Generic Programs, Generic Proofs,
and Dependent Types

Peter Dybjer
Chalmers University of Technology
Goteborg, Sweden

Cambridge
24 October 2003

A new result!

Theorem.

Should reflexivity of equality be an axiom?

A. M. Turing (1936):

| shall also suppose that the number of symbols which may be printed
is finite. If we were to allow an infinity of symbols, then there would
be symbols differing to an arbitrary small extent. The effect of this
restriction of the number of symbols is not very serious. It is always
possible to use sequences of symbols in the place of single symbols.
... The difference from our point of view between the single and
compound symbols is that the compound symbols, if they are too
lengthy, cannot be observed at a glance. This is in accordance with
experience. We cannot tell at a glance whether 9999999999999999
and 999999999999999 are the same.

Reflexivity of generic equality

Theorem.
(X:Sig) > (x: Tyg) 2z =x x
where
(:2) Ty > Ty — Bool

Is a generic equality test,

Sig : Set
is the set of signatures, ie codes for a suitable class of datatypes (cf ML'’s
equality types), and

TZ : Set

is (the carrier of) the algebra of Y-terms, ie an initial X-algebra.

Generic map

Another motivating example of generic programming. We have
map : (X —-Y) = [X] = [Y]
An analogous function for binary trees:

mapBT : (X - Y) - BT X — BTY

In general
mapy : (X -Y) > Tg X - TgY
where X : Sig is a code for a “regular’ parameterized datatype

Ty : Set — Set

Generic programs and dependent types

Generic programs are written by induction on codes for datatypes
(signatures for term algebras). Generic functional programming languages
(eg PolyP, Generic Haskell) extend Haskell with special facilities for such
definitions.

With dependent types we have natural “internal” types for generic
programs, such as

(=) : (% :Sig) » Ty — Ty — Bool

In dependent type theory you can also do generic proofs (Pfeiffer and RueB
1999).

Signatures and universes

We here make use of a universe, that is a set of codes
Sig
and a decoding function (family of sets)
T : Sig — Set

which to each code (signature) X : Sig assigns the datatype (set, term
algebra) Ty it denotes. (Usually, universes are denoted by the letter U

in dependent type theory, but here we prefer the term signature since we
borrow terminology from universal algebra.)

Why generic programs and generic proofs?

Important for libraries of programs!
Libraries are important for proof assistants!

Generic proofs of generic programs help limit the size of libraries.

Generic dependent type theory

The usual formulations of Martin-Lof Type Theory or the Calculus of
Inductive Constructions do not allow definitions on the code of a “datatype”
(= inductive definition).

Martin-Lof type theory and inductive definitions
- a brief history

1970-79 Basic set formers: 11,3, +,I, N, N,,, W, U,,

1979-85 Adding new set formers with their rules when there is a need for
them: lists, binary trees, the well-founded part of a relation,

1985-91 Exactly what is a good inductive definition? Schemata for induc-
tive definitions, indexed inductive definitions, inductive-recursive defini-
tions

1999- Generic formulation: universes for inductive definitions, indexed
iInductive definitions, inductive-recursive definitions

10

References

A finite axiomatization of inductive-recursive definitions (with Anton
Setzer). Pages 129 - 146 in Proceedings of TLCA 1999, LNCS 1581.

Indexed induction-recursion (with Anton Setzer). Pages 93-113 in Proof

Theory in Computer Science International Seminar, Dagstuhl Castle,
Germany, October 7-12, 2001, LNCS 2183.

Induction-recursion and initial algebras (with Anton Setzer), 2003. An-
nals of Pure and Applied Logic, in press.

Universes for generic programs and proofs in dependent type theory (with
Marcin Benke and Patrik Jansson), 2003. To appear in Nordic Journal
of Computing.

11

1

2

3

Plan

. Generic dependent type theory
. Generic programming - generic equality
. Generic proofs - reflexivity of generic equality

. More general classes of datatypes (if time permits)

12

Generic dependent type theory

We work in Martin-Lof type theory with rules for one-sorted term
algebras (axiomatizing “initial algbra semantics”):

e Logical framework. Rules for (z: A) — B, (x: A) x B, 0, 1, 2, Set.

e Rules for arities and signatures. For simplicity only one-sorted signatures,
but much more powerful classes of datatypes can be represented.

e Auxiliary constructions for setting up “initial algebra semantics”

e Generic formation, introduction, elimination, and equality rules for T's;.

13

Notation

Dependent function types are written

(x: A) - B

This is the type of functions f mapping a : A to fa : Blx :

B : A — Set is an A-indexed family of sets.

Dependent product types are written
(x:A) xB

This is the type of pairs (a,b) such that a : A and b : Blz := a.

14

Recall: rules for natural numbers

N = Set
0 : N
Succ : N —=N
natrec : (C:N —Set) - C0— ((x:N)—= Cz— C(Succz))

—(n:N)—=>Cn

natrecCde() = d

natrecC'de (Succn) = en(natrecCden)

15

Generic rules for Ty

Formation rule
Tg : Set

Introduction rule
Introy, : 7 — Ty

Elimination rule

recy : (C: Ty — Set) > 7 - (x: Tyg) > Cx

Equality rule
recs C'd (Introsy) =dy -+ 7 ---

16

One-sorted term algebras

A one-sorted signature is a finite list of natural numbers, representing
the arities of the operations of the signature. Examples:

) Ty

empty set
] natural numbers
] truth values
, 1] lists of truth values
] binary trees without information in the nodes

We could consider more general class Sig of signatures, eg giving rise to
the ML-notion of equality class. Even more, capturing all kinds of inductive
definitions in Martin-Lof type theory (indexed, inductive-recursive, ...).

17

Signature = universe for one-sorted term algebras

We introduce the type of signatures
Sig Type
and the decoding function
T : Sig — Set

which maps a signature X to (the carrier of) its term algebra T'y; : Set.

18

The initial X-algebra diagram

Introz
FETE TZ
Fg(itel‘g C d) iters; Cd
FsC y C
Pattern functor:
F[n1 nm]X = XM 4...4 X"

19

A diagram for T's-elimination

Introz
FETE TE
Fx(id, recs C d) (id, F2® T, C (recs C d)) |(id, recs C d)
Fe((z:Ts) x Cz)— (y:FsTy) x F&' Ty Cy (z:Tx) x Czx
=% ,Ty,C e

e(y,z) = (Introgy,dy=z)

20

Auxiliary constructions

F3': (X : Set) = (X — Set) = Fx X — Set
Fin g X C(Ing (21,...,2n,)) = Czy X -+ x Cay,

and

F&*® : (X :Set) » (C: X — Set)
S ((z:X)=C2) = (y:FsX) 5 FE X Cy

[map X Ch(In; (x1,...,2n,)) = (hz1,...,hay,,)

[nl,...,nm]

21

Generic rules for Ty

TE . Set
Introy : FyTy — Ty
recy . (C Ty — Set) — ((y . Fy Tg) — FIEH Tx C’y — C (IntI'Og y))

—(z:Ty) > Cux
Equality rule

recy C'd (Introgs y) = dy (Frznap C (recs Cd)y)

22

Large elimination

We may add a large version of this elimination too, where C can be an
arbitrary family of types, that is,

Clx] Type (x:Ty)

not just a family of sets.

23

Martin-Lof type theory with one-sorted term algebras

Start with logical framework (including at least dependent function and
product types, and 0,1,2). Add

arities formation, introduction, (and elimination and equality) rules for N

signatures formation, introduction (and elimination and equality) rules for
lists of natural numbers

pattern functors defining rules for object part of Fyx, and the auxiliary F1
and F&°P

term algebras formation, introduction, elimination, and equality rules for
Ty with constants Introyx, and recs.

24

Generic programming

A generic size function.

A special case of the initial algebra diagram. Let ¥ = [nq, ..., Ny
Introyx,
T+ -+ T Ts,
sizegt + - - - + sizeg™ sizes,
N1 4 .oo 4 N N

sizestepsy

25

Generic recursion step

The recursion step is defined by induction on the signature:

sizestep,,..s (Inlzs) = 1+ sum,xs

sizestep,,..s. (Inry) sizesteps. y

where

sum: (n:N) —- N" - N

is a function summing the elements of a vector of natural numbers.

26

Generic equality

Introz

T+ -+ TEm Ty
(=) +---+ (=)™ (==)
(Ts; = Bool)" + --- 4+ (T — Bool)"™ Ty — Bool

eqstepy

27

Generic recursion step

eqsteps, (In; (fi, . fur)) (Introx, (In; (g1, ..

and for ¢ #

Yny))) = Jiyr Ao A fo,Un,

egstepy, (In; (f1, ..., fn;)) (Intros (Inj (y1, ..., yn,))) = False

can be defined by induction on the signature.

28

Code for the generic recursion step

eqsteps
eqstepy y x

outs
outs

Ty - Ty — Bool
iters; eqsteps. x '

Fs (Tg — BOOI) — Ts — Bool
recogAlly. Ty y (outys x)

Ty — Fy'Ty
recss ()\iE.FETz) ()\yzy)

29

More code for the generic recursion step

recogAlly. : (X : Set) - Fy (X — Bool) — Fx X — Bool

recogAll, ..» X (Inlfs) (Inlxzs) = andArgs, X fszs
recogAll,..s X (Inrzx) (Inry) = recogAlly Xxy
recogAll,..s X (Inlfs) (Inry) = False

recogAll ..» X (Inrz) (Inlzs) = False

andArgs, : (X : Set) — (X — Bool)” - X™ — Bool

andArgs, X () ()
andArgs,, X (f,fs) (z,xs)

True
fx A andArgs,, X fszs

30

Reflexivity of generic equality

Instantiate the generic elimination rule (structural recursion on Tyx)!

Int
FZTE niroy, TZ

(id, F& ™ T, C'refy) (id, refy;)

(y:Fng)xFIEHTgCy (wiTE)X‘LU:gj.CC

Ay, 2)-(Introx, y, refstepy y 2)

31

Int roxn,

FxTx Tx
<1d7 Fgap Tg C I‘efg> <1d, I‘efg>
:Fx Ts) x FE' Tx C : Tx) x C
(y: FxnTx) 5 =Y Ay, z).(Intros, y, refsteps y 2) (z:Tx) !
Cx = |z=x7z
F&' Ts C (In; (z1,...,2n,) = |71 =% 21| X ... X |Tp, =5 Tn,

Fo® Ty Crefy (In; (1,...,2,,)) = (refxzq,... refsx,,)

1

32

Converting from a truth value to a set

Truth values, sets, and propositions:

| —| : Bool — Set
|False] = 0
| True| =
L =0

33

How to write refsteps:

refsteps,. : (y:FsTs) = Fy! TsCy — C (Intros, y)
Hence, informally

refsteps, (In; (z1,...,%n,))

|21 =% 1] X -+ X |Tp, =% Tpn,| = [Introx (In; (21, ...,2s,)) = Introx (In; (21, . ..

1

Simplify the result type:
|371 —X 331| X X |$nz —X xnz| — |(:C1 — 371) ARERNA (xnz —X xnz)|

34

Rel
Rel
Iret
Iret

Two abbreviations

Set — Set
X =X — X — Bool
(X : Set) - Rel X - X — Set

Xrz=|rzx|

where the first argument to Iref will be hidden for brevity.

35

Code for generic reflexivity

refy, : (z:Tx)— |z =5
refsy, = recy (Iref (=x)) (refmatchy T (=5))

ie refstepy; is a special case of refmatch defined by:

refmatchy, : (X :Set) = (r:RelX) —
(y: Fs X) — FE' X (Iref r) y — |recogAlly, X (Fs, X Boolr y) y|

refmatch,.s X r (Inlxs) refargs, X r s
refmatch,.s X r (Inry) = refmatchy Xry

36

More code for generic reflexivity

refargs handles the arguments to the constructor:

refargs, : (X :Set) = (r:RelX) —

(xs : X™) = (Iref r)" zs — |andArgs, X (r" zs) xs]

() ()
(z,zs) (th,ihs)

()
ih (refargs,, X r xsihs)

refargs,

X r
refargs,,.; X r

37

This concludes the proof ...

This is the first, or perhaps more accurately the second ..., generic proof.

38

Is this a tour de force?

Equality is not the simplest generic function. Reflexivity of equality is
not the simplest generic proof! Nevertheless, the proof is not so long.
But it uses complex dependent types - comes from general framework.

(=) : N = N — Bool written with primitive recursion on higher type is
superficially a bit more complex than written by 4 recursion equations.

Would it be simpler to prove reflexivity in a framework with general
recursion? YOU set up this logic for generic general recursive programs.

Type-checking dependent types sometimes difficult - types may be ex-
tensionally but not definitionally (computationally) equal.

39

Generalizing the notion of a signature

iterated inductive definitions
Cons : N — ListN — ListN

the first argument is a side-condition.

generalized inductive definitions
Sup: (N—-0O) = O
constructors with dependent types

Sup:(z: A) > (Bx—> W) > W

40

Signatures for generalized inductive definitions

e : Sig
o : (A:Set) —» (A — Sig) — Sig
p : Set — Sig — Sig

FX =1
FUAzX = (CIZIA)XFExX
FpAzX = (A-)X)XFEX

41

Parameterized inductive definitions

parameterized inductive definitions

Cons: (A:Set) > A— List A — List A

The first argument is a parameter - it is the same for all constructors.

We need universes for parameterized inductive definitions because much
generic programming is about such definitions (generic map, zip, etc).

If we just want to formalize parameterized inductive definitions in
Martin-Lof type theory, parameterization is taken care of by the logical
framework.

42

