
Aarhus, Oct 2007

Formal Topology
and the Correctness of a Haskell Program
for Untyped Normalization by Evaluation

Peter Dybjer

Chalmers University, Göteborg
(based on joint work with Denis Kuperberg, ENS Lyon)

Aarhus
24 October, 2007

Aarhus, Oct 2007

Normalization and normalization by evaluation

Computation is a step-wise procedure which is often modelled
as a binary relation red1 of reduction in one step

To prove strong normalization is to prove that red1 is
well-founded and to prove weak normalization is to prove that
all expressions can reach a normal form wrt red1.

But red1 is not itself an implementation of the reduction
(normalization) procedure! We must write a program to
execute it! This is typically done using an abstract machine.

Normalization by evaluation is a new technique for
programming this procedure, using an interpretation of
expressions in a special kind of model, and then extracting the
normal form.

It is also easier to prove correctness of the nbe algorithm than
to prove normalization and confluence of reduction.

Aarhus, Oct 2007

What is the purpose of normalization?

Historically, to prove consistency and other metatheoretical
properties of logical systems.

To perform program simplification, cf type-directed partial
evaluation.

To decide convertibility (equality) of expressions, e g in a
theorem prover: two expressions are convertible iff they have
the same normal form. This follows from weak normalization
and Church-Rosser.

Aarhus, Oct 2007

To prove correctness of normalization by evaluation

Start instead with conv. An abstract normal form function is a
function nbe which picks a canonical representative from each
conv-equivalence class:

a conv a′ ↔ nbe a = nbe a′

This property follows from “existence” of normal forms

a conv (nbe a)

and “uniqueness” (cf confluence)

a conv a′ → nbe a = nbe a′

Aarhus, Oct 2007

Normalization by evaluation in a model

Normalization by “evaluation” in a model. reify is a left inverse
of eval - the “inverse of the evaluation function”:

nbe a = (reify (eval a)) conv a

Strictification:
a conv a′

implies
eval a = eval a′

implies
nbe a = nbe a′

Aarhus, Oct 2007

Formalizing typed combinatory logic
in Martin-Löf type theory

Constructors for Ty : Set:

X : Ty
(=>) : Ty -> Ty -> Ty

Constructors for Exp : Ty -> Set:

K : (a,b : Ty) -> Exp (a => b => a)
S : (a,b,c : Ty) -> Exp ((a => b => c) => (a => b) => a => c)
App : (a,b : Ty) -> Exp (a => b) -> Exp a -> Exp b

In this way we only generate well-typed terms.

Aarhus, Oct 2007

The glueing model

Sem : Ty -> Set

Sem X = Exp X
Sem (a => b) = (Exp (a => b), (Sem a) -> (Sem b))

The normalization function is obtained by evaluating an expression
in the glueing model, and then “reifying” this interpretation

nbe : (a : Ty) -> Exp a -> Exp a
nbe a e = reify a (eval a e)

eval : (a : Ty) -> Exp a -> Sem a

reify : (a : Ty) -> Sem a -> Exp a

Aarhus, Oct 2007

Evaluation and reification

Reification is defined by induction on Ty, eg

reify : (a : Ty) -> Sem a -> Exp a
reify (a => b) (e,f) = e

It is tempting to “hide” the type information, but note that it is
used in the computation.
Evaluation is defined by induction on Exp a, eg

eval : (a : Ty) -> Exp a -> Sem a

eval (a => b => a) (K a b) = (K a b,
\x -> (App a (b => a) (K a b) (reify a x),
\y -> x))

Aarhus, Oct 2007

A decision procedure for convertibility

Let e, e’ : Exp a.

Prove that e conv e’ implies eval a e = eval a e’!

It follows that e conv e’ implies nbe a e = nbe a e’

Prove that e conv (nbe a e) using the glueing
(reducibility) method!

Hence e conv e’ iff nbe a e = nbe a e’

Hence e conv e’ iff (nbe a e == nbe a e’) = True

Aarhus, Oct 2007

Formalizing syntax and semantics in Haskell

The Haskell type of untyped combinatory expressions:

data Exp = K | S | App Exp Exp

(We will later use e@e ′ for App e e’.)
Note that Haskell types contain programs which do not terminate
at all or lazily compute infinite values, such as

App K (App K (App K ...)))

The untyped glueing model as a Haskell type:

data Sem = Gl Exp (Sem -> Sem)

A reflexive type!

Aarhus, Oct 2007

The nbe program in Haskell

nbe : Exp -> Exp
nbe e = reify (eval e)

reify : Sem -> Exp
reify (Gl e f) = e

eval : Exp -> Sem
eval K = Gl K (\x -> Gl (App K (reify x))

(\y -> x))
eval S = Gl S (\x -> Gl (App S (reify x))

(\y -> Gl (App (App S (reify x)) (reify y))
(\z -> appsem (appsem x z) (appsem y z))))

eval (App e e’) = appsem (eval e) (eval e’)

Aarhus, Oct 2007

Application in the model

appsem : Sem -> Sem -> Sem
appsem (Gl e f) x = f x

Aarhus, Oct 2007

The nbe program computes the Böhm tree of a term

Theorem. (Devautour 2004) nbe e computes the combinatory
Böhm tree of e. In particular, nbe e computes the normal form of
e iff it exists.
Proof. Following categorical method of Pitts 1993 and Filinski
and Rohde 2004 using “invariant relations”.
What is the combinatory Böhm tree of an expression? An
operational notion: the Böhm tree is defined by repeatedly
applying the inductively defined head normal form relation.
Note that nbe gives a denotational (computational) definition of
the Böhm tree of e, so the theorem is to relate an operational
(inductive) and a denotational (computational) definition.

Aarhus, Oct 2007

Combinatory head normal form

Inductive definition of relation between terms in Exp

K ⇒h K S ⇒h S

e ⇒h K

e@e ′ ⇒h K@e ′
e ⇒h K@e ′ e ′ ⇒h v

e@e ′′ ⇒h v

e ⇒h S

e@e ′ ⇒h S@e ′
e ⇒h S@e ′

e@e ′′ ⇒h (S@e ′)@e ′′

e ⇒h (S@e ′)@e ′′ (e ′@e ′′′)@(e ′′@e ′′′) ⇒h v

e@e ′′′ ⇒h v

Aarhus, Oct 2007

Formal neighbourhoods

To formalize the notion of combinatory Böhm tree we make use of
Martin-Löf 1983 - the domain interpretation of type theory (cf
intersection type systems). Notions of

formal neighbourhood = finite approximation of the canonical
form of a program (lazily evaluated); in particular ∆ means no
information about the canonical form of a program.

The denotation of a program is the set of all formal
neighbourhoods approximating its canonical form (applied
repeatedly to its parts). Two possibilities: operational
neighbourhoods and denotational neighbourhoods. Different
because of the full abstraction problem, Plotkin 1976.

Aarhus, Oct 2007

Expression neighbourhoods

An expression neighbourhood U is a finite approximation of the
canonical form of a program of type Exp. Operationally, U is the
set of all programs of type Exp which approximate the canonical
form of the program. Notions of inclusion ⊇ and intersection ∩ of
neighbourhoods.
A grammar for expression neighbourhoods:

U ::= ∆ | K | S | U@U

A grammar for the sublanguage of normal form neighbourhoods:

U ::= ∆ | K | K@U | S | S@U | (S@U)@U

Aarhus, Oct 2007

Approximations of head normal forms

e .Bt ∆

e ⇒h K

e .Bt K

e ⇒h K@e ′ e ′ .Bt U ′

e .Bt K@U ′

e ⇒h S

e .Bt S

e ⇒h S@e ′ e ′ .Bt U ′

e .Bt S@U ′

e ⇒h (S@e ′)@e ′′ e ′ .Bt U ′ e ′′ .Bt U ′′

e .Bt (S@U ′)@U ′′

Aarhus, Oct 2007

The Böhm tree of a combinatory expression

The Böhm tree of an expression e in Exp is the set

α = {U | e .Bt U}

One can define formal inclusion and formal intersection and prove
that α is a filter of normal form neighbourhoods:

U ∈ α and U ′ ⊇ U implies U ′ ∈ α;

∆ ∈ α;

U,U ′ ∈ α implies U ∩ U ′ ∈ α.

Aarhus, Oct 2007

Combinatory conversion

Conversion is inductively generated by the rules of reflexivity,
symmetry, and transitivity, together with:

(K@e)@e ′ conv e

((S@e)@e ′)@e ′′ conv (e@e ′)@(e@e ′′)

e0 conv e1 e ′
0 conv e ′

1

e0@e ′
0 conv e1@e ′

1

One can prove that two convertible expressions have the same
Böhm tree, using the Church-Rosser property.

Aarhus, Oct 2007

Operational neighbourhoods of nbe

nbe e ∈ U iff U is a finite approximation of the canonical form of
nbe e when evaluated lazily. For example,

nbe e ∈ ∆, for all e

nbe K ∈ K

nbe (Y@K) ∈ K@∆

nbe (Y@K) ∈ K@(K@∆), etc

Y is a fixed point combinator.

Aarhus, Oct 2007

Definition of the operational neighbourhood relation

Is this operational semantics or denotational semantics?
The definition of the operational neighbourhood relation follows
the computation rules (operational semantics) of a program. So to
define the relation nbe e ∈ U, we must first define the relations
eval e ∈ V and reify x ∈ U. Here V is a neighbourhood of the
reflexive type

data Sem = Gl Exp (Sem -> Sem)

We need to consider function neighbourhoods.

Aarhus, Oct 2007

Function neighbourhoods

If (Ui)i<n and (Vi)i<n are families of neighbourhoods of types σ
and τ , respectively, then ⋂

i<n

[Ui ; Vi]

is a function neighbourhood of the type σ → τ . We write
∆ =

⋂
i<0[Ui ; Vi].

Aarhus, Oct 2007

Operational and denotational function neighbourhoods

Let f be a program of type σ → τ , then

f ∈
⋂
i<n

[Ui ; Vi]

Operationally iff for all i < n, a ∈ Ui implies f a ∈ Vi .

Denotationally iff whenever you know for all i < n that a
hypothetical input is approximated by Ui , then the
output to f is approximated by Vi .

These are different, because of the full abstraction problem
discovered by Plotkin: there is a formally consistent neighbourhood
(parallel or) which is uninhabited by any program in PCF (and
Haskell).
Which is the right one??

Aarhus, Oct 2007

Neighbourhoods in Sem

∆ is a Sem-neighbourhood.

If U is an Exp-neighbourhood and (Vi)i<n and (Wi)i<n are
families of Sem-neighbourhoods, then

GlU (
⋂
i<n

[Vi ; Wi])

is a Sem-neighbourhood.

Aarhus, Oct 2007

Denotational semantics of application

Recall that

eval (App e e’) = appsem (eval e) (eval e’)

appsem : Sem -> Sem -> Sem
appsem (Gl e f) x = f x

Hence
eval (App e e′) ∈ V

iff there exists U such that eval e ∈ Gl∆ [U; V] and eval e ′ ∈ U.

Aarhus, Oct 2007

Nbe maps convertible terms into equal Böhm trees

Some facts

nbe e ∈ U implies that U is a normal form neighbourhood,
and hence the denotation of nbe e is a combinatory Böhm
tree.

nbe maps convertible terms to equal Böhm trees (cf
“uniqueness of normal forms”). As in the typed case this
follows by induction on the definition of convertibility, using a
lemma that eval maps convertible terms into equal
denotations.

Aarhus, Oct 2007

Completeness of nbe

Any finite part of the Böhm tree is returned:

e .Bt U implies nbe e ∈ U

The proof is by induction on the derivation of e .Bt U.
Consider eg the case when e .Bt K comes from e ⇒h K. Since
nbe K ∈ K and convertible terms have equal Böhm trees it follows
that nbe e ∈ K.

Aarhus, Oct 2007

Soundness of nbe

Only approximations of the Böhm tree are returned by nbe:

nbe e ∈ U implies e .Bt U

We need a lemma (cf reducibility/glueing method)

eval e ∈ V implies e .Gl V

where e .Gl V is defined by induction on V : either V = ∆ or
V = GlU (

⋂
i [Vi ; Wi]) where e .Bt U and for all i and e ′,

e ′ .Gl Vi implies e@e ′ .Gl Wi .
This lemma is proved by induction on e. In the case of an
application we use crucially the denotational definition of
neighbourhoods!
Soundness then follows immediately.

Aarhus, Oct 2007

Summary

Nbe-algorithm for typed combinatory logic generalizes
immediately to one for untyped combinatory logic.

In the typed case it computes normal forms. In the untyped
case it computes Böhm trees

In the typed case the proof falls out naturally in the setting of
constructive type theory (a framework for total functions). In
the untyped case we need domain theory. In particular we
need domain-theoretic (denotational) definition of
approximation, rather than the operational one!

In the typed case we prove correctness by ”glueing” - a
variant of Tait-reducibility. In the untyped case we need to
adapt the glueing method to work on a reflexive domain.

Aarhus, Oct 2007

Case e@e ′.

To prove that eval (e@e ′) ∈ V implies (e@e ′) .Gl V from the
induction hypotheses that eval e ∈ U implies e .Gl U for all U and
eval e ′ ∈ U ′ implies e ′ .Gl U ′ for all U ′ we do case analysis on V :

V = ∆ and we are done.

Or there exists U such that eval e ∈ Gl∆ [U; V] and
eval e ′ ∈ U. In this case the induction hypotheses tells us
that e ′ .Gl U and e .Gl Gl∆ [U; V]. But then it follows
immediately from the definition of the latter that
(e@e ′) .Gl V .

