Intuitionistic Type Theory
Lecture 3

Peter Dybjer
Chalmers tekniska hogskola, Géteborg

Summer School on Types, Sets and Constructions
Hausdorff Research Institute for Mathematics
Bonn, 3 - 9 May, 2018

Plan of lectures on Intuitionistic Type Theory

@ formal system of 1972

@ meaning explanations in "Constructive Mathematics and
Computer Programming" 1979/82; identity types

© formal system of 1986 as a basis for

o the proof assistant / dependently typed programming language
Agda
e a general theory of inductive and inductive-recursive definitions

Another interesting topic:

@ What is dependent type theory? Initial categories with families
built by categorical combinators for dependent types.

LF and Agda

The LF version of Intuitionistic Type Theory 1986

A two level theory:
@ the theory of types (the logical framework); only two type formers
e (x:A)— B (like MNx : A.B but serving a different role)
e Set (like U but serving a different role)
o (We will also need (x : A) x B, like Xx : A.B)
@ the theory of sets; contains the rules for the type formers.

e formation, introduction, and elimination-rules are represented by
constants with their types
e equality rules are represented by equations

Variable binding and substitution taken care of on the framework level.
Cf Edinburgh Logical Framework (Harper, Honsell, Plotkin 1987).

LF and Agda

Agda

The proof assistant Agda is based on (a modified version of)
Martin-L6f’s logical framework. It contains numerous programming
language features:

@ modules

records

a universe hierarchy Set : Set; : Seto : - --

data type declarations (of inductive and inductive-recursive sets)

pattern matching and termination checking (as a more flexible
alternative to elimination rules)

@ implicit arguments

@ syntactic sugar including syntax highlighting with colours,
unicode, mixfix operations, precedence declarations, etc.

@ an emacs-interface where programs/proofs can be written by
gradual refinement of (typed checked) partial terms

LF and Agda
Rules for natural numbers in Agda

module N-rules where

data N : Set where
O : N
s +: N = N

R : {C : N > Set}

- CO

> ((n : N) »Cn=->C (s n))

> (¢ : N) > C
RdeO =d
Rde (s n) =e

C

n (Rden)

Rules for the identity set in Agda

module I-rules where

data I (A : Set) (a : A) : A > Set where
r : I A aa

J : {A : Set} » {a : A}

- (C: (y : A) »TITAay > Set)

- Car

> (b :A) > (c : T Aab)->Cboc
JCdbr-=4d

LF and Agda

Intuitionistic Type Theory 1986 have decidable judgments

The following rules are removed:
Identity reflection
FEc:l(Aad)
[Fa=4d:A
Uniqueness of identity proofs:

Mc:l(Aad)
lFe=r:I(Aad)

Decidability of the judgments is restorted and Agda’s type-checking
algorithm decides the judgment

Fa:A

Inductive definitions

Intuitionistic Type Theory as a Theory of Inductive Definitions

Martin-L6f 1972:

The type N is just the prime example of a type introduced
by an ordinary inductive definition. However, it seems
preferable to treat this special case rather than to give a
necessarily much more complicated general formulation
which would include (¥ € A)B(x),A+ B,N, and N as
special cases. See Martin-L6f 1971 [26] for a general
formulation of inductive definitions in the language of
ordinary first order predicate logic.

Inductive definitions

lterated inductive definitions in predicate logic

What is an iterated inductive definition of predicate symbols
P.Q,...,R, in general in natural deduction? What are their
introduction, elimination, and "contraction" rules?

Ordinary production:

Generalized productions:
H(x) > Q(a(x)) Vy.Q(a(x.y))
P(p(x)) P(p(x))

There are restrictions on the level of predicates. H is an arbitrary
formula of lower level than P.

Inductive definitions

Inductive families

General form of introduction rule for an inductive family.

N-a:A My:HEFb:P(q)
r-c(...,a,...,y.b,...): P(p)

"Inductive predicates with proof objects". Inductive types are special
cases.

@ P is the type constructor for the inductive family.
@ cis aterm constructor for P.

o [+ a: Ais a side condition or non-inductive premise. There can
be several. A must be defined before ("have lower level").

e [,y:HF b: P(q) is an inductive premise. There can be several.
H must be defined before.

Inductive definitions

Lists and vectors

An inductive type:

N-a:A ' as: List(A)
I cons(a, as) : List(A)

I+ nil : List(A)

An inductive family:

NlFa:A It as: Vect(A,n)

[+ nil : Vect(A,0
nil : Vect(A,0) [cons(a, as) : Vect(A, s(n))

Ais a parameter.

Inductive definitions

Generalized inductive definitions

W-formation.
N-A Nx:AFB

- Wx:AB

W-introduction.

Nl-a:A My:Blx:=al-b: Wx:AB
I+ sup(a,y.b): Wx:A.B

Martin-L6f 1979.

Inductive definitions

lterative sets

Aczel's constructive cumulative hierarchy:
V=Wx:U.ux.
for a family of iterative sets x : A M : V, we form

{M|x: A} = sup(A,x.M): V

Inductive definitions

W-types and schema for inductive definitions

W-introduction (W = Wx : A.B).

N-a:A My:Blx:=ak-b:W
I+ sup(a,y.b): W

General form of an introduction rule for an inductive type W

NFa: A ly:Brb:W
M=sup(...,a,...,y.b,...): W

The general schema can be reduced to W-types modulo some
extensional isomorphisms which are not valid in the intensional theory.

Inductive-recursive definitions

Universe a la Tarski (N, 1, U-fragment)

N-a:u TI,x:T(a)kb:U
l-n(a,x.b): U

r=n:u

T(n(a,x.b)) = Mx: T(a).T(b(x))
T(R) = N

Inductive-recursive definitions

Universe a la Tarski (N, 1, U-fragment)

module UT-rules where
open import N-rules
open import Pi-rules

mutual
data U : Set where
m: (a: U) » (Ta>»1"U)->10
n: U

T : U > Set
T (rab) =T (T a) (Ax > T (b x))
T n = N

Inductive-recursive definitions

Examples of inductive-recursive definitions in type theory

Constructive higher infinite:

@ Palmgren’s next universe operators and super universe

@ Rathjen, Griffor, and Palmgren’s universe for Mahlo t-numbers

@ Setzer's Mahlo universe

@ Palmgren’s universe hierarchies
Intuitionistic model theory:

@ modelling types and terms in Frege structures (Aczel)

@ computable types and terms for a normalization proof (Martin-L&f)
Small inductive-recursive defintions:

@ "fresh lists", etc

Inductive-recursive definitions

General schema for inductive-recursive types

Given a type C, we define by simultaneous induction-recursion

U : Set
T : U=>C

The schema is as before

lFa:A ly:BrFb:U
M=sup(...,a,...,y.b,...): U

with
T(sup(...,a,...,y.b,...))=...

where side conditions and inductive premises can come in any order.
The A and the B may now depend on T applied to previously
constructed elements of U. How to make this precise?

Finite axiomatizations

Finite axiomatization of inductive types

A universe Sig of codes X for inductive types Us

e : Sig
6 : (A:Set)— (A— Sig) — Sig
p : Set— Sig— Sig

The associated functor Fy

FSX = 1
FGAZX = (X:A)XFXXX
Foas X = (A= X)xFsX

The rules for Us are obtained from the initial Fs-algebra diagram.

Some codes

Finite axiomatizations

Some defined codes

id =
Y +Y
PN

Ywap =

with their endofunctors

Fig X
FrosX
Fs X
FrwasX

ple

o2 (Ax.if x thenX elseY’)
e+id

GA(MAx.p(Bx)e)

12
>

I

Fs X+ Fs X
1+ X
=~ (x:A)x(Bx— X)

12

Finite axiomatizations

Finite axiomatization of inductive-recursive types

An inductive-recursive definition is obtained by reflecting an operation
o : Gexr—C
as a constructor
cc : Gy UsTs — Us
for an inductively defined set with a recursively defined decoding

Us : Set
s : Us—C

where Gc 5 is a "good" domain of definition for all > : Sig.

Finite axiomatizations

Reflecting Set-valued operations

An inductive-recursive definition is obtained by reflecting an operation
0 : Gy — Set
as a constructor
e : Gy Us Ty — Us
for an inductively defined set with a recursively defined decoding

Us : Set
Ts : Us — Set

where Gs is a "good" domain of definition for all X : Sigg.

Finite axiomatizations

Finite axiomatization of inductive-recursive types

Sigg., is a type of "signatures" for inductive-recursive definitions
reflecting operations ¢ with codomain Set

€ SigSet
6 : (A:Set) — (A— Sigg,) — Siggy
p : (A:Set) — ((A— Set) — Sigge) — Sigge

generating the good domains of definition for ¢

Gg - 1
Goar = (X:A)XGZX
Goaxr = (f: A— Set) X Gy ¢

Finite axiomatizations

Code for universe closed under [1

The code
Yn=p1(AA.p(A0)(AB.E)) : Sigge

generates the domain of I1 (uncurried)

Gsp, 1 (A:1— Set) x ((A0) — Set) x 122 (A: Set) x (A — Set)

Finite axiomatizations

Finite axiomatization of inductive-recursive types

The introduction rule is
cy G% Us Ty — Us
(Note the dependence on both Us and Ty). We have

GEUT = f
GSps UT = (x:A)xGs,UT
GSAZUT = (f:A*)U)XG%(TOf)UT

which generate the domain of 7 (the code for I1):

G%n Uzn T):n . (f:1%U{n)x(Tzn(fO)—)Uzn)X‘i
= (a:Us,)x (T a— Usy)

Finite axiomatizations

Finite axiomatization of inductive-recursive types

Remains:
@ Equality rule for Tx,.
@ Reflection of C-valued operations. Easy.
@ Indexed induction-recursion.

@ Universe-elimination for inductive-recursive types in general.

Finite axiomatizations

Three views of Intuitionistic Type Theory

@ Intuitionistic Type Theory with a fixed collection of basic type
formers (e g 0,1,4,%,,N, U)

@ Intuitionistic Type Theory as a general theory of inductive and
inductive-recursive definitions (PD, A Setzer)

e A finite axiomatization of inductive-recursive definitions, TLCA
1999

e Induction-recursion and initial algebras, APAL, 2003
@ Indexed induction-recursion, JLAP, 2006

@ Intuitionistic Type Theory as an open theory, cf Agda, e g add
Setzer's autonomous Mahlo universe, and [13-reflecting universe.

Formation and introduction rules fit the pattern of meaning
explanations.

Finite axiomatizations

Uses of the word "set" in Intuitionistic Type Theory

set as a synonym for type (Bibliopolis)

set as small type (logical framework formulation)

set as setoid (type + equivalence relation, Bishop set)
set as iterative set in (V,=y), Aczel's model of CZF

set as hset in homotopy type theory

	LF and Agda
	Inductive definitions
	Inductive-recursive definitions
	Finite axiomatizations

