Type Systems

Peter Dybjer
Chalmers University of Technology
Goteborg, Sweden

International Winter School
on Semantics and Applications
Montevideo, July 2003

What are types?

Examples in programming: integers, floating point numbers, types of
functions and subroutines, truth values, records, classes, interfaces, ...

Examples in logic: natural numbers, truth values, unary numerical func-
tions, binary numerical functions, propositional functions, truth functions,

Syntax or semantics? Parsing vs type-checking. Static semantics ...

Types as sets? Types as algebras? ...

Why types in programming?

Prevent (certain kinds of) errors.
Help structuring data and program, eg via abstract data types.
Code reuse via polymorphism.

Connection with logic. Propositions as types.

Types in logic - some milestones

1901 Russell's paradox

1910 Russell's ramified type theory, Principia Mathematica
1940 Church’s simple theory of types

1958 Godel's system T of computable functionals of finite type
1957,1968 Propositions as types (Curry, Howard)

1970 Intuitionistic type theory (Scott, Martin-Lof)

Types in computing

1950’s High-level imperative programming languages (Fortran, Algol)

1960’s Algol's successors, object-oriented languages (Algol 68, Pascal,
Simula)

late 1960’s Proof assistants based on type theory (Automath)

1970’s Typed functional programming languages (ML)

Plan

. The simply typed lambda calculus: background, syntax, typing rules, a
la Church vs a la Curry.

. Some applied simply typed lambda calculi: Church’s simple theory of
types, Godel's T, PCF, typed functional programming languages.

. Metatheoretic properties of the simply typed lambda calculus: type
inference, reduction, conversion, standard model.

. Intuitionistic type theory: dependent types, propositions as types, typing
rules, judgement forms, the logical framework, type checking, rules for
inductively defined sets.

Applications

programming in a typed functional language (ML, Haskell)
proving in HOL or Isabelle

programming in a dependently typed functional language (Cayenne,
DML)

proving in a proof assistant based on constructive type theory (Coq,
Lego, Agda/Alfa)

Russell’s paradox

Let

R = {z|x & =}

Then
ReR < R¢R

What's wrong?

“it is the distinction of logical types that is the key to the whole mystery”
(Russell 1903)

Russell’s ramified type theory

Distinguish between the types of

individuals
propositional functions (ranging over individuals)
2nd-order propositional functions (ranging over propositional functions)

3rd-order propositional functions (ranging over 2nd-order propositional
functions)

etc

Church’s simple theory of types

Types (abstract syntax, add parentheses to disambiguate)

A B:=1|o|A— B

e Base types:

— ¢ is the type of individuals.
— o is the type of propositions.

e A — B is the type of functions from A to B. (Church wrote (BA).)

10

Examples of types

L - the type of individuals
L — o - the type of propositional functions
(t = 0) = o - the type of 2nd-order propositional functions

((t = 0) = 0) — o - the type of 3rd-order propositional functions

11

More examples of types

L — - the type of unary functions on individuals
o — o - the type of unary connectives, eg negation

0 — 0 — o - the type of binary connectives, eg disjunction

L — 1 — o - the type of binary relations between individuals, eg equality

(A— A) - A — A - the type of iterators (Church numerals) of objects

of type A.

What is the type of the quantifiers V, 37

12

Functions of several arguments

We use currying (due to Schonfinkel) for representing functions of several
arguments. Note that — is right associative so that

O— 0 —0

abbreviates
o— (0 — 0)

If we add product types A x B with elements (a,b) fora: A and b: B,
then we also have the type of uncurried functions

OX0—O0

13

General form of types

Note that all types have the form
Ay == A, =«

for some base type « and types A4,...,A,.

Base types. In Church’s simple theory of types the base types are the
constant types ¢ and o, but in general we can have other constant base
types as well as type variables.

14

The simply typed lambda calculus a la Curry

Types
A B:=a|A— B
where o ranges over base types.

Terms a la Curry (untyped lambda terms):
f,a,b:= fa | x.b|x
where x ranges over term variables:

r=x|yl|lz| -

Note x is a term variable, and = is a metavariable ranging over term

variables.

15

Free variables, open and closed terms

FV(a) is the set of free term variables of the term a.

A term is closed if FV(a) = (). It is open otherwise.

16

Syntactic conventions

Application is left-associative:

fal ...an:(... (fal))an

Remove repeated lambdas:

AL1 +* Tp.b=Ax1. ... ATp. D

17

Typing rules - a la Curry

Contexts:
I'i=z1:A4,...,2,: A,
Typing rules:
:Ael
FI—x:A(x €T)
I'-f:A— B I'Fa:A I'x:A+b: B
I'-fa:B I'-Xx.b:A— B

A type-assignment system.

18

Typing substitution

An admissible rule:

I''z:A+b: B I'a:A
['Fblz:=a]: B

where bz := a] is the result of substituting the term a for all z € FV (b).

19

Some typed lambda terms

I = Az.zx L a— o

B Myz.x(yz) B—=9)—(a=p0)—2>a—xy

K AL Y. T . a— 08—«

S = XMyzzz(yz) : (a—=0—=>9) > (a—=0)—2a—7y

Remark: we have polymorphism - a term can have many types, eg.

I = M.z @ (a—=p)—>a—p0

20

Variables and metavariables

Remark:
ANC.LZ Q00— «

is actually not a term but a term schema: z and o are metavariables
ranging over term variables and base types. If ¢ is a base type and x is a
term variable, then

AX.X L — 1L

Is a particular term which is an instance of the term schema above.

21

Old-fashioned and modern functions

A function in the old-fashioned sense is an expression depending on a

free variable:
r:A+b: B

A function in the modern sense is a \-abstraction:

FX.b: A— B

22

Typed lambda calculus a la Church

Lambda terms a la Church decorate A-abstractions with type-labels: we

have
At A.b

rather than
Ax. b

as in the ordinary untyped lambda terms employed in the system a la
Church.

The typing rule for abstraction a la Church:

I'z:AFb: B
I'EFXx:A.b:A— B

23

Some terms a la Church

I = MX:a.x
B = M: 8=y Xy:a—=8. X z:az(yz)
K = M:a.\Xy:08.x

As before, these are really term schemas.

o —

(B —=7) = (a—=p5)
— o=y
a— [— «

24

A la Curry vs a la Church

Curry: polymorphic, shorter, used in typed functional programming lan-
guages such as ML and Haskell.

Church: monomorphic, denotes unique function with its domain.

Type labels not relevant for computing lambda terms.

25

Removing type labels

There is a stripping function | — | which maps terms a la Church to
terms a la Curry by removing the type labels:

z| = =

[fal = |fllal
Az : A.b| = Ax.|b|

26

Correspondence between the systems a la Church and a
la Curry

If I' - a’: A in the system a la Church, then T' I |a’| : A in the system
a la Curry.

If ' - a: Ain the system a la Curry, then there is a term a’ a la Church,
such that a = |a’| and ' a’ : A in the system a la Church.

There is a one-to-one correspondence between type derivations in the
two systems.

27

Why is the pure simply typed lambda calculus
interesting?

The pure untyped lambda calculus is interesting because it is simple, and
yet a Turing-complete computation model. Great encoding power: natural
numbers, data types, general recursion, etc.

The typed lambda calculus is not a Turing-complete computation model.
It is better thought of as a "logical framework”. You get different interesting

"applied” lambda calculi by adding different constants. (We shall look at
several examples.)

Its role is similar to that of the first order predicate calculus. It is a

logical framework and you get different interesting first order theories by
adding different axioms.

28

Some applied typed lambda calculi

Church’s simple theory of types (1940), the HOL proof assistant.
Godel’s system T (1958)

Plotkin's PCF - "LCF as a programming language” (1976)
"Real” functional programming languages (ML, Haskell)

Intuitionistic higher order logic, the Isabelle logical framework.

29

Churchs’s simple theory of types

Church had the following primitive constants:

- 00

V. ©: o—0—0
Va @ (A—=o0)—o
ta @ (A—o0) — A

L4 ¢ denotes the unique a such that ¢ a is true. Other logical constants are
definable, eg

ADB=-AVDEB
where D and V are infix constants.

30

Axioms and inference rules

Some elements of the type o of propositions are classical truths. Church
has 11 axioms and 6 inference rules for deriving such truths, eg:

V-introduction (inference rule VI):

fz
Vaf

V-elimination (axiom 5):

VafDfx

In both casesI' - f: A — oand x : A is a fresh variable not in I".

31

Gordon’s HOL-system

The HOL-system (Gordon) is essentially an implementation of a version
of Church’s simple theory of types with type variables and typing a la Curry.

32

Godel’s system T of computable functionals of finite type

Base type: N.

Constants:

0 : N
Succ : N — N
R : C->N—->C—-C)—-N=>C

R is a polymorphic constant. If we want a monomorphic system we decorate
R with a type label C' and get R¢.

33

R is a constant for primitive recursion

Rde : N — C denotes a function f defined by primitive recursion with
base case d and recursion step e:

|
¥

f0
f(Succn) = en(fn)

34

Programming in Godel’'s T

Recursion equations for factorial:

fact0 = 1
fact (Succn) mult (Succn) (fact n)

Factorial in T, using R:
fact = R 1 (Az y. mult (Succx) y)

How to define multiplication mult? Addition?

35

Primitive recursive functions and primitive recursive
functionals

Exercise: show that all primitive recursive functions are definable in
System T.

Exercise: show that there are functions in System T which are not
primitive recursive.

36

PCF

Plotkin 1976: “LCF as a programming language”. The paper is about
the correspondence between denotational and operational semantics, and in
particular discusses the full abstraction problem.

PCF is a small functional language with two base types: N and Bool.
The language has general recursion expressed using a constant fix for fixed
points. We will give two variants of Plotkin's language.

37

PCF - constants

True
False
if

Succ
pred

1sZ.ero

fix

Bool

Bool
Bool 4+ A—+A— A
N

N—+N

N—+N

N — Bool
(A—-A)— A

38

Programming in PCF

Recursion equations for factorial:

fact O 1

fact (Succn) = mult (Succn) (factn)
One equation:
fact n = if (isZeromn) 1 (mult n (fact (predn)))
Factorial in PCF, using fix:

fact = fix (Af n.if (isZeron) 1 (mult n (f (predn))))

39

Plotkin’s PCF

We have given a variant of Plotkin’s PCF, which differs in the following
respects:

e [t is formulated a la Church.
e if is only defined for base types: A ::= Bool | N.
e fix has a type label so it is a monomorphic language.

e [here are also constants for each natural number.

40

PCF with a case analysis constant

Replace pred and isZero by definition by cases on 0 and Succ:

natcases: N - C - (N—- C) - C
Recursion equations:
natcasesOde = d

natcases (Succn)de = en

Redefine factorial using natcases and fix!

Define R in PCF using natcases and fix!

41

Typed functional programming languages

e Strict: The ML-family (SML, OCAML). Call-by-value.

e Lazy: Miranda, Haskell. Call-by-name.

Essentially, simply typed lambda calculus where base types are gener-
ated from type variables and recursive type constructors (" polymorphic
datatypes”). Constructors and case analysis constructs for each recursive

type.

Other features: modules, classes, ..., integers, strings, floating point
numbers, etc, and lots of syntactic sugar.

42

A recursive type of lambda expressions in Haskell

data Exp = Apply Exp Exp | Lambda Var Exp | Var Var

This is shorthand for adding Exp to the set of types, and the constructors

Apply : Exp — Exp — Exp
Lambda : Var — Exp — Exp
Var : Var — Exp

to the constants. We also add a constant for case analysis.

43

Case analysis on Exp

We also need to add a case analysis construct:

expcases : FExp — (Exp — Exp — C) — (Var — Exp — C)
— (Var - C) —» C

Recursion equations:

expcases (Apply fa)cde = cfa
expcases (Lambdaxb)cde = dxb

expcases (Varz)cde = ex

44

Type inference a la Church

The type system a la Church is monomorphic, that is, each term has at
most one type. This type (if it exists) is easily determined by reading the
rules backwards. In the case of an application f a, first check whether f has
a type C and whether a has a type A. If thisisthecaseandif C = A — B
for some B, then the type of f a is B. Otherwise it is not typeable.

The abstraction case Az : A.b. Determine the type of b in the context
x . Al

Thus, in general we need to do type inference of open expressions:
Given a context I' and a term a determine the unique type A such that
I' H a: A

45

Type inference a la Curry

The type system a la Curry is polymorphic, that is, each term may have
several types. If we assume that we have type variables in our system, then
each closed term a which is typeable (has some type) has a principal type
A; each of its other types a : B is an instance of A, that is, there are type
variables a1, ..., a, and types A1,..., A,, such that

B:A[Oél ::Al,...,an :An]

for some type variables aq, ..., o, and types Aq,..., A,.

The principal type is obtained by reading the typing rules backwards and
using unification of type expressions.

46

Type inference algorithm

Consider first the case of a closed application fa. We assume that we
have inferred that A is the principal type of a, and C' is the principal type
of f, and A and C have disjoint sets of type variables. Then we try to
unify C' and A — « (for a fresh type variable «). If successful we get a
most general unifying substitution o, such that Co = (A — a)o. Then
the principal type of fa is ao.

To infer the principal type of an abstraction Az. b, we infer the principal
type of the expression b which may contain free occurrences of the variable
x. So in general we need to do type inference for open expressions.

47

Type inference for open expressions

In general we need to infer the principal typing of an open expression a
which depends on free variables in {z1,...,2,} D FV(a). Such a principal
typing is a sequence of types Aq,...,A,, A, such that

x1:A1,...,0,: A, F a: A
such that any other typing
x1:B1,...,0, : B, F a: B

is an instance of it, that is, By is an instance of A4, ..., B, is an instance
of A,,, and B is an instance of A.

48

The principal typing of an open application

et
z1:C1,...,2,:C, f:C

x1:A1,...,2n: A, F a: A

be the respective principal typings of the expressions f and a with free
variables z1,...,x,. (We assume disjoint type variables occurring in
Aq,...,Ap,Aand in Cy,...,C,,C.) Then the principal typing of fa is

x1:A0,...,0, Ao F fa:ao

where « is a fresh type variable and there is a most general unifying
substitution ¢ such that A;0 = Cy0,...,A,0 = Croand Co = (A — a)o.

49

An algorithm using principal pairs

Remark. The above is the most straightforward algorithm. A better
algorithm is obtained by determining the principal typing of an expression a
in a context I'. See eg lecture notes on Types by A. Pitts:

http://www.cl.cam.ac.uk/Teaching/2002/Types/

50

S-reduction

Contracting a [-redex:
(Az.b)a =3 blz := a]

As before, b|x := a] is the result of substituting the term a for all x € FV ().
We perform a-conversion to avoid capture of variables.

51

Inductive definition of 5-reduction

(Az.b) a =3 blz := a]
Contextual closure (two application rules and the &-rule).

f—)gf’ a—>3a’ b—)gb/

fa—sfla fa—g fad Ax.b—pg Az b

Reflexive and transitive closure:

f _>ﬁ fl f/ _>ﬂ fll
f _>B f//

f =t

52

One-step [-reduction

The above is the definition of (-reduction in an arbitrary number of
steps, including O steps.

If we remove the rules of reflexivity and transitivity we get a definition
of one-step [-reduction.

53

Confluence

— 3 is Church-Rosser iff a —5 band a —3 b’ implies that there is a
c such that

54

Normal and canonical forms

b is a normal form iff b is irreducible: there is no one-step reduction
b —3 b

a has normal form b iff a —3 b and b is a normal form.

c Is a canonical form iff ¢ is a closed normal form. We write a =3 c if
the closed term a has canonical form c.

Church-Rosser implies uniqueness of normal (and canonical) forms: If a
has normal forms b and b, then b =¥’

55

Subject reduction

Reduction preserves typing:
Ifa —-ga’"and'Fa: A, then'a’: A.
Proof by induction on a —3 b. Key case
(Az.b)a =3 blz := a]
and ' = (Az.b)a: B. Then there exists A such thatT" - Az.b: A — B

and I' + a: A. The conclusion follows from the fact that substitution
preserves typing: if Iz : AFb:BandT'Fa: A, thenT - blz :=a]: B.

56

Weak and strong normalization

A term is weakly normalizing if it has a normal form.

A term a is strongly normalizing if there is no infinite reduction sequence
of one-step reductions

a —)5 aq —)5 as —)5

A one-step [B-reduction is a reduction where just one S-redex is contracted.
— g Is the reflexive-transitive closure of one-step SB-reduction.

57

Proof of strong normalization

What goes wrong if we try to prove strong normalization by induction
on the structure of a type derivation for a term?

The problem is that two terms may be strongly normalizing but their
application is not. Eg A = Ax.x z is strongly normalizing but @ = A A is
not.

Tait’s method: Strengthen the induction hypothesis! Prove that for
f : A — B, not only is f strongly normalizing, but also maps sn to
sn, that is, fa is sn for all sn a. This need to be extended up the
type hierarchy leading to the definition of "reducible term” (also called
"computable term”).

58

Reducible terms - definition

Base types. A term of base type is reducible if it is strongly normalizing.

Function types. AtermI' - f: A — BisreducibleifI' - fa: B is
reducible for all reducible terms I' + a : A.

59

All reducible terms are strongly normalizing

Lemma 1. All reducible terms are strongly normalizing.

Lemma 2. If a4,...,a, are strongly normalizing, then
I' v zay - a,: A

Is reducible.

Lemma 1 and 2 are proved simultaneously by induction on the type of

the term.

60

All typeable terms are reducible

We first prove a stronger lemma by induction on the term:

Lemma3. Ifz;:44,...,2,: A4, F a: AisreducibleandI" + a; : A;
for i = 1,...,n are reducible, then I' + alz; :=ay1,...,2, :=ay,| : Ais
reducible.

From this and the fact that variables are reducible (lemma 2) it follows
that

Lemma 4. All typeable terms are reducible.
Our theorem is a corollary of lemma 1 and 4:

Corollary. All typeable terms are strongly normalizing.

61

Proof of lemma 3

The proof of lemma 3 is straightforward, except in the case of a = Ax.b.
To prove this we use the following lemma:

Lemma 5. If a is strongly normalizing and
C'Fblx:=ala;---ay: A

Is reducible, then
' (Mx.b)aay - - an: A
Is reducible.

This is proved by induction on A. (Why is the condition a strongly
normalizing needed?)

62

Standard model - types as sets

The standard meaning of a type A is a set [A]r which depends on a
type environment R (which assigns a set to each base type «). It is defined
by induction on derivations as follows:

[a]lr = R(a)
[A — B]r [Alr — [B]r

Remark: — on the RHS denotes the set-theoretic function space (of total
functions).

63

Standard model - terms as elements

The standard meaning of a typeable term I' - a : A is an element

[[a]]}%’p € [A]r which depends on a type environment R and a term

environment p (which assigns to each variable x; : A; in ' an element

a; € [A;]r). It is defined as follows:

[z]z, = plz)
[falz, = [flz2%(alz,,)
Az 6]z, % (@) = bR (poma)

Note the use of set-theoretic function application on the RHS.

64

B-reduction preserves meaning

fI'-a:Aanda—gsa, then [[a]]’]%,p = [[a’]]é,p for all R and p.

65

How to look at the standard model?

The real meaning? Which? Platonic vs intuitionistic?
A translation of an object language to a metalanguage?
A formal translation of type theory to set theory?

Standard model and meaning explanations. The explanation of the
notion of a function.

Tarski.

66

[-conversion

B-convertibility =g is the least congruence (wrt application and -
abstraction) containing —3.

Alternative characterization: a =g a’ iff there is a term ¢ such that

/
a a

C

If ' + a,a’: A then we can decide a =g a’ by comparing S-normal
forms.

67

Is 3-conversion complete?

Does I F a,a’: A and [[a]]f]%,p = [[a’]]éjp imply that a =5 a'?
No! Af. f and A\f z. f x both have type (o« —) - a — (8 and

[[)\f f]](a—>5)—>a—>,8 [[)\fx fx]](a—>6)—>a—>,8

but A\fx. f x and Af. f are different 5-normal forms.

68

n-conversion

Add the rule of n-conversion

M. fx =g, f

where x &€ FV(f).

Friedman’s completeness theorem: (S7-convertibility is complete, that
is,if ' F a: A and [[a]]‘]%’p = [[a’]]é’p for all R and p then a =g, d'.

69

Bn-normal form

Wrt reduction one considers both n-reduction to Sn-normal form and
n-expansion to 87 long normal form. The latter depends on the type of an
expression: a (1 long normal form of type

Ay == A, =«
has the form

AL1 +* Tp.b

where b is a normal form of base type a not starting with \ - it is a
"neutral” term.

70

Typed conversion

Conversion
a :377 a,’

is a relation between untyped terms.

We may also consider typed conversion judgements
' Fa=dad:4

meaning that a and a’ are convertible terms of type A, thatis, I" - a,a’ : A.

Martin-Lof's intuitionistic type theory is formalized using typed conver-
sion judgements.

71

Normalization by evaluation

An efficient way to compute the n-long normal form by inverting the
standard meaning function, where base types are interpreted as sets of
terms: R(a) = Term(a). Here Term(A) is the set of terms of type A.

The normalization function for closed terms F a : A:

nbea(a) = L4 [a]Term
where
la ¢ [Alterm — Term(A)

is called the reification of a term.

72

Reification and reflection

Reification is defined simultaneously with reflection 14 of a denotation:

la ¢ [Alterm — Term(A)
TA . TGI‘HI(A) — [[A]]Term

la @

Ta @

lass f
(tass f)(a)

a

a

M. I f(Ta)
™8 f(la a)

73

Reduction in Godel’'s T

Extend — 3 with the following rules.

Rde0 — 3 d
Rde(Succn) —3 en(Rden)

Church-Rosser, subject reduction, and strong normalization hold. It is
straightforward to extend the standard semantics to system T: the base
type N is interpreted as the set of natural numbers, etc.

74

PCF: reduction

Extend — 3 with the following rules

if Truebd’ —g b

if Falsebd' —pz b

pred (Succn) —3 n
isZero0 —g True

isZero (Succn) —p False
fix f —p f(fixf)

Church-Rosser and subject reduction hold. Normalization does not hold.

The standard semantics is in terms of Scott domains.

75

Evaluation in functional languages

Differs from (-reduction in lambda calculus in the following respects:

uses deterministic strategy for selecting redexes (call-by value or call-by-
name); [-reduction is indeterministic.

reduce only closed terms; S-reduction applies to open terms too.

really only reduce closed terms of base type; (reducing open terms or
terms of function type is related to partial evaluation, that is, optimizing
programs by performing “static” operations.)

76

Canonical terms

Closed normal terms are called canonical terms.

The canonical terms of type Bool are

a ::= True | False

The canoncial terms of type N are

a::=0 | Succa

77

Evaluation relation for System T and PCF

Let =3 be the evaluation relation between a closed term and its normal
form (a canonical term): a =3 v iff @ =3 v and v canonical. =3 is
sometimes called " big step” and —3 "small step”.

=3 is deterministic, ie a partial function, both for System T and PCF.
It is a total function on typeable terms for System T.

It is possible to give a direct inductive definition of =3 without reference
to — 3. Kahn called this "natural semantics”, see eg Martin-Lof (1979).

78

Fundamental property of typing in System T

If = a:Bool then a =3 True or a =3 False.

If - a:Nthena=30o0ra=p35Succband ~ b:N.

79

Meaning explanations for System T

Martin-Lof: the meaning of a typing judgement

- a : Bool

iIs that @ =g True or a =>3 False. The meaning of
- a:N

is that a =3 0 or a =3 Succband +~ b: N.

The typing rules for System T are correct wrt these meaning explanations.
They can be extended to function types and general judgementsI' - a: A
for arbitary I'. How?

80

Fundamental property of typing in PCF

Well-typed programs cannot go wrong:
If = a:Bool and a =3 v then v = True or v = False.

If - a:Nanda=p3vthenv=0o0rv=>5uccband ~ b:N.

81

Meaning explanations for PCF

We can imagine meaning explanations also for PCF: " partial types”.

The meaning of
= a : Bool

is that if @ =3 v then v = True or v = False. The meaning of
F a:N

is that if a =3 v then v =0 or v = Succb and + b:N.
The typing rules for PCF are correct wrt this interpretation.

Such meaning explanations can be given for general typing judgements
in PCF. How?

82

Dependent types

What is a dependent type? Synonyms "family of types’, "indexed

types”’, "indexed family of types”.

Examples of dependent types:
e Vect An — vectors (arrays) of length n with elements in A
e Matrix Ammn — m X n-matrices with elements in A
e BBT An — balanced binary trees of height n with nodes in A

e BST Albub — binary search trees with elements in the interval (Ib, ub)
with nodes in A (an ordered type)

83

Dependent types - terminology

By dependent types we mean types indexed by elements of another type.
(For example, in the three first examples on the previous slide, we index
by natural numbers, and in the fourth example, we index on an arbitrary

ordered type.)

However, polymorphic types such as the type [A] of lists indexed by
the type A of elements is usually not called a dependent type. It's a
type-indexed family of types.

84

The zip-function

Haskell library function

zip :: [a] -> [b] -> [(a,b)]

zip [] [] = [1]
zip (x:xs) (y:ys) = (x,y) : zip xs ys
zip _ _ = [1]

exceptional cases when lists are of unequal length.

With dependent types we avoid the exceptional cases:

zip : Vect An — Vect Bn — Vect (A x B)n

85

More examples

Matrix multiplication (elements are natural numbers)

matrixMult : Matrix Nmn — Matrix Nnp — MatrixNmp

An AVL-tree is a balanced binary search tree. By dependent types we
can capture the fact that AVL-insertion preserves this property.

86

Propositions as types

Curry 1957 observed the similarity between the types of the K and
S-combinators

K : A—-B— A
S : A—-B—->(C)-»(A—-B)-A—->C

and two Hilbert-style axioms for implication

ADBDA
(ADBDC)D(ADB)DADC

Which axioms do the types of the I and B-combinators correspond to?

87

Modus ponens as application

Modus ponens
' - ADB ' - A

I' - B

The typing rule for application

' - f:A— B I' HFa:A
I' - fa: B

88

Propositions as types - more connectives

Correspondences between intuitionistic connectives and type formers

A>DB = A—B
ANB = AxB
AVB = A+ B

89

The Brouwer-Heyting-Kolmogorov interpretation of the
intuitionistic connectives

A proof of A D B is a method which transforms a proof of type A to a
proof of type B.

A proof of A A B is a pair consisting of a proof of A and a proof of B.

A proof of AV B is either a proof of A or a proof of B.

90

Martin-Lof’s meaning explanations for the connectives

c:ADBiffc=gAx.band blz :=a]: B for all a : A.
c: ANBiff c=5 (a,b) anda: Aand b: B.

c: AV B iff either c =g Inlaand a : A, or c =g Inrband b: B.

91

Rules for conjunction

Introduction rule (generating canonical elements/proofs):
Pair : A—-B—AXxDB

(a,b) = Pairab.

Elimination rules (methods for transforming canonical elements to canon-
ical elements):

fst : AxB— A
snd : AxB—> B

92

Rules for disjunction

Introduction rules (generating canonical elements/proofs):

Inl : A— A+ B
Inr : B—- A+ B

Elimination rule (method for transforming canonical elements to canon-
ical elements):

case : A—-C)»(B—>C)—=(A+B)—~>C

93

Truth, falsity, negation

Truth:
T=1
There is one canonical proof of T.
Falsity:
1 =0

There is no canonical proof of L.

Negation:
" A=AD1L=A—=1

A proof of a negation is an empty function.

94

Howard: quantifiers and dependent types

Correspondence between

Ve:A.B = llz:A.B
dr: A.B = Yx:A.B

Here we shall write (z : A) — B for Iz : A. B.

The propositional function B depends on x. lts corresponding type of
proofs B depends on x.

For example, Evenn is a family of types depending on n : N.

95

Brouwer-Heyting-Kolmogorov interpretation of the
intuitionistic quantifiers

A proof of Vx : A. B is a method which for an arbitrary element a of A
returns a proof of Blz := al.

A proof of dx : A. B is a pair consisting of a element a of A (the
witness) and a proof of B[z := a].

96

Martin-Lof’s meaning explanations for the quantifiers

c:Vx: A . Biff c=p A x.band b|x :=a] : Bz :=a| for all a : A.
c:3dx: A.Biffc=p (a,b) and a: A and b: Blx := a].

The correctness of all rules of intuitionistic typed predicate logic can be
justified by Martin-Lof’'s meaning explanations.

97

A proposition as a type

The proposition (formula)
Vm : N.Vn : N.Evenm D Evenn D Even (m + n)
becomes the type
(m:N) — (n:N) — Evenm — Evenn — Even (m + n)

Proving the theorem constructively is the same as writing a function (a
program!) of the corresponding type! Proving by induction is the same as
writing a function by primitive recursion.

98

Curry-Howard for programming

a ; A

element belongs to type
proof proves proposition
program satisfies specification

99

A proposition as a specification

The sorting proposition
Vas : [N]. Jys : [N]. Sorted ys A Perm xs ys
The corresponding type
(xs :: [N]) = Zys : [N]. Sorted ys x Perm zs ys

To prove the proposition constructively is the same as constructing a
function sortProof of the corresponding type.

sortProof xs returns a triple (ys, (p,q)), where ys is the sorted version
of xs, p is the proof that ys is sorted and q is the proof that xs and ys are
permuations of each other.

100

Program extraction

From sortProof we can extract a program
sortProgram :: [N] — [N]

which only returns ys but not the proofs p and q. We do "dead code
elimination” to remove the parts of sortProof which do not contribute to
computing ys.

101

Intuitionistic type theory

The idea: have a foundational theory for intuitionistic mathematics,
which is based on the Curry-Howard isomorphism.

e a functional language with dependent types where all programs terminate;
e a specification language including predicate logic;

e a full-scale constructive set theory — like “Zermelo-Fraenkel set theory”
or " Church simple theory of types” but for constructive mathematics!

102

Functional programming and Martin-Lof type theory

simply typed lambda calculus dependently typed lambda calculus
recursive datatypes inductive sets and families
general recursive functions primitive recursive functions

Note: recursive datatypes in functional programming can be "non strictly
positive”. We can have a reflexive type Reflexive with a constructor

C : (Reflexive — Reflexive) — Reflexive

This is not allowed in Martin-Lof type theory.

Primitive recursive means structurally recursive, including primitive listre-
cursion, etc.

103

Dependent function types

Abstract syntax: instead of A — B we now have (z : A) — B where
the type B may contain free occurrences of x. A — B is an abbreviation
of (z : A) — B when B does not contain free occurrences of z.

Other notation for dependent function space (cartesian product of a
family of types): Iz : A. B, |[[,., B, and (z : A)B.

Informal meaning explanation: f: (z: A) — B iff fa : Blx := a] for
all a : A.

104

The lambda calculus with dependent types

Typing judgement:
' Fa:A

where the type A may depend on the variables in the context TI'.

Contexts:
'i=z1:A4,...,2,: A,
Note: A; may dependon z1 : A4, ..., A, maydependonx; : A1,...,2p—1:
A, _1.

We here consider terms a la Curry (can also consider terms a la Church).

105

Typing rules a la Curry

FI—:E:A(w:AGF)
'-f:(x:A) — B ' Fa:A Ix:AFb: B
'+ fa: Blx:= A] 'Xe.b:(z:A) — B

Note the difference in the rule for application wrt the simply typed case.
Is this enough? No, there is also a type equality rule. Typing depends on
reduction. Other complication: well-formedness of types is not a simple
matter of parsing (in the simply typed case we just had a context free
grammar). Now me must prove that a type is well-formed.

106

The four judgement forms

Categorical judgements (no assumptions)
- A type A=A
Fa:A Fa=a":A

Note the typed equality (conversion) judgement for terms.

(We often suppress I-.)

107

Hypothetical judgements

' A type A=A
'Fa:A 'Fa=d : A
I' is a context of the form z1: A1,...,x, : A, as above. We also need a

judgement form for well-formed contexts:

I' context

108

The type equality rule

A crucial rule for dependent types:

' - A=A ' - a:A
I' F a: A

109

The type of sets

We want to express that Vect is an N-indexed family of types. First try
Vect : N — type

But what is the type of N — type? Is it a type? Unfortunately, type type
leads to a paradox - Girard’s paradox.

We therefore need to distinguish between “small” and “large” types, and
call the small types “sets”. So we have a type of sets Set. The distinction
set vs type in type theory is a bit like the distinction set vs class in set
theory.

110

The type of elements of a set

We have the rule
' F A:Set

I' - ElA type

Usually, we suppress El and write A instead of EIl A.

Sets and propositions are identified, so Set also plays the role of the

type o in Church’s higher order logic.

111

The type of Vect

For example, if we have
N : Set

then
EIN type

and
EIN — Set type

and we can give Vect the following type:

Vect : EIN — Set

112

The logical framework type of zip

Before we gave a very polymorphic type of zip
7zip : Vect An — Vect Bn — Vect (A x B)n
Now we can explicitly quantify over A, B and n:

zip : (A, B : Set) — (n: N) — Vect An — Vect Bn — Vect (A x B)n

Similarly, for other operations, eg
Pair : (A,B:Set) 4 A—-B —+ AXxB
Remark: in both examples we have suppressed El.

113

Martin-Lof’s logical framework

Consists of rules for generating valid judgements concerning (z : A) —
B, Set, and El A. There are several such rules in addition to the typing rules
and the type equality rule. For example, the rules of 8- and n-conversion
are now rules generating typed equality judgements.

114

Normal forms in the logical framework

There is a strong normalization theorem for Martin-Lof’s logical frame-
work. It is proved by an extension of Tait's method.

The set of normal terms ¢ can be defined simultaneously with the set of
neutral terms u:

t == ul|Ax.t

u = x| ut

The set of normal types is defined as follows

T = Set|Elt|(z:T)—>T

115

Type checking in the logical framework

One approach to type-checking in Martin-Lof's logical framework is to
check terms and types a la Curry in normal form.

The type-checking problem for closed terms is the following: given a
normal term ¢ and a normal type expression 1T', decide whether + ¢ :T.

More generally, we need to do type-checking of open terms: if we also
have a normal context expression I' ::= x¢ : T4,...x, : T,, where all T;

are normal type expressions with FV(T;) C {x1,...,x;_1}, check whether
'=t¢:T.

116

Type checking algorithm - sketch

e To check whether a neutral term zt; --- t,, has type T in the context
I, look for z : (y1 : T1) — -+ = (yn : Tp) = T in T'. If so,
check whether tl . Tl, cen ,tn . Tn[yl = tl, ey Yn—1 ‘= tn—l] in I' and
whether T' = T'[y; := t1,...,yn := t,] (Note that the latter needs
normalization.)

e To check whether a normal term Az.b has type (z : T) — T" in T', check
whether b has type T” in the context ',z : T.

117

Checking types

Given a normal context I' and a normal type expression T', check whether
I' - T type. This algorithm is immediate and calls the algorithm for
type-checking terms in the case of checking I' + Elt type.

There is also an algorithm for checking normal contexts. To check
whether I', z : T' is a correct context, check whether I' is a correct context,
and whether T' is a correct type in context I'.

118

The typed quantifiers

V. : (A:Set)— (El1A — Set) — Set
1 : (A:Set) —» (E1A — Set) — Set

Compare the (polymorphic) higher-order quantifiers in HOL:

119

Natural numbers

Formation rule:
N : Set

Introduction rules:

O : N
Succ : N—=N

120

Mathematical induction

Elimination rule:

R : (C:N—Set) -C0— ((x:N) = Czxz — C(Succz))
—(n:N)—=>Cn

Dependent elimination rule = rule for building proofs by mathematical
induction = rule for typing functions from natural numbers where the target
is a dependent type.

121

Equality rules for natural numbers

I' HE RCde0 = d:C0
' - RCde(Succn) en(RCden) : C (Succn)

under appropriate assumptions on C, d, €, and n.

122

Sume-elimination

case : (A,B:Set) — (C: A+ B — Set)
— ((x: A) - C (Inlx))
— ((y: B) = C (Inry))
—(z:A+B)—Cz

This rule has four uses, depending on whether A, B are thought of as sets
or propositions, and whether C' is thought of as a family of sets or a family
of propositions (a predicate).

123

Equality in intuitionistic type theory

an unfinished story ...

Recall that we already have equality judgements
'Fa=ad:A4
But we would also like to have equality propositions
Eq:(A:Set) > A— A — Set

How to define Eq?

124

Fundamental principles of intuitionistic type theory

There are three fundamental parts:

e the logical framework - basic rules for dependently typed lambda calculus
e inductive definitions of sets and families

e structural recursive definitions of functions (including families of sets)

Where does the definition of equality belong?

125

A recursive definition - Martin-Lof 1972

Computable equality on N
eqN : N - N — Bool

can be defined by the following equations:

eqN00 = True
eqN 0 (Succn) = False
eqN (Succm)0 = False
eqN (Succm) (Succn) = eqNmn

Define it in terms of R! (Use primitive recursion of higher type.)

126

Turning a boolean into a proposition

EqQNmn =T (eqNmmn)

where
T : Bool — Set
is defined by case analysis
TFalse = ()
TTrue = 1

This is not covered by ordinary Bool-elimination, since the target is not
a set but Set itself; it is a large type, not a small. We call this large
Bool-elimination.

127

Inductively defined equality - Martin-Lof 1973

Equality is inductively generated by the reflexivity rule (Eqg-introduction):

refl: (A:Set) - (a: A) > EqAaa

Eqg-elimination is the rule of substitutivity of equality:

subst : (A :Set) » (C: A — Set) — (a,b: A) > EqAab— Ca— Cb

128

Equality reflection - Martin-Lof 1979

Turning a propositional equality into a judgemental equality:

I'Fc:EqAab
I'Fa=b:A

This rule leads to extensional type theory with undecidable judgements and
without the normalization property.

Without this rule we have intensional type theory with decidable judge-
ments and the strong normalization property.

129

Inductive definitions in intuitionistic type theory

We have shown the rules for the natural numbers N.

There are similar rules for lists constructed by Nil and Cons and where
the elimination rule is a typing rule for primitive list recursion and structural
induction on lists.

There are also similar rules for binary trees of various kinds, and more
generally of algebraic datatypes in general and even more generally for so
called generalized inductive definitions. The precise general rules are outside
the scope of these lectures.

We may also inductively define families of sets like Eq. We will soon see
another example.

130

The four kinds of rules for inductive definitions

Formation rule gives the typing of the set former
Introduction rules give the types of the constructors

Elimination rule gives the type of a constant for defining functions by
structural recursion or defining proofs by structural induction

Equality rules are recursion equations defining the constant in the elimi-
nation rule

Remark. In these slides we have only given a few examples. For N we gave
all the rules however.

131

Lambda expressions as a set in type theory

As an example we consider the lambda expressions introduced by the
following introduction rules given earlier:

Apply : Exp — Exp — Exp
Lambda : Var — Exp — Exp
Var : Var — Exp

132

Exp-elimination

The elimination rule is definition (proof) by structural recursion (induc-
tion) on Exp:

exprec : ((f:Exp) = (a:Exp) > Cf — Ca— C(Apply fa))
— ((x : Var) = (b : Exp) - Cb — C (Lambdax b))
— ((x : Var) —» C (Varz))
— (z: Exp) = Cz

133

The well-founded part of a relation

Starting with Exp we can formalize the metatheory of simply typed
lambda calculus within intuitionistic type theory. This metatheory uses
many concepts directly formalizable as inductively defined sets and families.

An example is the concept of strongly normalizing term wrt -reduction.
This can be formalized by using the more general concept of the well-
founded or accessible part of a relation: a term is strongly normalizing iff it
Is in the accessible part of one-step S-reduction.

134

The well-founded part of a relation

This is an example of a generalized inductive definition of a family of
sets. The formation rule is:

Acc:(A:Set) > (R: A— A — Set) > A — Set

where ¢ : Acc A Ra means that ¢ is a proof that a is in the well-founded
part of the relation R on the set A.

Classically, an element is in the well-founded part of a relation iff there
are no infinite descending R-chains from it.

135

Acc-introduction

Constructively, we give an inductive definition with the introduction rule:

Acclntro : (A:Set) » (R: A— A — Set)
— (a: A)
— ((z: A) > Rax — AccARx)
— AccARa

This is a generalized inductive definition since we have a (possibly infinite)
indexed family of inductive premisses.

136

