Normalization and Partial Evaluation
Lecture 1:
Combinatory Logic and System T

APPSEM 2000

Summerschool
Caminha, Portugal

— Typeset by Foll TEX —

Summary

What is traditional normalization?
What is normalization by evaluation?

Why “normalization by intutionistic model
construction”?

A first programming language: a combinatory
version of System T.

Standard and non-standard model, intuitionistically.

How to program normalization by evaluation

— Typeset by Foll TEX — 2

Reduction

Early proof theory: normalization for logical
systems eg natural deduction and sequent calculus.
Consistency proofs. (Gentzen, Herbrand?). Lambda
calculus.

A notion of “reduction” or simplification of proof
or lambda term or combinator. red is a transitive
and reflexive relation.

Reduction rules for combinatory logic:

Kab red a
Sabc red ac(bc)

— Typeset by Foll TEX — 3

Normalization

b is a normal form iff b is irreducible: b red b’
implies b = b'.

a has normal form b iff a red b and b is a normal
form.

red is weakly normalizing if all terms have
normal form.

red is strongly normalizing if red s a well-
founded relation, that is, there is no infinite sequence:

a red a; red ag9 red

ad infinitum.

— Typeset by Foll TEX — 4

Confluence

red is Church-Rosser iff a red b and
a red b implies that there is a ¢ such that

RN

/red red\\ |
Che i
N

Church-Rosser implies uniqueness of normal forms: If
a has normal forms b and ¥, then b = b'.

— Typeset by Foll TEX — 5

The decision problem for conversion

Convertibility conv is the least equivalence
relation containing red . Weak normalization plus
Church-Rosser of red vyields solution of decision
problem for convertibility. (Provided there is an
effective strategy which always reaches the normal

form.)

— Typeset by FollTEX — 6

A “reduction-free” approach

Start instead with conv (no notion of red).
An abstract normal form function is a function norm
which picks a canonical representative from each conv
- equivalence class:

a conv a’ <> norm a¢ = norm a’
Decompose it into “existence”
a conv norm a
and a “uniqueness”
a conv a’ — norm a = norm a’
of normal forms. (Nbe is more than normalization; it

is normalization + Church-Rosser)

— Typeset by FollTEX — 7

Normalization by evaluation

Normalization by “evaluation” in a model.

[

reify

syntax model

reify is a left inverse of [—] - the “inverse of the
evaluation function” Define

norm a = reify [a]
Strictification:

a conv a' — [a] = [d']

Also, “normalization by intuitionistic model
construction”. Per Martin-Lof 1975: “About Models
for Intuitionistic Type Theories and The Notion of

Definitional Equality” - the first paper on normalization
by evaluation.

— Typeset by FollTEX — 8

Reification

[A = B] T(A = B) x ([A] — [B])
n] = N

reify , : [A] — T(A)

reify .5 (c,f) = ¢
reifyy 0 = ZERO
reifyy (s p) = APP(SUCC,reifyy p)

— Typeset by Foill TEX —

The glueing interpretation

[A= B] = T(A= B)x ([4] - [B])
] = N

[Ja:7T(A) — [A]

[K] = (X, Ap.(APP(K, reify p), Aq.p))
IS] = (S, Ap.(APP(S, reify p), (..., ... 1))
[APP(c,a)] = appsem [c] [a]
[ZERO] = 0
[succ] = (succ, s)
[REC] = (REC, \p.(APP(REC, reify p),(...,...)
where
appsem (c,f) q = fq

— Typeset by FollTEX — 10

Correctness proof

a conv a’' — [a] = [d]

is just soundness of interpretation, proved by induction
on a conv a’.
a conv reify [a]

is proved by “glueing a la Lafont”.

— Typeset by FollTEX — 11

In Standard ML

The datatype of syntactic terms

datatype syn

With dependent types we can index the datatype of
terms by the object language type.

The reflexive datatype of semantic values:

FUN of syn * (sem -> sem)

datatype sem =
| NAT of int

With dependent types we can use the “universe of
metalanguage types” for the interpretation.

— Typeset by Foll TEX — 12

Reify

reify : sem -> syn

fun reify (FUN (syn, _))
= syn
| reify (NAT n)
= let fun reify_nat O
= ZERO
| reify_nat n
= APP (SUCC, reify_nat (n-1))
in reify_nat n
end

— Typeset by FollTEX — 13

Evaluation

eval : syn -> sem

fun eval K
= FUN (K,
fn x =>

| eval S
= FUN (S,
fn £ =>

| eval (APP (eO,
= appsem (eval
| eval ZERO
= NAT O
| eval SUCC
= FUN (SUCC,

— Typeset by FollTEX —

let val Kx = APP (K, reif
in FUN (Kx,

fn _ => x)
end)

let val Sf
in FUN (Sf,
.)

APP (S, reif

end)
el))

e0, eval el)

14

succsem)

| eval REC
= FUN (REC,
fn z

=> let val RECz = APP (REC, reify
in FUN (RECz,
.)
end)
end)

- Typeset by FoilTpX — 15

