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What is ”evaluation”?

The process which obtains a value of an expression.
E g evaluation of an arithmetic expression in primary school:
Suppose we are given

(11 + 9)× (2 + 4)

We can rewrite this expression in two ways, simplifying either the
first bracket or the second. Simplifying the first bracket, we have

20× (2 + 4) = 20× 6 = 120

Simplifying the second gives

(11 + 9)× 6 = 20× 6 = 120.

The value of (11 + 9)× (2 + 4) is 120.
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What is ”normalization”?

Simplification in secondary school.

(a + b)(a− b) = a(a− b) + b(a− b)

= a2 − ab + ba− b2

= a2 − b2

Simplification of open expressions, that is, expressions with free
variables.
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Normalization by evaluation?

To do secondary school simplification through primary school
simplification ...?? Yes! But there is more to say.
The word ”evaluation” has a second meaning ...
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Normalization by evaluation in a model?

Normalization by “evaluation” in a model.

syntax
[[−]]
- model

(We can ”evaluate” open expressions too, in this sense.)
”There is a striking similarity between computing a program and
assigning semantics to it”, P. Landin (1964): The mechanical
evaluation of expressions.
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Normalization by evaluation in a model

Normalization by “evaluation” in a model.

syntax
[[−]]
-

�
reify

model

reify is a left inverse of [[−]] - the “inverse of the evaluation
function”:

nbe a = reify [[a]]

Moreover, we are doing metaprogramming: both syntax and model
are represented as data structures in a computer! We are doing
constructive metamathematics - it looks like maths but is actually
programming ...
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Example of a model

Let Exp be a type of arithmetic expressions with free variables

Exp
[[−]]
- (Var → Int)→ Int

We would like to perform some magic! Write a function reify
which extracts a normal form from the meaning:

Exp
[[−]]
-�

reify
(Var → Int)→ Int

Is this really possible?? Perhaps not ...
Before explaining the magic, let’s look at more examples of
”secondary school simplification”!
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Partial evaluation - program simplification

Let us define power m n = mn.

power : Nat → Nat → Nat

power m 0 = 1

power m (n + 1) = m ∗ (power m n)

Let n = 3. Simplify by using the reduction rules for power , ∗, and
+:

power m 3 = m ∗ (m ∗m)

m ∗ (m ∗m) is the normal form (the ”residual program”) of
power m 3.
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Normalization of types in dependent type theory

In Martin-Löf’s intuitionisitic type theory we can define the
type-valued function Power a n = an. Let Set be the type of sets
or small types. (The ”ordinary types” are small, but Set itself is a
large type.)

Power : Set → Nat → Set

Power a 0 = Unit − a one element type

Power a (n + 1) = a× (Power a n) − a product type

Let n = 3. Simplify by using the reduction rules for Power :

Power a 3 = a× (a× (a× Unit))

a× (a× (a× Unit)) is the normal form of the type Power a 3 ; it
is a normal type. Can we simplify further?
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Agda - an implementation of a dependent type theory

is a functional programming language with dependent types

is also a language for formalizing constructive mathematics, a
cousin of the Coq-system developed at INRIA in France.

is based on intuitionistic type theory, and extends it with a
number of programming language features:

definitions of new data types a la Haskell and ML, but with
dependent types including inductive families and
inductive-recursive definitions
a general form of pattern matching with dependent types
a fairly powerful termination checker
an emacs-interface which allows the successive refinement of
programs and proofs while maintaining type-correctness

is described in more detail on the Agda wiki.
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Normalization during type-checking

To check that

(2009, (3, (30, ()))) : Power Nat 3

we need to normalize the type:

(2009, (3, (30, ()))) : Nat × (Nat × (Nat × 1))

Normalization (by evaluation) is used in proof assistants for
intuitionistic type theory (Coq, Agda, Epigram, ...). An important
application!
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Evaluation, partial evaluation and normalization

Evaluation: to simplify a closed term, a complete program where
all inputs are given.

Partial evaluation: (from programming languages) to simplify code
using the knowledge that some of the inputs are
known. The purpose is to get more efficient code.

Normalization: (from proof theory) to simplify a proof or a term,
including open terms. Normalization is among other
things used during type-checking in proof assistants
based on intensional type theory such as Agda and
Coq.
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Plan for the lectures

Normalization in monoids. A simple yet ”deep” example,
connection with algebra and category theory.

Normalization in typed combinatory logic. Historically, the first
example of nbe, simpler because no variables.
Curry-Howard. Program extraction from constructive
proof.

Normalization in untyped combinatory logic. Computing lazy
Böhm trees. Neighbourhoods of programs.

Normalization in the simply typed lambda calculus. The
Berger-Schwichtenberg algorithm. De Bruijn’s
nameless dummies. Higher-order abstract syntax.

Normalization in the dependently typed lambda calculus.

Normalization and foundations.
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Why should you care?

A new approach to normalization: ”reduction-free” instead of
”reduction-based”. Central topic in cs and proof theory.

A case study in constructive thinking!
Constructive metamathematics = metaprogramming.

A functional programming exercise ...

... with dependent types :-)

... in Agda :-)

... and Haskell

Relates to, and applies the knowledge of many of the other
courses.

Has (perhaps) foundational significance: interplay between
”meta” and ”object” level.
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Constructivism in practice

Georges Gonthier: A computer-checked proof of the four colour
theorem:

The approach that proved successful for this proof
was to turn almost every mathematical concept into a
data structure or a program, thereby converting the
entire enterprise into one of program verification.
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I. Monoids

A warm-up example: how to normalize monoid expressions!

A very simple program with some interesting mathematics
(algebra, category theory)

Illustrates some of the underlying principles behind the
normalization by evaluation technique.
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Monoid expressions

The set Exp a of monoid expressions with atoms in a set a is
generated by the following grammar:

e ::= (e ◦ e) | id | x

where x is an atom. Cf Lisp’s S-expressions:

e ::= (e.e) | NIL | x
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The free monoid

The free monoid is obtained by identifying expressions which can
be proved to be equal from the associativity and identity laws:

(e ◦ e ′) ◦ e ′′ ∼ e ◦ (e ′ ◦ e ′′)

id ◦ e ∼ e

e ◦ id ∼ e

We call the relation ∼ convertibility or provable equality. Note
that it is a congruence relation (equivalence relation and
substitutive under the ◦ sign).
The distinction between real and provable equality is crucial to our
enterprise!
(Strictly speaking we should say a free monoid, since any monoid
isomorphic to the above is a free monoid.)
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Normalization of monoid expressions

What does it mean to normalize a monoid expression?

Traditional reduction-based view: Use the equations as
simplification/rewrite rules replacing subexpressions
matching the LHS by the corresponding RHS.

Nbe/reduction-free view: Find unique representative from each
∼-equivalence class! A way to solve the decision
problem, write a program which decides whether
e ∼ e ′!
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How to solve the decision problem for equality?

Given two monoid expressions e and e ′, is there an algorithm to
decide whether e ∼ e ′?

The mathematician’s answer: ”Just shuffle the parentheses to the
right, remove the identities and check whether the
resulting expressions are equal”.

The programmer’s objection: ”Yes, but how do you implement this
in an elegant way, so that the correctness proof is
clear?”
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The programmer’s answer

[[−]] : Exp a→ [a]

[[e ◦ e ′]] = [[e]] ++ [[e ′]]

[[id ]] = [ ]

[[x ]] = [x ]

∼ : Exp a→ Exp a→ Bool

e ∼ e ′ = [[e]] == [[e ′]]
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Normal forms as expressions

The lists are here ”normal forms”, except usually we want our
normal forms to be special expressions. Hence we represent lists as
right-leaning expression trees (cf Lisp):

reify : [a]→ Exp a

reify [ ] = id

reify (x :: xs) = x ◦ (reify xs)

Here we have syntax = tree, meaning = list ... seems like cheating!
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A real interpretation - no cheating!

Alternatively, we can interpret monoid expressions as functions (the
”intended” meaning!)

[[−]] : Exp a→ (Exp a→ Exp a)

[[e ◦ e ′]]e ′′ = [[e]]([[e ′]]e ′′)

[[id ]]e ′′ = e ′′

[[x ]]e ′′ = x ◦ e ′′

Can we compare functions for equality?

No, not in general.
However, let’s try to turn functions into expressions:

reify : (Exp a→ Exp a)→ Exp a

reify f = f id
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Correctness property

The aim of the function

nbe : Exp a→ Exp a

nbe e = reify [[e]]

is to pick out unique representatives from each equivalence class:

e ∼ e ′ iff nbe e = nbe e ′!

Prove this!
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Correctness proof

if-direction. Prove that

e ∼ e ′ implies nbe e = nbe e ′!

Lemma: prove that

e ∼ e ′ implies [[e]] = [[e ′]].

Straightforward proof by induction on ∼
(convertibility).

only if-direction. It suffices to prove

e ∼ nbe e.

Because if we assume nbe e = nbe e ′, then

e ∼ nbe e = nbe e ′ ∼ e ′
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Correctness proof, continued

To prove
e ∼ nbe e.

we prove the following lemma

e ◦ e ′ ∼ [[e]]e ′.

(Then put e ′ = id). Proof by induction on e! All cases are easy,
the identity follows from the identity law, atoms are definitional
identities, composition follows from associativity.
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What makes the proof work?

1 A ”representation theorem”: ”Each monoid is isomorphic to a
monoid of functions” (cf Cayley’s theorem in group theory
and the Yoneda lemma in category theory).

2 The monoid of functions is ”strict” in the sense that equal
elements are extensionally equal functions, whereas the
syntactic monoid has a conventionally defined equality. The
functions are sort of ”normal forms”.
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Cayley’s theorem in group theory

Theorem (Cayley). Every group is isomorphic to a group of
permutations.
”The theorem enables us to exhibit any abstract group in terms of
something more concrete, namely, as a group of mappings.”
(Herstein, Topics in Algebra, p 61).
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Cayley’s theorem for monoids

Theorem. Every monoid is isomorphic to a monoid of functions.
Proof. Let M be a monoid. Consider the homomorphic embedding

M
e 7→ λe ′.e ◦ e ′

-�
f 7→ f id

M → M

Thus M is isomorphic to the submonoid of functions which are in
the image of the embedding.
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Nbe and Cayley’s theorem for monoids

Consider now the special case that M = Exp a/ ∼, the free
monoid of monoid expressions up to associativity and identity laws.
In this case we proved that

e ◦ e ′ ∼ [[e]]e ′.

Hence, the embedding that we used for nbe

M
[[−]]
-

�
reify

M → M

is the same as the one in Cayley’s theorem for monoids!

M
e 7→ λe ′.e ◦ e ′

-�
f 7→ f id

M → M

But can we normalize with the latter? (Try it!)
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A role for constructive glasses

Answer: no, because
e ◦ e ′ ∼ [[e]]e ′.

does not mean that the results are identical expressions, they are
only convertible, that is, equal up to associativity and identity laws.
But this fact is invisible if we render the free monoid as a quotient
in the classical sense! The equivalence classes hide the
representatives.
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Classical quotients and constructive setoids

In constructive mathematics (at least in type theory) one does
not form quotients.

Instead one uses setoids, that is, pairs (M,∼) of constructive
sets and equivalence relations ∼. And constructive ”sets” are
the same as data types in functional languages (more or less).

Constructively, one defines a monoid as a setoid (M,∼)
together with a binary operation ◦ on M which preserves ∼
and which has an identity and is associative up to ∼.

Note that some setoids (and monoids) are ”strict” in the
sense that ∼ is the underlying (extensional) identity on the
underlying sets. The monoid of functions is strict in this
sense, and this is what makes the nbe-technique work!! This
is reminiscent of a ”coherence theorem” in category theory:
each monoidal category is equivalent to a strict monoidal
category (Gordon, Power, Street)
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Strict and non-strict monoids

(M → M,=) is a strict monoid.
(M,∼) and (M → M,∼) are non-strict.
Suggestive terminology?

∼ =

non-strict strict

abstract concrete

syntactic semantic

formal real

static dynamic

Compare category theory: ∼= vs =!
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The Yoneda lemma - special case for monoids

The Yoneda lemma is a theorem which generalizes Cayley’s
theorem for monoids to categories. It also characterizes the
submonoid of functions.
A monoid is a category with one object. The Yoneda embedding is
an isomorphism which restricts the Cayley embedding:

M
e 7→ λe ′.e ◦ e ′

-
�

f 7→ f id
{f : M → M|f natural}

Naturality means that f commutes with composition to the right:

f (e ′ ◦ e ′′) ∼ (f e ′) ◦ e ′′

The general condition in category theory is that f is a natural
transformation.
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What did we learn from this?

The mathematics of a simple program for ”shuffling
parentheses”.

The normalization algorithm exploits the fact that monoid
expressions really denote functions. The expressions are in
one-to-one correspondence with certain well-behaved
”endo-functions” (in fact the ”natural transformations”).

The situation is more complex but fundamentally analogous
for the simply typed lambda calculus, when analyzed
categorically as a representation of the free cartesian closed
category. Cf Cubric, Dybjer, Scott 1997: ”Normalization and
the Yoneda embedding” and Altenkirch, Hofmann, Streicher
1995: ”Categorical reconstruction of a reduction-free
normalization proof”.
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Exercises

The nbe-algorithm for monoids (the version that interprets
expressions as functions on expressions) returns right-leaning
trees as normal forms. Change it so that it returns left-leaning
trees instead!

Rewrite the algorithm so that the model is [a]→ [a] instead
of Exp a→ Exp a! Why are elements of [a] suitable as
representations of the normal forms in Exp a?

Why is it possible to write a ”generic” nbe-algorithm for
normalizing elements in an arbitrary free monoid and also use
this to decide equality? This assumes that the free monoid in
question is presented ”constructively”. Discuss exactly what is
required! Assume you have such a generic nbe-algorithm.
What does it do for the free monoid [a] of lists?

Work out the details on paper of the proof of correctness for
the nbe-algorithm for monoids.
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Exercises

Consider the monoid laws as left-to-right rewrite rules. Prove
that each term has a unique normal form with respect to this
rewrite rule system! Hint: prove that the system is
terminating and confluent!

Explain why the nbe-program does not return normal forms in
the sense of the rewrite system!

One can use the nbe-technique for getting an alternative proof
of uniqueness of normal forms for the rewrite rule system.
First, modify the nbe-algorithm so that it returns normal
forms in the sense of the rewrite rule system! Then prove that
e reduces to nbe e using a similar technique as in the
correctness proof for nbe.
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II. Typed combinators

Typed combinatory logic; historically the first version of nbe
(Martin-Löf 1973).

Simpler than the typed lambda calculus because variable-free

Add natural numbers and primitive recursion and we get
Gödel system T, an expressive language where all programs
terminate

Discuss the traditional approach to normalization via rewriting
and the ”reduction-free” approach of nbe

Program extraction from constructive proof



Leicester, 2009

Introduction Monoids Typed combinators Untyped combinators Typed lambda terms Dependent types Nbe and foundations

The power example in the typed lambda calculus with
natural numbers (Gödel system T)

Recall the program power :

power m 0 = 1

power m (n + 1) = m ∗ (power m n)

This can be written in Gödel system T - the simply typed lambda
calculus with natural numbers and a primitive recursion combinator
rec :

power = λm.λn.rec 1 (λxy .m ∗ y) n
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Gödel system T based on the lambda calculus

Grammar for types and terms of Gödel system T:

a ::= a→ a | Nat

e ::= x | e e | λx .e | 0 | succ | rec

We have the typing and reduction rules (β and η reduction) for the
simply typed lambda calculus. The natural number constructors
have the following types:

0 : Nat

succ : Nat → Nat

Types and recursion equations for the primitive recursion
combinator:

rec : a→ (Nat → a→ a)→ Nat → a

rec e f 0 ∼ e

rec e f (succ n) ∼ f n (rec e f n)

Note that a̧n be an arbitrary type. We not only have primitive
recursive functions but primitive recursion functionals
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History of nbe

We will postpone the treatment of lambda calculus version of
Gödel’s T and instead begin with a combinatory version.
Historically earlier and conceptually simpler:

Martin-Löf 1973: combinatory version of intuitionistic type
theory (variation of Tait’s reducibility method)

Berger and Schwichtenberg 1991: simply typed lambda
calculus with eta long normal forms. Used for the Minlog
system implemented in Scheme.

Coquand and Dybjer 1993: implementation of combinatory
nbe in Alf system, data types, formal correctness proof.

Danvy 1994: application of nbe to type-directed partial
evaluation; nbe for non-terminating programs

Coquand: application of nbe to type-checking dependent
types

... variety of systems, categorical aspects, ...
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Gödel system T based on combinators

A grammar for the types and terms of combinatory Gödel system
T:

a ::= a→ a | Nat

e ::= e e | K | S | 0 | succ | rec

Type schemata:

K : a→ b → a

S : (a→ b → c)→ (a→ b)→ a→ c

Conversion rules:

K x y ∼ x

S x y z ∼ x z (y z)

Type schemata and reduction rules for 0, succ , and rec as before.
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Schönfinkel and Curry

Schönfinkel 1924 introduced combinators S, K, I, B, C,(and U) to
show that it was possible to eliminate variables from logic.

K : a→ b → a

S : (a→ b → c)→ (a→ b)→ a→ c

I : a→ a

B : (b → c)→ (a→ b)→ a→ c

C : (a→ b → c)→ b → a→ c

He also showed that I, B, C could be defined in terms of S and K.
We have

g ◦ f = B g f

Curry developed combinatory logic during several decades from the
1930s and onwards. He also noticed that the types of the
combinators corresponded to axioms of minimal (implicational)
logic.
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The Curry-Howard correspondence

type - proposition

combinator - name of axiom

term - proof

expression reduction - proof simplification (”normalization”)

Howard 1969 introduced dependent types and extended this
correspondence to formulas in predicate logic.
Martin-Löf 1971, 1972 (cf also Scott 1970) extended this
correspondence to inductively defined sets and predicates. This is
the basis for his intuitionistic type theory.
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Bracket abstraction

An algorithm for translating lambda calculus to combinatory logic:

T [x ] = x

T [(e1 e2)] = (T [e1] T [e2])

T [λx .E ] = (K T [E ]) (if x is not free in E )

T [λx .x ] = I

T [λx .λy .E ] = T [λx .T [λy .E ]] (if x is free in E )

T [λx .(e1 e2)] = (S T [λx .e1]T [λx .e2]) (if x is free in both e1 and e2)

T [λx .(e1 e2)] = (C T [λx .e1] T [e2]) (if x is free in e1 but not e2)

T [λx .(e1 e2)] = (B T [e1] T [λx .e2]) (if x is free in e2 but not e1)



Leicester, 2009

Introduction Monoids Typed combinators Untyped combinators Typed lambda terms Dependent types Nbe and foundations

The power function in combinatory system T

add m n = rec m (K succ) n

mult m n = rec 0 (K (add m)) n

power m n = rec 1 (K (mult m)) n

Hence:

power = λm.rec 1 (K (mult m))

= (rec 1) ◦ (λm.K (mult m)) − compose rule

= (rec 1) ◦ (K ◦mult) − compose rule + eta

Exercise: reduce power m 3 using the reduction rules for power!
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Normalization and normalization by evaluation

We shall now normalize expressions (programs) in Gödel system T!
As for monoids we have two approaches

Traditional reduction-based view: Use the equations as
simplification/rewrite rules replacing subexpressions
matching the LHS by the corresponding RHS.

Nbe/reduction-free view: Find unique representative from each
∼-equivalence class! class! A way to solve the
decision problem, write a program which decides
whether e ∼ e ′!
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Normalization as analysis of a binary relation of one step
reduction

Note: Turing-machines have a next state function but lambda
calculus and combinatory logic have next state relations because
several possible reduction strategies.
History of normalization in logic:

Proof simplification: (Gentzen) cut-elimination; consistency
proofs

Normalization of lambda terms (Church)

The simply typed lambda calculus (Church 1940), weak
normalization theorem (Turing)
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Reduction to normal form - some terminology

e is a normal form iff e is irreducible: there is no e ′ such that
e red1 e ′.

e has normal form e ′ iff e red e ′ and e ′ is a normal form,
where red is n-step reduction, the transitive and reflexive
closure of red1.

red1 is weakly normalizing if all terms have normal form.

red1 is strongly normalizing if red1 is a well-founded relation,
that is, there is no infinite sequence:

e red1 e1 red1 e2 red1 · · ·

ad infinitum.
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Confluence

red is Church-Rosser iff e red e0 and e red e1 implies that there
is e2 such that

e

e0
�

re
d

e1

red

-

e2
�

re
dred

-

Church-Rosser implies uniqueness of normal forms: If e has normal
forms e0 and e1, then e0 = e1.
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The decision problem for conversion

Convertibility ∼ is the least congruence relation containing
red1.

Weak normalization plus Church-Rosser of red yields solution
of decision problem for convertibility (provided there is an
effective reduction strategy which always reaches the normal
form).
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The weak normalization theorem

A normalization by evaluation algorithm can be extracted from a
constructive reading of a proof of weak normalization.

∀e : a.WNa(e)

where
WNa(e) = ∃e ′ : a.e red e ′ & Normal(e ′)

Constructive reading (via the BHK-interpretation, constructive
axiom of choice), states that a constructive proof of this theorem
is an algorithm which given an e : a computes an e ′ : a and proofs
that e red e ′ and Normal(e ′). (This algorithm simultaneously
manipulates terms and proof objects, but we can perform program
extraction from this constructive proof and eliminate the proof
objects.)
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Tait’s reducibility method

There is a well-known technique for proving normalization due to
Tait 1967: the reducibility method. If one tries to prove the
theorem directly by induction on the construction of terms one
runs into a problem for application. Tait therefore found a way to
strengthen the induction hypothesis.

RedNat(e) = WNNat(e)

Reda→b(e) = WNa→b(e) & ∀e ′ : a.Reda(e ′) ⊃ Redb(e e ′)

One then proves that
∀e : a.Reda(e)

by induction on e.
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Martin-Löf’s version of Tait’s proof

The constructive proof of

∀e : a.Reda(e)

is an algorithm which for all e computes a proof-object for
Reda(e).

In the base case a = Nat such a proof object is a triple
(e ′, p, q), where e ′ is a normal term, p is a proof that e red e ′

and q is a proof that e ′ is normal.

In the function case a = b → c such a proof object has the
form ((e ′, p, q), r), where the triple (e ′, p, q) is as above, and
r is a proof that e maps reducible arguments to reducible
results.
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Program extraction by removing proof objects

One can now extract a program nbe which just returns a normal
form (and no proof object) from the Tait/Martin-Löf style
constructive proof of weak normalization. One deletes all
intermediate proof objects which do not contribute to computing
the result (the normal form) but are only there to witness some
property.
Tait’s definition

RedNat(e) = WNNat(e)

Reda→b(e) = WNa→b(e) & ∀e ′ : a.Reda(e ′) ⊃ Redb(e e ′)

is thus simplified to

[[Nat]] = ExpNat

[[a→ b]] = Expa→b × ([[a]]→ [[b]])

where Expa is the type of expressions of type a.
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Formalizing typed combinatory logic
in Martin-Löf type theory

Note that the evaluation function [[−]]a : Expa → [[a]] is indexed by
the type a of the object language (typed combinatory logic). It is a
dependent type! Let’s program it in Martin-Löf type theory.
We have a small type Ty : Set of object language types. Its
constructors are.

Nat : Ty

(⇒) : Ty → Ty → Ty

We here use ⇒ for object language (Gödel’s T) function space to
distinguish it from meta language (Martin-Löf type theory)
function space →.



Leicester, 2009

Introduction Monoids Typed combinators Untyped combinators Typed lambda terms Dependent types Nbe and foundations

The inductive family of expressions indexed by types

Constructors for Exp : Ty → Set:

K : (a, b : Ty)→ Exp (a⇒ b ⇒ a)

S : (a, b, c : Ty)→ Exp ((a⇒ b ⇒ c)⇒ (a⇒ b)⇒ a⇒ c)

App : (a, b : Ty)→ Exp (a⇒ b)→ Exp a→ Exp b

In this way we only generate well-typed terms. Exp is often called
an inductive family.
Exercise. Add constructors for 0, succ, rec!
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Intended semantics

Just translate object language notions into corresponding meta
language notions:

[[Nat]] = Nat

[[a⇒ b]] = [[a]]→ [[b]]

[[K]] = λxy .x

[[S]] = λxyz .x z (y z)

[[App f e]] = [[f ]] [[e]]

[[Zero]] = 0

[[Succ]] = succ

[[Rec]] = rec

Note that we have omitted the type arguments of K, S, . . ..
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Glueing and reification

[[a⇒ b]] = Exp (a⇒ b)× ([[a]]→ [[b]])

[[Nat]] = Exp Nat

reify : (a : Ty)→ [[a]]→ Exp a

reify (a⇒ b) (c, f ) = c

reify Nat e = e
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Interpretation of terms

[[a⇒ b]] = Exp (a⇒ b)× ([[a]]→ [[b]])

[[Nat]] = Exp Nat

[[ ]] : (a : Ty)→ Exp a→ [[a]]

[[K]] = (K, λp.(App K (reify p), λq.p))

[[S]] = (S, λp.(App S (reify p)), (. . . , . . .)))

[[App c a]] = appsem [[c]] [[a]]

[[Zero]] = Zero

[[Succ]] = (Succ, λe.App Succ e)

[[Rec]] = (Rec, λp.(App Rec (reify p)), (. . . , . . .)))

where

appsem (c , f ) q = f q
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A decision procedure for convertibility

nbe a e = reify [[e]]a

Let e, e ′ : Exp a.

Prove that e ∼ e ′ implies [[e]]a = [[e ′]]a!

It follows that e ∼ e ′ implies nbe a e = nbe a e ′

Prove that e ∼ nbe a e using the glueing (reducibility)
method!

Hence e ∼ e ′ iff nbe a e = nbe a e ′
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Exercises

Implement the bracket abstraction algorithm in a functional
programming language!

Reduce the combinatory version of power m 3 by hand

Add the combinators I and B to the combinatory language
and extend the nbe-algorithm accordingly!

What happens if you extend the language with a
Y -combinator with the conversion rule Y f ∼ f (Y f )?

Extend the language of types on with products a× b! Add
combinators for pairing and projections, and the equations for
projections. Do not add surjective pairing, however. Extend
the nbe-algorithm accordingly.

Similarly, extend the language with sums a + b, injections and
case analysis combinators, and extend the nbe-algorithm.
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Exercises

Modify the algorithm, so that the clause for natural numbers
instead is

[[Nat]] = (Exp Nat)× N

where N is the type of metalanguage natural numbers!

Modify the nbe-algorithm so that it returns combinatory head
normal forms instead of full normal forms.

Define the dependent type (inductive family) No a of terms in
normal forms of type a. Then write an application function

app : {a b : Ty} → No (a⇒ b)→ No a→ No b

Note that a⇒ b is the object language function space,
whereas → denotes the meta language function space. (The
above is Agda syntax, but you can do it on paper.)
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Exercises

Work out the details of the normalization and confluence
proofs for the reduction system for typed combinatory logic!

We explained that nbe arises by extracting an algorithm from
a constructive proof of weak normalization. What would
happen if we instead start with a constructive proof of strong
normalization? What would such an algorithm return?
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III. Untyped combinators

What happens if we apply our normalization algorithm to
untyped combinatory terms?

Not all terms will have normal form, so the algorithm may fail
to terminate! Is this interesting?

This is relevant for type-directed partial evaluation, where one
wants to treat languages with non-termination.

If we use lazy evaluation the nbe-algorithm computes
combinatory Böhm trees (a kind of partial and infinitary
notion of normal form)! If the program does not have a
”head” normal form, then the Böhm tree is undefined, if it
has a normal form, then the Böhm tree is that normal form
(drawn as a tree), if an infinite regress of head normal forms
are computed then we get an infinite Böhm tree. (The usual
notion of Böhm tree is for lambda calculus. Here we use the
analogue for combinatory logic.)
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Correctness of untyped nbe

What is correctness criterion for the nbe-program on untyped
terms?

Correspondence between an operational and denotational
definition of Böhm trees (computational adequacy theorem)!
Nbe gives the denotational definition.

Proof uses Scott domain theory in a presentation due to
Martin-Löf 1983 (in the style of ”formal topology”)
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Haskell as meta-programming language

We will now consider a program which may not terminate and
we will need a data structure which is not well-founded!

In Agda (without ”codata”) all programs terminate, and all
data structures are well-founded trees.

So we’d better not use Agda.

Let’s use Haskell instead. The standard lazy functional
programming language with general recursion and data types
definable by general type equations. Non-termination and
non-wellfoundedness are allowed!
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Formalizing syntax and semantics in Haskell

The Haskell type of untyped combinatory expressions

data Exp = K | S | App Exp Exp | Zero | Succ | Rec

(We will later use e @ e ′ for App e e’.)
Note that Haskell types contain programs which do not terminate
at all or lazily compute infinite values, such as

App K (App K (App K ... ))
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Semantics of untyped combinators in Haskell

Haskell is a typed lambda calculus, not an untyped one. However,
untyped lambda expressions can be modelled by a ”reflexive” type
(Scott’s terminology):

data D = Lam (D -> D)

app :: D -> D -> D
app (Lam f) d = f d

We can interpret untyped combinators as elements of D:

eval :: Exp -> D
eval K = Lam (\x -> Lam (\y -> x))
eval S = Lam (\x -> Lam (\y -> Lam (\z ->

app (app x z) (app y z))))
eval (App e e’) = app (eval e) (eval e’)
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The nbe program in Haskell

The untyped glueing model as another reflexive type:

data D = Gl Exp (D -> D)

We can interpret an untyped combinator in this model

reify :: D -> Exp
reify (Gl e f) = e

eval :: Exp -> D
eval K = Gl K (\x -> Gl (App K (reify x))

(\y -> x))
eval S = Gl S (\x -> Gl (App S (reify x))

(\y -> Gl (App (App S (reify x)) (reify y))
(\z -> appD (appD x z) (appD y z))))

eval (App e e’) = appD (eval e) (eval e’)

Exercise. Add clauses for Zero, Succ, Rec!
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Application in the model

The semantic application function is

appD :: D -> D -> D

appD (Gl e f) x = f x

Now we can define the untyped version of the nbe program:

nbe :: Exp -> Exp

nbe e = reify (eval e)
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The nbe program computes the Böhm tree of a term

Theorem. nbe e computes the combinatory Böhm tree of e. In
particular, nbe e computes the normal form of e iff it exists.

What is the combinatory Böhm tree of an expression? An
operational notion: the Böhm tree is defined by repeatedly
applying the inductively defined head normal form relation.

Note that nbe gives a denotational (computational) definition
of the Böhm tree of e

The theorem is to relate an operational (inductive) and a
denotational (computational) definition.
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Combinatory head normal form

Inductive definition of relation between terms in Exp

K ⇒h K S ⇒h S

e ⇒h K

e @ e ′ ⇒h K @ e ′
e ⇒h K @ e ′ e ′ ⇒h v

e @ e ′′ ⇒h v

e ⇒h S

e @ e ′ ⇒h S @ e ′
e ⇒h S @ e ′

e @ e ′′ ⇒h (S @ e ′) @ e ′′

e ⇒h (S @ e ′) @ e ′′ (e ′ @ e ′′′) @ (e ′′ @ e ′′′) ⇒h v

e @ e ′′′ ⇒h v
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Formal neighbourhoods

To formalize the notion of combinatory Böhm tree we make use of
Martin-Löf 1983 - the domain interpretation of type theory (cf
intersection type systems). Notions of

formal neighbourhood = finite approximation of the canonical
form of a program (lazily evaluated); in particular ∆ means no
information about the canonical form of a program.

The denotation of a program is the set of all formal
neighbourhoods approximating its canonical form (applied
repeatedly to its parts).

Remark. Two possibilities: operational neighbourhoods and
denotational neighbourhoods. Different because of the full
abstraction problem, Plotkin 1976.
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Expression neighbourhoods

An expression neighbourhood U is a finite approximation of the
canonical form of a program of type Exp. Operationally, U is the
set of all programs of type Exp which approximate the canonical
form of the program. Notions of inclusion ⊇ and intersection ∩ of
neighbourhoods.
A grammar for expression neighbourhoods:

U ::= ∆ | K | S | U @ U

A grammar for the sublanguage of normal form neighbourhoods:

U ::= ∆ | K | K @ U | S | S @ U | (S @ U) @ U



Leicester, 2009

Introduction Monoids Typed combinators Untyped combinators Typed lambda terms Dependent types Nbe and foundations

Approximations of head normal forms

e .Bt ∆

e ⇒h K

e .Bt K

e ⇒h K @ e ′ e ′ .Bt U ′

e .Bt K @ U ′

e ⇒h S

e .Bt S

e ⇒h S @ e ′ e ′ .Bt U ′

e .Bt S @ U ′

e ⇒h (S @ e ′) @ e ′′ e ′ .Bt U ′ e ′′ .Bt U ′′

e .Bt (S @ U ′) @ U ′′
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The Böhm tree of a combinatory expression

The Böhm tree of an expression e in Exp is the set

α = {U | e .Bt U}

One can define formal inclusion and formal intersection and prove
that α is a filter of normal form neighbourhoods:

U ∈ α and U ′ ⊇ U implies U ′ ∈ α;

∆ ∈ α;

U,U ′ ∈ α implies U ∩ U ′ ∈ α.
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Denotational semantics: the neighbourhoods the nbe
program

nbe e ∈ U iff U is a finite approximation of the canonical form of
nbe e when evaluated lazily. For example,

nbe e ∈ ∆, for all e

nbeK ∈ K

nbe (Y @ K) ∈ K @ ∆

nbe (Y @ K) ∈ K @ (K @ ∆), etc

Y is a fixed point combinator.
One can define the neighbourhoods of an arbitrary Haskell
program, but we will not do that here. (This is a way of defining
the denotational semantics of Haskell, following the style of
Martin-Löf 1983 and Scott 1981, 1982.) In this way we will define
what the neighbourhoods of the nbe program are.
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Untyped normalization by evaluation computes Böhm trees

One can now prove, using a variation of Tait reducibility (or
glueing) that

e .Bt U iff nbe e ∈ U

The main difficulty is to deal with the reflexive domain

data D = Gl Exp (D -> D)

Remark. This theorem relates an ”operational” notion (Böhm tree
obtained by repeated head reduction) and a ”denotational” notion
(the approximations of the nbe program). An operational adequacy
theorem!
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Summary

Nbe-algorithm for typed combinatory logic generalizes
immediately to one for untyped combinatory logic.

In the typed case it computes normal forms. In the untyped
case it computes Böhm trees

In the typed case the proof falls out naturally in the setting of
constructive type theory (a framework for total functions). In
the untyped case we need domain theory.

In the typed case we prove correctness by ”glueing” - a
variant of Tait-reducibility. In the untyped case we need to
adapt the glueing method to work on a ”reflexive” domain.
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IV. Typed lambda terms

Simply typed lambda calculus with βη-conversion

The Berger-Schwichtenberg 1991 algorithm, the most famous
of nbe-algorithms, performs η-expansion

Add natural numbers and primitive recursion and we get
another version of Gödel system T

Haskell implementation uses de Bruijn indices and term
families

Correctness proof using types as partial equivalence relations
(pers)
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Combinators for natural numbers and primitive recursion

Gödel system T has natural numbers as base types, combinators
for zero and successor,

0 : Nat

succ : Nat → Nat

and a combinator for primitive recursion:

reca : a→ (Nat → a→ a)→ Nat → a

reca e f 0 ∼ e

reca e f (n + 1) ∼ f n (reca e f n)
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Gödel system T based on the lambda calculus

A (new) grammar for the types and terms of Gödel system T:

a ::= a→ a | Nat

e ::= x | e e | λx : a.e | 0 | succ e | reca e e e

This grammar differs from the ones given before in the following
(minor) ways:

it is a Church-style definition (λx : a.e) rather than
Curry-style (λx .e);

succ is not a constant, it is a unary operation;

rec is not a constant, it takes 4 arguments;

the first argument of rec is the return type of the function.
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The power example in the lambda calculus version of
Gödel system T

Recall the program power :

power m 0 = 1

power m (n + 1) = m ∗ (power m n)

This can be written in Gödel system T - the simply typed lambda
calculus with natural numbers and a primitive recursion combinator
rec :

power m n = recNat 1 (λx : Nat.λy : Nat.m ∗ y) n
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βη-conversion and η-long normal forms

We shall consider the simply typed lambda calculus with β and η
conversion.

(λx : a.e) e ′ ∼ e[x := e ′] (β)

e ∼ λx : a.e x (η)

We shall use η expansion and produces η-long normal forms, where
a normal form of type a→ b always has the form

λx : a.e

where e is a normal form of type b.
Note that βη-conversion is stronger than the weak conversion of
combinatory logic (translated into lambda calculus via bracket
abstraction).
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The history of the Berger-Schwichtenberg algorithm

Schwichtenberg discovered nbe when implementing his proof
system MINLOG. ”It was just a very easy way to write a
normalizer for the simply typed lambda calculus with
βη-conversion”. He used the untyped programming language
SCHEME and the GENSYM function.

”An inverse of the evaluation functional” by Berger and
Schwichtenberg 1991 is about the pure simply typed lambda
calculus with no extra constants and reduction rules.

Berger 1993 showed how to formally extract the algorithm
from a Tait-style normalization proof. Berger used realizability
semantics of intuitionistic logic.

Berger, Eberl, Schwichtenberg 1997 showed how to extend
the Berger-Schwichtenberg algorithm if you extend the
lambda calculus with new constants and reduction rules, like
in Gödel system T.
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The Berger-Schwichtenberg algorithm

Use the following semantics of types:

[[a⇒ b]] = [[a]]→ [[b]]

[[Nat]] = Exp Nat

Note that this is the standard meaning of a function space, but a
non-standard meaning of the base type!
Remark. We had the opposite situation for combinatory logic.
We can then write a meaning function for terms

[[ ]]a : Env → Exp a→ [[a]]

where Env assigns an element di ∈ [[ai ]] to each variable xi : ai

which may occur free in the expression.
We will define this evaluation functional later!



Leicester, 2009

Introduction Monoids Typed combinators Untyped combinators Typed lambda terms Dependent types Nbe and foundations

Reification: the inverse of the ”evaluation functional”

Let’s perform some magic! Let’s build code from input-output
behaviour!

reifya : [[a]]→ Exp a

reifyNat e = e

reifya⇒b f = λx : a.reifyb (f (reflecta x))

Since f ∈ [[a⇒ b]] = [[a]]→ [[b]], we need an element of the set [[a]]
to produce an element of [[b]]! But we only have a term of type a:
the variable x . We thus need an auxiliary ”dual” function

reflecta : Exp a→ [[a]]

reflectNat e = e

reflecta⇒b e = λd : [[a]].reflectb (e (reifya d))

Note however ...
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Two issues

Note that the codes of reify and reflect are the same except
that the roles of terms and values have been exchanged! Note
also that we have used the same notation for λ and
application in the object and in the metalanguage.
Note also that we need a GENSYM function for generating
the variable x!

reifya : [[a]]→ Exp a

reifyNat e = e

reifya⇒b f = λx : a.reifyb (f (reflecta x))

reflecta : Exp a→ [[a]]

reflectNat e = e

reflecta⇒b e = λd : [[a]].reflectb (e (reifya d))

Let’s resolve these issues by writing the nbe program in Haskell.
(Alternatively, we could use a dependently typed language.)
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De Bruijn indices

We shall follow de Bruijn and represent lambda terms using
”nameless dummies”. The idea is to replace a variable x by a
number counting the number of λ-signs one needs to cross (in the
abstract syntax tree) before getting to the binding occurence.
If we write vi for the variable with de Bruijn index i , we represent
the lambda term

power = λm : Nat.λn : Nat.recNat 1 (λx : Nat.λy : Nat.m ∗ y) n

by the de Bruijn term

λNat.λNat.recNat 1 (λNat.λNat.v3 ∗ v0) v0
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Nbe for Gödel System T written in Haskell

Syntax of types

data Type = NAT | FUN Type Type

Syntax of terms

data Term = Var Integer | App Term Term | Lam Type Term
| Zero | Succ Term | Rec Type Term Term Term

where Var i is the de Bruijn variable vi .
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An element of the type of Terms

For example:

λNat.λNat.recNat 1 (λNat.λNat.v3 ∗ v0) v0

is represented by the Haskell expression

Lam NAT
(Lam NAT

(Rec NAT
(Succ Zero)
(Lam NAT (Lam NAT (times (Var 3) (Var 0))))
(Var 0)))

:: Term

where times :: Term -> Term -> Term represents *.



Leicester, 2009

Introduction Monoids Typed combinators Untyped combinators Typed lambda terms Dependent types Nbe and foundations

The GENSYM problem and term families

We will deal with the GENSYM problem by working with term
families rather than terms. A term family (ak)k : Int → Term, is a
family of de Bruijn terms, which differ only with respect to the
”start index. The term ak has start index k .
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Syntactic normal forms

We want to obtain normal forms. It will be useful to consider a
grammar for normal forms. Let’s write it in Haskell

data No = Lam Type No | Zero | Succ No | Ne Ne

where

data Ne = Var Integer | App Ne No | Rec Type No No Ne

are the neutral terms, that is, the normal terms which are not on
constructor form, but because reduction got stuck by a variable in
the ”major” position.
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A semantic domain

We would really like to interpret terms of type Nat as normal terms
(families) and and terms of function type as functions. If we have
dependent types, we can build an appropriate semantic domain for
each type. However, when working in Haskell, we need to put all
semantic values together in one type (a ”universal semantic
domain”) of normal forms in ”higher order abstract syntax”:

data D = LamD Type (D -> D) -- semantic function
| ZeroD -- normal 0
| SuccD D -- normal successor
| NeD TERM -- neutral term family

Term families

type TERM = Integer -> Term

If t :: TERM, then t k is a de Bruijn term with indices beginning
with k.
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The semantic domain as normal forms in higher order
abstract syntax

Grammar for normal (irreducible terms)

t ::= λx : a.t | 0 | succ t | s

where s ranges over the neutral terms:

s ::= x | s t | reca t t s

Note that the semantic domain can be viewed as the normal terms
in higher order abstract syntax:

data D = LamD Type (D -> D) -- semantic function
| ZeroD -- normal 0
| SuccD D -- normal successor
| NeD TERM -- neutral term family
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Reification and reflection

We can now omit the type a in reifya e:

reify :: D -> TERM

reify (LamD a f) k
= Lam a (reify (f (reflect a (freevar (-(k+1))))) (k+1))

reify ZeroD k = Zero
reify (SuccD d) k = Succ (reify d k)
reify (NeD t) k = t k

reflect :: Type -> TERM -> D

reflect (FUN a b) t
= LamD a (\d -> reflect b (app t (reify d)))

reflect NAT t = NeD t
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Interpretation of terms

eval :: Term -> (Integer -> D) -> D

eval (Var k) xi = xi k
eval (App r s) xi = appD (eval r xi)(eval s xi)
eval (Lam a r) xi = LamD a (\d -> eval r (ext xi d))
eval (Zero) xi = ZeroD
eval (Succ r) xi = SuccD (eval r xi)
eval (Rec c r s t) xi = recD c

(eval r xi)
(eval s xi)
(eval t xi)

where we need to define appD and recD, application and primitive
recursion in the model.
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Application and primitive recursion in the model

appD :: D -> D -> D

appD (LamD a f) d = f d
appD (NeD t) d = NeD (app t (reify d))

app :: TERM -> TERM -> TERM
app r s k = App (r k) (s k)

recD :: Type -> D -> D -> D -> D

recD c z s ZeroD = z
recD c z s (SuccD d) = s ‘appD‘ d ‘appD‘ (recD c d z s)
recD c z s d = reflect c (Rec c

(reify d)
(reify z)
(reify s))
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Correctness of the nbe-function

We finally define the normalization function

nbe t = reify (eval t idenv) 0

where idenv is an ”identity environment”.
Correctness means, as usual, that the nbe-function picks unique
representatives from each convertibility class:

t ∼a t ′ iff nbe t = nbe t ′

And as usual we prove this as a consequence of two lemmas:

Convertible terms have equal normal forms

t ∼a t ′ implies nbe t = nbe t ′

A term is convertible to its normal form

t ∼a nbe t



Leicester, 2009

Introduction Monoids Typed combinators Untyped combinators Typed lambda terms Dependent types Nbe and foundations

Typed equality of semantic values

Both lemmas are proved by reasoning about the values in the
semantic domain D. We need for example to prove that

t ∼a t ′ implies eval a t = eval a t ′

But what does ”=” mean here? It turns out that we need a typed
notion of equality ≈a. This equality will be a partial equivalence
relation (per) on D. Hence we prove

t ∼a t ′ implies eval a t ≈a eval a t ′
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Partial equivalence relations (pers) as types

A per is a symmetric and transitive relation.
A per R does not need to be reflexive. If a R a then a is in the
domain of R.
A partial setoid is a pair (A,R) where A is a set and R is a per.
Pers and partial setoids are useful for representing ”sub-quotients”
(quotients on a subset).
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Convertibility and syntactic identity of terms

We also use two families of partial equivalence relations on
syntactic terms:

t ≡a t ′, t and t ′ are identical totally defined terms of type a,
where a is a totally defined type. (The per is also indexed by
a context Γ which assigns types to the free variables; i e de
Bruijn indices, but we omit this.)

t ∼a t ′, t and t ′ are convertible totally defined terms of type
a, where a is a totally defined type.

We can lift these pers to term families.
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Semantic types as partial equivalence relations

We introduce a family of partial equivalence relations ≈a on D
such that a term of type a will be interpreted as an element of the
domain of ≈a and two convertible terms of type a will be
interpreted as related elements of ≈a.

The partial equivalence relation for natural numbers is
d ≈Nat d ′ iff there are equivalent normal term families
t ≡Nat t ′ such that d = NoD t and d ′ = NoD t ′.

The partial equivalence relation for functions is defined by

LamD a f ≈a→b LamD a f ′ iff ∀d , d ′ ∈ D.d ≈a d ′ ⊃ f d ≈b f ′ d ′

(Although we can define partial elements of any type in
Haskell we here require that a and b are total elements of the
type Type of types.)
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Nbe maps convertible terms to equal normal forms

We first show that nbe maps convertible terms to equal normal
forms (cf Church-Rosser):

t ∼a t ′ implies nbe t ≡a nbe t ′

which is an immediate consequence of the following lemmas:

t ∼a t ′ implies ξ ≈Γ ξ
′ implies eval t ξ ≈a eval t ′ ξ′ (1)

d ≈a d ′ implies reify d ≡a reify d ′ (2)

t ≡a t ′ implies reflect a t ≈a reflect a t ′ (3)

where t and t ′ are neutral term families in (3). Note that ≡a is a
relation between term families in (2) and (3).
(1) is proved by induction on the convertibility relation, and (2)
and (3) are proved simultaneously by induction on (total) types a.
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Nbe preserves convertibility

To prove that
t ∼a nbe t

we use the method of logical relations. We define a family of
relations

Ra ⊆ TERM × D

by induction on a, such that we can prove

1 t Ra (reflect a t), for neutral t

2 t Ra d implies t ∼a (reify d)

3 ts RΓξ implies lift t[ts] Ra (eval t ξ)

Soundness follows by combining 2 and 3.
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V. Dependent types

Martin-Löf type theory - a dependently typed lambda calculus
with βη-conversion

Now we must normalize both types and terms!

The nbe-algorithm here is novel research (Martin-Löf 2004;
Abel, Aehlig, Dybjer 2007; Abel, Coquand, Dybjer 2007)

Haskell implementation uses de Bruijn indices and term
families

Towards a transparent correctness proof for the type-checking
algorithm for dependent types
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Normalization of types in dependent type theory

In Martin-Löf type theory we can define the type-valued function
Power a n = an. Let U be the type of small types:

Power : U → Nat → U

Power a 0 = 1 − a one element type

Power a (n + 1) = a× (Power a n) − a product type

In Martin-Löf type theory 1972 the Power program will be
represented by the term

λa : U.λn : Nat.rec U 1̂ (λx ; Nat.λy : U.a×̂y) n
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Syntax of a our version of Martin-Löf type theory

We have some new types (for simplicity we omit unit types and
product types):

dependent function types (also called Π-types) (x : a)→ a;

the type of small types U;

small types T e

We also have some new terms: the codes for small types

codes for small types (x : a)→̂a, | N̂at;

code for the natural number type N

The new grammar is

a ::= (x : a)→ a | a× a | Nat | 1 | U | T e

e ::= x | (ee) | λx : a.e | 0 | succ e | rec a e e e

| (x : e)→̂e | | a×̂a | N̂at | 1̂
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Nbe for Martin-Löf type theory written in Haskell

Syntax of types (types may now depend on term variables)

data Type = NAT | FUN Type Type -- Pi-type
| U | T Term -- new types

Syntax of terms

data Term = Var Integer | App Term Term | Lam Type Term
| Zero n| Succ Term | Rec Type Term Term Term
| Nat | Fun Term Term -- new terms (small types)

Type and term families

type TYPE = Integer -> Type -- type families
type TERM = Integer -> Term
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Definition of the judgements

We need to define typing and equality judgements. Probably not
untyped convertibility. Should equality of terms be indexed by two
types?
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An element of the type of Types

If we enlarge our universe by adding some more small types

data Term = ...
| Unit | Times Term Term -- more small types

then we can represent

Power m n = T (rec U 1̂ (λx : Nat.λy : U.m∗̂y)n)

by

Lam NAT
(Lam NAT

(T (Rec U
Unit
(Lam NAT (Lam NAT (Times (Var 3) (Var 0))))
(Var 0))))

:: Type
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Semantic domain for types

data DT = FUND DT (D -> DT) -- semantic function types
| NATD -- normal Nat type
| UD -- normal U type
| NED TYPE -- neutral type family

Neutral types have the form T t, where t is a neutral term.
In mathematical notation:

DT = DT × (D → DT ) + 1 + 1 + TYPE
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Semantic domain for terms

data D = LamD Type (D -> D)
| ZeroD
| SuccD D
| NatD -- normal code for N
| FunD D (D -> D) -- normal code for FUN
| NeD TERM

In mathematical notation:

D = DT × (D → D) + 1 + D + 1 + D × (D → D) + TERM
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Reification

Reifying terms, also two new clauses for reifying small types

reify :: D -> TERM

...

reify (FunD a f) k
= Fun (reify a k)

(reify (f (reflect (semt a) (freevar (-(k+1)))))
(k+1))

reify NatD k = Nat
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Reflection

Same as before but we have dependent function types

reflect :: DT -> TERM -> D

reflect (FUND a f) t =
LamD a (\ d -> reflect (f d) (app t (reify d)))

reflect _ t = NeD t
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Reification for types

If we want to normalize type expressions we must be able to reify
semantic types.

reifyT :: DT -> TYPE

reifyT (FUND a f) k
= FUN (reifyT a k)

(reifyT (f (reflect a (freevar (-(k+1))))) (k+1))
reifyT NATD k = NAT
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Interpretation of types

evalT :: Type -> Valuation -> DT

evalT NAT xi = NATD
evalT U xi = UD
evalT (FUN a b) xi = FUND (evalT a xi)

(\d -> evalT b (ext xi d))
evalT (T t) xi = semt (eval t xi)

where

semt :: D -> DT

semt (FunD a f) = FUND (semt a) (\d -> semt (f d))
semt NatD = NATD
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Interpretation of terms

As before, but we must also interpret the small types

eval :: Term -> Valuation -> D

eval Nat xi = NatD
eval (Fun r s) xi = FunD (eval r xi)

(\d -> eval s (ext xi d))



Leicester, 2009

Introduction Monoids Typed combinators Untyped combinators Typed lambda terms Dependent types Nbe and foundations

Semantic types as partial equivalence relations

As for the case of Gödel System T, we represent semantic
types as partial equivalence relations on D.

However, not all elements of the datatype Type of type
expressions are well-formed types, and we will only define
partial equivalence relations for the well-formed ones. We
therefore define by a simultaneous inductive-recursive
definition the well-formed types.

We will not only define the well-formed types, but also the
partial equivalence relation of equivalent well-formed types.
This is again given by an inductive-recursive definition
together with equivalence of terms of two given equivalent
types.
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VI. Nbe and foundations

Constructive foundations build on the notion of evaluation and not
on normalization. BHK-semantics as refined and extended by
Martin-Löf. Type soundness as foundation!

Extensional type theory (Martin-Löf 1979) can be justified by
Martin-Löfian semantics (meaning explanations). But
it does not have the normalization property and its
judgements are not decidable. (Cf NuPRL system)

Intensional type theory (Martin-Löf 1972, 1986; Coquand and
Huet 1984) has the normalization property and its
judgements (in normal form) are decidable. (Cf
Agda, Epigram and Coq)
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Nbe and foundations

Normalization by evaluation is related to Martin-Löfian
semantics, but it provides meanings as normal forms also for
open expressions. This is not part of the usual 1979/1984
Martin-Löfian meaning explanations.

The big issue is whether intensional or extensional type theory
provides the proper foundation. Decidability is considered
important by Martin-Löf and Coquand. It is also a
cornerstone of the proof assistants Coq, Agda and Epigram. It
makes it possible to use the reflexive tactic.

Prerequisite: what is Martin-Löfian semantics? What is
BHK-semantics?
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Meaning explanations based on the evaluation of
open expressions

On 19 March 2009 Martin-Löf gave a talk on this topic:

Abstract: The informal, or intuitive, semantics of
type theory makes it evident that closed expressions of
ground type evaluate to head normal form, whereas
metamathematics, either the method of computability or
the method of normalization by evaluation, is currently
needed to show that expressions which are open or of
higher type can be reduced to normal form. The question
to be discussed is: Would it be possible to modify the
informal semantics in such a way that it becomes evident
that all expressions, also those that are open or of higher
type, can be reduced to full normal form?
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