec 1 (\x y -> A * y) n

Let n = 3. Simplify:

Power A 3 = A * (A * (A * 1))

by using the reduction rules for Power. Can we simplify further?
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Normalization during type-checking

To check that

(2007,(4,(12,()))) :: Power Nat 3

we need to normalize the type:

(2007,(4,(12,()))) :: Nat * (Nat * (Nat * 1))
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Programming normalization – by evaluation

Normalization as a program! Constructive metamathematics is
meta-programming!

An elegant way is to normalize by “evaluating” a term in a model, and
then extracting the normal form:

syntax
[[−]]

-�
↓

model

nbet = ↓ [[t]]

In this talk we shall view the model as the model of normal forms in
higher-order abstract syntax.
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Plan

Martin-Löf type theory with one universe and untyped conversion
(like Martin-Löf 1972 + η-rule). Syntax, reduction, normal forms,
and inference rules.

Normalization algorithms for terms and types:

nbeA
Γt = ↓

[[A]]ρΓ
|Γ| [[t]]ρΓ

NbeΓA = ⇓|Γ| [[A]]ρΓ

Correctness of normalization algorithm for terms and types
means decidability of equality:

If Γ ` t, t ′ : A then t =βη t ′ iff nbeA
Γt ≡ nbeA

Γt ′ ∈ Tm.
If Γ ` A,A′ then A =βη A′ iff NbeΓA≡ NbeΓA′ ∈ Tm.
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Martin-Löf Type Theory

Types and terms with de Bruijn indices (types are terms - universe à la
Russell)

Tm 3 r ,s, t,z,A,B ::= vi de Bruijn index
| λt abstracting 0th variable
| r s application
| Zero natural number “0”
| Succ t successor
| Rec Az s t primitive recursion
| ΠAB dependent function type
| Nat natural number type
| Set universe

We can add other set constructors too: ΣAB,A+B,0,1, and
inductively defined datatypes. (E.g example with Power -types used
×.)
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Reduction and conversion

One-step βη-reduction t −→ t ′ is given as the congruence-closure of
the following contractions.

(λt)s −→ t[s] (β-λ)
λ.(⇑1t)v0 −→ t (η)

Rec Az s Zero −→ z (β-Rec-Zero)
Rec Az s (Succ r) −→ s r (Rec Az s r) (β-Rec-Succ)

Its reflexive-transitive closure −→∗ is confluent, so we can define
t =βη t ′ as ∃s.t −→∗ s ∗←− t ′.
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Judgement forms

Γ ` Γ is a well-formed context
Γ ` A A is a well-formed type in context Γ
Γ ` t : A t has type A in context Γ

We follow Martin-Löf 1972: basis is conversion of untyped terms (does
not count as judgement):

t =βη t ′

Martin-Löf 1973 and onwards instead has typed equality judgements

Γ ` A = A′

Γ ` t = t ′ : A
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Some inference rules

We only give the rules for well-formed sets

Γ ` Nat : Set

Γ ` A : Set Γ,A ` B : Set

Γ `ΠAB : Set

well-formed types

Γ ` A : Set

Γ ` A

Γ `
Γ ` Set

Γ ` A Γ,A ` B

Γ `ΠAB

and the type conversion rule:

Γ ` t : A Γ ` A′

Γ ` t : A′
A =βη A′

There are also introduction and elimination rules for Π and Nat , and
rules for context formation and assumption.
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Semantics: normal forms in higher order abstract syntax

First-order syntax of normal and neutral (well-formed) types and
(well-typed) terms:

A,B, t,u ::= ΠAB | Nat | Set | λt | Zero | Succ t | s
s ::= vi | s t | Rec At u s

"There is no model of normal forms; normality is not closed under
application (and recursion)".
Define a domain D of normal forms in higher-order abstract syntax
with the following "constructors":

Pi : D× [D→ D]→ D
Nat : D
Set : D

Lam : [D→ D]→ D
Zero : D
Succ : D→ D
Ne : TM⊥→ D

where TM = N→ TmZ (See paper for strictness issues.)
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Haskell datatypes for terms and normal forms in hoas

data Tm = Var Int | App Tm Tm | Lam Tm
| Zero | Succ Tm | Rec Tm Tm Tm Tm
| Nat | Pi Tm Tm | Set
deriving (Show,Eq)

type TM = Int -> Tm

data D = PiD D (D -> D) -- dependent function type
| NatD -- natural number type
| SetD -- type of sets
| LamD (D -> D) -- function
| ZeroD -- 0
| SuccD D -- successor
| NeD TM -- neutral terms
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Nbe functions in Haskell

A context is a list of types

type Cxt = [Tm]

Normalization of a term wrt a type and a context:

nbe :: Cxt -> Tm -> Tm -> Tm

Normalization of a type wrt a context

nbeT :: Cxt -> Tm -> Tm
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Evaluation function

[[_]]_ : Tm→ [[N→ D]→ D]

[[vi ]]ρ = ρ(i)
[[λt]]ρ = Lam(d 7→ [[t]]ρ,d)
[[r s]]ρ = [[r ]]ρ · [[s]]ρ
[[Zero]]ρ = Zero

[[Succ t]]ρ = Succ [[t]]ρ
[[Rec Az s t]]ρ = rec (d 7→ [[A]]ρ,d) [[z]]ρ [[s]]ρ [[t]]ρ
[[ΠAB]]ρ = Pi [[A]]ρ (d 7→ [[B]]ρ,d)
[[Nat]]ρ = Nat

[[Set]]ρ = Set
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Application of normal forms in hoas

We define application on D as the function

app : [D→ [D→ D]]
(Lam f ) ·d = f d
e ·d = ⊥ if e is not Lam f

where in the following “default ⊥ clauses” like the last one are always
tacitly assumed.
In Haskell:

appD :: D -> D -> D
appD (LamD f) d = f d

We also need to define primitive recursion rec in the model, but first
we need reification and reflection.
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Reification - translating hoas to foas

⇓ : [D→ TM⊥]

⇓k (Piag) = Π(⇓k a)(⇓k+1 g (↑a v̂−(k+1)))

⇓k Nat = Nat

⇓k Set = Set

⇓k(Ne t̂) = t̂(k)

↓ : [D→ [D→ TM⊥]]

↓Set
k a = ⇓k a

↓Piag
k (Lam f ) = λ(↓g(↑a v̂−(k+1))

k+1 (f (↑a v̂−(k+1))))

↓Nat
k Zero = Zero

↓Nat
k (Succd) = Succ (↓Nat

k d)

↓c
k(Ne t̂) = t̂(k) if c 6=⊥,c 6= Pi . . .
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Reflection

Mapping neutral terms (including variables) to D:

↑ : [D→ [TM⊥→ D]]

↑Piag t̂ = Lam(d 7→ ↑g(d)(t̂ ↓a d))
↑c t̂ = Ne t̂ if c 6=⊥,c 6= Pi . . .

We perform η-expansion. Hence we need the first argument which is a
normal type in hoas - an element of D.
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Primitive recursion on normal forms in hoas

rec : [[D→ D]→ [D→ [D→ [D→ D]]]]

rec adz ds Zero = dz

rec adz ds (Succe) = ds ·e · (rec adz ds e)
rec adz ds (Ne t̂) = ↑a(Ne t̂)(k 7→ Rec (⇓k+1 a(Nev−(k+1)))

(↓aZero
k dz)

(↓ΠNat(d 7→ad⇒a(Succd))
k ds)

t̂(k))

Here we use reification ↓ and reflection ↑.
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The normalization function

Normalization by evaluation for terms and types is now implemented
by these two functions:

nbeA
Γt := ↓

[[A]]ρΓ
|Γ| [[t]]ρΓ

NbeΓA := ⇓|Γ| [[A]]ρΓ

where ρΓ is the identity valuation which is obtained by reflection of the
identity substitution.
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Correctness of normalization function

Correctness means decidability of equality (convertibility of types and
terms).

If Γ ` t, t ′ : A then t =βη t ′ iff nbeA
Γt ≡ nbeA

Γt ′ ∈ Tm.

If Γ ` A,A′ then A =βη A′ iff NbeΓA≡ NbeΓA′ ∈ Tm.

We split it up into two parts

Completeness

If Γ ` t, t ′ : A and t =βη t ′, then
nbeA

Γt ≡ nbeA
Γt ′ ∈ Tm.

If Γ ` A,A′ and A =βη A′, then
NbeΓA≡ NbeΓA′ ∈ Tm.

Soundness

If Γ ` t : A then t =βη nbeA
Γt .

If Γ ` A then A =βη NbeΓA.

We will only discuss the former. The latter is shown by defining a
Kripke logical relation between terms and their normal forms in hoas.
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PER of natural numbers and PER of functions

We inductively define N at ∈ Per by the following rules.

Zero = Zero ∈N at

d = d ′ ∈N at

Succd = Succd ′ ∈N at Ne t̂ = Ne t̂ ∈N at

If we have a PER A and a family of PERs G(d) indexed by d in the
domain of A , then we can build a PER of functions:

ΠA G = {(e,e′) | (e ·d ,e′ ·d ′) ∈ G(d) for all (d ,d ′) ∈ A}.
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Inductive-recursive definition of PER of small types

We simultaneously define the PER Set ∈ Rel and the family of PERS
[a] for a in the domain of Set by the following rules.

a = a′ ∈ Set g(d) = g′(d ′) ∈ Set for all d = d ′ ∈ [a]
Piag = Pia′ g′ ∈ Set

Nat = Nat ∈ Set Ne t̂ = Ne t̂ ∈ Set

[Piag] = Π [a] (d 7→ [g(d)])
[Nat] = N at
[Ne t̂] = Ne.
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Inductive-recursive definition as monotone inductive
definition

We define the graph T⊆ P (D×Per) of [_] inductively by the following
rules.

(a,A) ∈ T (g(d),G(d)) ∈ T for all d ∈ A
(Piag,ΠA G) ∈ T

(Nat,N at) ∈ T (Ne t̂,Ne) ∈ T

This is a monotone inductive definition using Aczel’s rule sets (see
Handbook of Mathematical Logic).
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Inductive-recursive definition of the PER of all types

This is like the definition of small types with some extra clauses:

c = c′ ∈ Set

c = c′ ∈ T ype Set = Set ∈ T ype

a = a′ ∈ T ype g(d) = g′(d ′) ∈ T ype for all d = d ′ ∈ [a]
Piag = Pia′ g′ ∈ T ype

[Piag] = Π [a] (d 7→ [g(d)])
[Nat] = N at
[Ne t̂] = Ne.
[Set] = Set
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Reification and reflection preserve equality

1 If c = c′ ∈ T ype then ↑c t̂ = ↑c′ t̂ ∈ [c].
2 If c = c′ ∈ T ype then ⇓c ≡ ⇓c′ ∈ TM.

3 If c = c′ ∈ T ype and e = e′ ∈ [c] then ↓c e ≡ ↓c′ e′ ∈ TM.
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Convertible terms are semantically related

If Γ ` A,A′ and A =βη A′ then Γ |= A = A′.

If Γ ` t, t ′ : A and t =βη t ′ then Γ |= t = t ′ : A.

where

Γ |= A = A′ :⇐⇒ Γ |= and ∀ρ = ρ′ ∈ [Γ]. [[A]]ρ = [[A′]]ρ′ ∈ T ype

Γ |= t = t ′ : A :⇐⇒ Γ |= A and ∀ρ = ρ′ ∈ [Γ]. [[t]]ρ = [[t ′]]ρ′ ∈ [[[A]]ρ]
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Completeness of NbE

1 If Γ ` t, t ′ : A and t =βη t ′ then nbeA
Γt ≡ nbeA

Γt ′ ∈ Tm.

2 If Γ ` A,A′ and A =βη A′ then NbeΓA≡ NbeΓA′ ∈ Tm.

It follows that NbE is terminating on well-typed terms.
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Conclusion

Key point. With nbe we get better tool for metatheory of type theory. It
is more practical and more elegant.

Extend Berger-Schwichtenberg style nbe to dependent types:
normalize types as well as terms. Show that we can get eta for
universe a la Russell. Key point for justifying Agda system.

Cf work by Martin-Löf 1973, 2004. Also work by Danielsson 2006.

Key obstacle was overcome by starting with untyped nbe. (Note
also that the algorithm for MLTT with only beta-conversion is
more straightforward.)

Future work. Equality judgments (LiCS 2007). Cwfs. Correctness
of type-checking. Meta-theorems.
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