Combining Testing and Proving
in Dependent Type Theory

Peter Dybjer, Qiao Haiyan, and Makoto Takeyama,

Department of Computing Science,
Chalmers University of Technology,
412 96 Goteborg, Sweden

[peterd,qiao,makoto] @cs.chalmers.se

Abstract. We extend the proof assistant Agda/Alfa for dependent type
theory with a modified version of Claessen and Hughes’ tool QuickCheck
for random testing of functional programs. In this way we combine test-
ing and proving in one system. Testing is used for debugging programs
and specifications before a proof is attempted. Furthermore, we demon-
strate by example how testing can be used repeatedly during proof for
testing suitable subgoals. Our tool uses testdata generators which are
defined inside Agda/Alfa. We can therefore use the type system to prove
properties about them, in particular surjectivity stating that all possible
test cases can indeed be generated.

1 Introduction

A main goal of the theorem proving community is to use proof assistants for
producing correct programs. However, in spite of faster type-checkers, more au-
tomatic proof-search, better interfaces, larger libraries, proving programs correct
is still very time consuming, and requires great skill of the user.

Testing has often been disregarded by the theorem proving community since,
as Dijkstra emphasised, testing can only show the presence of errors, not the
absence of them. However, testing is of course the method used in practice!

Most research on testing has concerned imperative programs. However, an in-
teresting tool QuickCheck for random testing of functional programs (written in
the lazy functional programming language Haskell) has recently been developed
by Claessen and Hughes [5]. With this tool, correctness properties of functional
programs can easily be checked for randomly generated inputs. Experience shows
that this is a useful method for debugging programs [6].

Nevertheless, missing rare counterexamples is unacceptable for certain ap-
plications. Furthermore, not all correctness properties have a directly testable
form. Since both testing and proving have their obvious shortcomings, it would
be interesting to combine testing and proving in one system. The idea is to use
testing to debug programs and specifications before a proof is attempted. Fur-
thermore, we can debug subgoals which occur during proof, and we can also
balance cost and confidence by testing assumptions instead of proving. It may

also be interesting to systematically study testing methods in the context of a
full-fledged logic of functional programs.

To this end we have extended the proof assistant Agda/Alfa developed by
Coquand [7] and Hallgren [13] with a testing tool similar to QuickCheck. The
Agda/Alfa system is an implementation of a logical framework for Martin-Lof
type theory. Intuitionistic logic is available via the Curry-Howard correspondence
between propositions and types. Martin-Lof type theory is also a programming
language which can be briefly described as a functional programming language
with dependent types, where all programs terminate. Termination is ensured
by only allowing certain recursion patterns. Originally only structural recursion
over well-founded datatypes was allowed, but recent work on pattern matching
with dependent types [8] and termination checking [22] has extended the class
of programs accepted by the system. There is also a significant amount of work
on the question of how to reason about general recursive programs in dependent
type theory. For some recent contributions to this problem, see Bove [3].

As a first case study we are developing a certified library of classic data
structures and algorithms. To illustrate our tool we consider the correctness of
some simple search tree algorithms (search and insertion in binary search trees
and AVL-trees). As Xi and Pfenning [23] have emphasized in their work on
DML (Dependent ML), dependent types are useful for expressing invariants of
such data structures. Our goals should be compared to those of Okasaki, who
is currently developing Edison — a library of efficient functional data structures
written in Haskell [18]. Okasaki uses QuickCheck to test his programs, and also
includes QuickCheck test data generators to be used in applications of his data
structures. We aim to build an analogous library for the Agda/Alfa system,
where we can use dependent types to capture more invariants of the algorithms,
and even provide full correctness proofs whenever this is feasible.

The idea of combining proving and testing is also part of the Programatica
project currently under development at Oregon Graduate Centre [20]. Some
early work on combining proving and testing was done by Hayashi, who used
testing to debug lemmas while doing proofs in his PX-system [14]. Hayashi is
currently pursuing the idea of testing proofs and theorems in his foundationally
oriented project on “proof animation” [15]. AVL-insertion has been implemented
and proven correct in Coq by Catherine Parent [19].

Plan. In Section 2 we introduce QuickCheck. In Section 3 we introduce the proof
assistant Agda/Alfa. In Section 4 we extend Agda/Alfa with a QuickCheck-like
tool. In Section 5 we discuss test case generation. In Section 6 we summarize our
experiments with algorithms for insertion in AVL-trees and illustrate how testing
helps during proof development. In Section 7 we briefly describe how AVL-tree
insertion can be implemented by using dependent types, so that the type system
ensures that the insertion preserves the AVL-tree property. Section 8 concludes
with a brief discussion of further research. Appendix A contains some Haskell
programs from Section 2.

Acknowledgments. We wish to thank Koen Claessen and John Hughes for
many discussions.

2 QuickCheck

The basic idea of QuickCheck is to test whether a boolean property
plxl, ..., xn] :: Bool

is True for random instances of the variables x1 :: D1, ..., xn :: Dn. (The
notation p[x1, ... ,xn] means that the expression p may contain occurrences of
the free variables x1, . ..,xn. The reader is warned not to confuse this notation
with Haskell’s list notation!)

For example, if we wish to test that

reverse (reverse xs) == Xs
for arbitrary integer lists xs, we write a property definition

prop_RevRev xs = reverse (reverse xs) == xs
where types = xs :: [Int]

Then we call QuickCheck

Main> quickCheck prop_RevRev
0K, passed 100 tests.

QuickCheck here uses a library test data generator for integer lists. It is also
possible for the user to define her own test data generator.
More generally, QuickCheck can test conditional properties written

plx1,...,xn] ==> q[x1,...,xn]

wherep[x1,...,xn], qlx1,...,xn] :: Bool.QuickCheck performs a sequence
of tests as follows (at least conceptually):

1. A random instance rl :: D1, ..., rn :: Dn is generated.

2. plr1, ..., rn] is computed. If it is False, the test is discarded and a new
random instance is generated. If on the other hand it is True, then

3. qlr1l, ..., rn] is computed. If it is False, QuickCheck stops and reports
the counterexample. If it is True the test was successful and a new test is
performed.

QuickCheck repeats this procedure 100 times, by default. Only tests which are
not discarded at step 2 are counted.

Another example of a QuickCheckable property is the following correctness
property of a search algorithm binSearch for binary search trees. The property
states that the algorithm correctly implements membership in binary search
trees:

isBST 1b ub t ==> binSearch t key == member t key

Here t is a binary tree of type BT, the type of binary trees with integers in the
nodes; in Haskell:

data BT = Empty | Branch Int BT BT

isBST 1b ub t holds if t is a binary search tree with elements strictly between
1b and ub, (see Appendix A for the definitions in Haskell).

Before we can use QuickCheck we need a suitable test data generator. A
generator for BT could be used, but is inappropriate. The reason is that most
randomly generated binary trees will not be binary search trees, so most of them
will be discarded. Furthermore, the probability of generating a binary search
tree decreases with the size of the tree, so most of the generated trees would
be small. Thus the reliability of the testing would be low. A better test case
generator generates binary search trees only.

For more information about QuickCheck, see Claessen and Hughes [5] and
the homepage http://www.cs.chalmers.se/ rjmh/QuickCheck/. Much of the
discussion about QuickCheck, both about pragmatics and concerning possible
extensions seems relevant to our context.

3 The Proof Assistant Agda/Alfa

This section briefly describes the proof assistant Agda/Alfa. The reader familiar
with Agda/Alfa can skip it.

Agda[7] is the latest version of the ALF-family of proof systems for dependent
type theory developed in Goteborg since 1990. Alfa [13] is a window interface
for Agda. We quote from the Alfa home page [13]:

Alfa is a successor of the proof editor ALF, i.e., an editor for di-
rect manipulation of proof objects in a logical framework based on Per
Martin-L6f’s Type Theory. It allows you to, interactively and incremen-
tally, define theories (axioms and inference rules), formulate theorems
and construct proofs of the theorems. All steps in the proof construction
are immediately checked by the system and no erroneous proofs can be
constructed.

That “no erroneous proofs can be constructed” only means that a completed
proof is indeed correct. It does not help you to avoid blind alleys.

The syntax of Agda/Alfa has been strongly influenced by the syntax of
Haskell and also of Cayenne [1], a functional programming language with depen-
dent types. In addition to the function types a -> b available in ordinary func-
tional languages, there are dependent function types written (x :: a) -> b,
where the type b may depend on x :: a.

Agda/Alfa also has dependent record types (signatures) written

sig {x1 :: al; x2 :: a2; ...; xn :: an}

where a2 may depend on x1 :: al and anmaydependonxl :: al, x2 :: a2,
etc. Elements of signatures are called structures written

struct{xl = el; x2 = e2; ...; Xn = en}
Signatures are much like iterated X-types Xx1 :: al.X¥x2 :: a2. ... an.
and structures are much like iterated tuples (el, (e2, ..., en)) inhabiting
them.

Furthermore, Agda/Alfa has a type Set of sets in Martin-L6f’s sense. Such
sets are built up from basic inductive data structures, using dependent function

types and signature types. A basic example is the set of natural numbers. Its
definition in Agda/Alfa is

data Nat = Zero | Succ (n :: Nat)

More generally, constructors for sets may have dependent types, see for ex-
ample the definition of AVL-trees in Section 7.

Remark. The reader is warned that the dependent type theory code given here
is not accepted verbatim by the Agda/Alfa system, although it is very close to
it. To get more readable notation and avoiding having to discuss some of the
special choices of Agda/Alfa we borrow some notations from Haskell, such as
writing [a] for the set of lists of elements in a. In particular, we use Haskell-
style overloading although this feature is not present in Agda/Alfa.

Predicates on a set D are propositional functions with the type D -> Set
by the identification of propositions as sets. Decidable predicates have the type
D -> Bool. To convert from decidable to general predicates we use the function

T :: Bool -> Set
T True = Truth
T False = Falsity

where Truth = Unit represents the trivially true proposition and Falsity is
the empty set representing the false proposition.

For a more complete account of the logical framework underlying Agda/Alfa
including record types see the paper about structured type theory [9] and for the
inductive definitions available in type theory, see Dybjer [10] and Dybjer and
Setzer [11,12].

4 A Testing Tool for Agda/Alfa

Our testing tool can test properties of the following form:

(x1 :: D1) -> ... > (xn :: Dn[x1, ..., x(n-1)]) —->
T (p1lx1, ..., xn]) -> ... => T (pm[x1, ..., xn]) ->
T (qlx1, ..., xn])

Under the identification of 'propositions as types’, this reads

Vxi € D1. ---Vx, € Dn[zy,- -, Tn_1].
pi[z1, -, 2n] = pofz1,- -+, T, =

q[xla"'ymn]

This is essentially the form of properties that QuickCheck can test, except that
in dependent type theory the data domains Di can be dependent types.

The user chooses an option “test” in one of the menus provided by Alfa. The
plug-in calls a test data generator and randomly generates a number of cases (at
the moment 50) for which it checks the property.

Consider again the correctness property of binary search. It is the following
Agda/Alfa type (using Nat rather than Int for simplicity):

(1b, ub, key :: Nat) -> (t :: BT) -> T (isBST 1lb ub t) ->
T (binSearch t key == member t key)

Fig. 1 shows how this property is displayed in an Alfa-window: here bst is a

1

— Menu

@ [TE:shrd] TEST: show test result using domain-based generators
@ [TE:sod] TEST: solve goal using domain-based generalors
@ [TE:shrs] TEST: show test result using special-purpose generator
@ [TE:sos] TEST: solve goal using special-purpose generator
~| B5T1.agda
[File & | Edit [& [view & | options & [utils G|
bst e (1b, ub keye Nat t e BT) —
T (isBST 15 ub t) — T (binSeurch ¢ key = member ¢ key)
bst =5

;_

Fig. 1. Testing binary search

proof object for the correctness of binary search; bst is yet to be defined by
instantiating the highlighted question mark ?5. This can now be done either by
proving or testing. If we choose to prove it, 75 should be instantiated to a proof
term which we can build interactively by pointing and clicking (see the Alfa
homepage for details [13]). If we instead want to test it, we choose one of the
testing options found in one of Alfa’s menus (see Fig. 1). We can either use a
domain-based or a special purpose test data generator. The domain-based option
looks for generators for the data domains Di. The special purpose option looks
for a generator for the lemma in question; it can therefore take the conditions
into account. We can also choose whether we want to see the results of testing in
a separate window, or just try to solve the goal, and if successful replace 75 by

dst = (2h uh keye Nut te BT) —
T (:sBST b ubh t) — T (binSeqrch ¢ key == member ¢ key)
hst = Tested

Fig. 2. The goal is "Tested’

the pseudo proof term “Tested” indicating that the goal has been successfully
tested, but not proved (see Figure 2).

If testing fails, a counterexample is returned. For example, if we remove the
condition T (isBST 1b ub t), then the property above is not true any more,
and the plug-in will report a counterexample, as in Fig. 3.

Counteremzmple where
key = Zero
¢t := Branch (Succ Zero] Empty (Branch Zero Empty Empty

Fig. 3. A counterexample

5 Test Data Generators

In principle we could generate test data for a type D, by writing a function which
enumerates its elements:

enum :: Nat -> D

Then we could either use enum for exhaustive testing, that is, the plug-in could
test the property for enum 0, enum 1, enum 2, Or we could generate
a sequence of random natural numbers rg,r1,72,... and test the property for
enum 7'p, €enum 7'y, enum 7'y,

However, rather than starting with randomly generated natural numbers we
shall start with randomly generated binary trees of natural numbers. This is a
somewhat more practical way to write test data generators for a wide variety
of types. For example, it is easy to get the next random seed when writing a
generator.

Thus a test data generator for the type D has type

genD :: BT -> D

The Agda/Alfa system does not have a built in random number generator. So the
plug-in first calls Haskell to generate a random element of the Agda/Alfa type
BT. Then it applies genD to convert it to an element of D. An alternative approach
would be to write test data generators for D directly in Haskell. However, using

Agda/Alfa for this purpose has several advantages. The user can stay inside the
language of Agda/Alfa when testing as well as when proving. Moreover, we can
use Agda/Alfa for enforcing dependent type correctness of genD, and also for
showing that it is a surjective function, expressing that every element of D can
indeed be produced by the test data generator.

The drawback is efficiency: Haskell’s evaluator is much more efficient than
Agda/Alfa’s. However, for our present experiments this is not a major problem;
we expect that later versions of Agda/Alfa will be as efficient as Cayenne [1].

Let us see some generator examples.

Ezample 1. The following function defines a generator for [Nat]:
genlList :: BT -> [Nat]
genList Empty = [
genList (Branch root 1t rt) = root:genlList 1t

We can prove that the generator genList is surjective, that is
Vzs € [Nat]. 3 seed € BT. genList seed = zs.

Existential quantification becomes dependent sum under the propositions as
types identification, so what we prove in Agda/Alfa is Surj genList, where

Surj :: (g :: BT -> a) -> Set
Surj g = (x :: a) -> sig { seed :: BT; prf :: T (g seed == x) }

Example 2. Here is a generator for binary search trees:

genBST :: Nat -> Nat -> BT -> BT

genBST 1b ub Empty = Empty
genBST 1b ub (Branch rnd 1 r) =
let newroot = 1b + 1 + (rnd ‘mod‘¢ (ub - 1b - 1))
1t = genBST 1b newroot 1
rt = genBST newroot ub r
in if (ub > 1b + 1) (Branch newroot 1t rt) Empty

We can now prove (or test!) that genBST only generates binary search trees:

(1b, ub :: Nat) -=> T (1b < ub) ->
(seed :: BT) -> T (isBST 1b ub (genBST 1b ub seed))

We can also prove that genBST is surjective on binary search trees:

(b, ub :: Nat) -> T (1b < ub) ->
(t :: BT) => T (isBST 1b ub t) ->
sig { seed :: BT; prf :: T (genBST 1lb ub seed) ==t }

Now we can choose “using special generator” to test the property in Fig. 1
and the result is “passed 50 successful tests” . If we choose the option “solve the
goal”, then the goal is filled with “Tested” (see Fig. 2).

6

Combining Testing and Proving

In this section we show some concrete examples to illustrate the following general
points about how testing and proving help each other:

[a]

The essence of creative user interaction is the introduction of lemmas. This
is often a speculative process. If a user fails to prove a conjecture or its
hypotheses, she must backtrack and try another formulation. Testing be-
fore proving is a quick and effective way to discard wrong or inapplicable
conjectures.

Analysis of failed tests gives useful information for proving. We call a coun-
terexample to a conjecture spurious if it lies outside the intended domain of
application of the conjecture. Having those at hand, the user can formulate
a sharper lemma, that excludes them. Genuine counterexamples on the other
hand helps locating bugs in programs or in the formalisation of intended
properties.

A given goal may not be (efficiently) testable. When interaction with the
proof assistant produces testable subgoals, it is guaranteed that testing all
of them is at least as good as testing the original goal; we know that no
unintended logical gaps are introduced.

Interactive proving increases confidence in the coverage and rationality of
testing. Suppose a program consists of various components and branches,
and it passes a top-level test for a property. When we try to prove the
goal, the proof assistant typically helps us derive appropriate subgoals for
the different components or branches. Testing these subgoals individually
reduces the risk of missed test cases in the top-level testing.

Ezample 8 (list reverse). Consider again the example of reversing a list twice.
We proceed as follows:

1.

Test the main goal using a domain-based generator for [Nat], to check for
a bug in the program or the specification ([b]).

main :: (xs :: [Nat]) -> T (reverse (reverse xs) == xs)

Start proving by induction on xs. The nil_case is trivial. The testable
subgoal cons_case is automatically derived by Alfa.

cons_case :: (x :: Nat) -> (xs’ :: [Nat]) ->
T (reverse (reverse xs’ ++ [x]) == x:xs’)

It is testable in principle, although there is little point in doing so; most test
cases for the top-level goal probably already had cons-form.

The normalization in Agda/Alfa was blocked by a non-reducing ++. There-
fore we speculate the lemma by changing variables:

lemma :: (x :: Nat) -> (ys :: [Nat]) ->
T (reverse (ys ++ [x]) == x:reverse ys)

This is a creative step not forced by logic. Therefore it is worth testing lemma

before trying to prove it. Although a brief thought shows its equivalence to

cons_case under the induction hypothesis, running a test is cheaper ([a]).
4. Proceed by proving lemma by induction on ys, which finishes the proof.

Ezample J (AVL-tree insertion). Recall that an AVL-tree t is a binary search
tree which is balanced (Bal t): the height difference between the left and right
subtrees of each node is at most 1.

Bal :: BT -> Bool
Bal Empty = True
Bal (Branch n 1t rt) |#1t - #rt| <= 1 &% Bal 1t && Bal rt

where #t is the height of t and |x| is the absolute value of the integer x.
The following algorithm inserts a key in an AVL-tree and is adapted from a
textbook on functional data structures [21]. We show relevant parts only:

insert :: BT -> Nat -> BT

= Branch k Empty Empty
Branch n 1t rt
insert_1 n (insert 1t k) rt
insert_r n 1t (insert rt k)

insert Empty

k
insert (Branch n 1t rt) k

k n
k n
k n

Vv A

I
insert_1 :: Nat -> BT -> BT -> BT

insert_1l n newlt@(Branch n’ 1t’ rt’) rt

| #newlt - #rt == = if #1t’ > #rt’ then rotateleft t’
else doubleRotatelLeft t’
| otherwise =t
where t’ = Branch n newlt rt
insert_1 n Empty = Empty -- unreachable

where the pattern var@pat expresses that var is a name for the value being
matched by pat.
One of the required properties of insert is to maintain the height balance:

main :: (t :: BT) -=> Bal t -> (k :: Nat) -> Bal (insert t k)

(We omit writing Tin T (Bal t) etc. in this section.)

We now summarize how testing interacts with proving while verifying a
part of main. Note that our aim is not to show a well-organised development
with much afterthought; rather, our point is to show how the combination cost-
effectively helps in a real life “first-try’. (Ti is here a testing step and Pi is a
proving step.)

T1 Test main using the special purpose generator for balanced trees: A bug in
insert or in Bal is likely to be discovered early.

P2 Do induction on t, and split the Branch case according to the structure of
insert: correct subgoals are automatically generated by Alfa.

Here we take the simplest subgoal as an example. In case t = Branch n 1t rt,
k < n, and not #newlt - #rt == 2 (writing newlt for insert 1t k), we get

subgoal :: Bal t -> Bal (Branch n newlt rt)

When we unfold the definition of Bal to the right we get three conjuncts, where
only |#newlt - #rt| <= 1 is not immediate. Thus we need to prove the fol-
lowing:
subgoal’ :: | #1t - #rt]| <=1
-> #newlt - #rt /= 2
-> |#newlt - #rt| <=1

P3 Abstracting from tree heights to plain numbers, we speculate the following

lemmaA :: (x,y,z :: Nat) -> |y-z| <=1 -> x-z /=2 ->
[x-z| <=1

The intended instantiation is (x,y,z) = (#newlt, #1t,#rt). The speculated
preconditions here abstract away much of the relationship among those
heights.

T4 Testing lemmaA shows a counterexample (x,y,z) = (3,1,0).

A moment’s reflection reveals that this counterexample is spurious; newlt con-
tains at most one more element than 1t and rotations do not increase height, so
#newlt cannot increase by two from #1t.

P5 Therefore we add an extra hypothesis x-y <= 1 to lemmaA:

lemmad’ :: (x,y,z :: Nat) -> |y-z| <=1 -> x-z /=2 ->
x-y <=1 -> [x-z| <=1

lemmaB :: (1t :: BT) -> Bal 1t -> #(insert 1t k) - #1lt <=1

lemmaB is needed to discharge the added hypothesis x-y <= 1 in lemmaA’.
T6 Test lemmas: 1emmaB passes the test, but lemmaA’ fails again with (x,y,z) =
(0,1,2). This reminds us that #newlt >= #1t also must be used in the proof.
P7 Add yet another hypothesis to lemmaA’:
lemmahA’’ :: (x,y,z :: Nat) -> |y-z| <=1 -> x-z /=2 ->
x>y -> xy <=1->|xz| <=1

lemmaC :: (1t :: BT) -> Bal 1t -> #(insert 1t k) >= #lt

T8 Test lemmas: Both now pass tests.
P9 Prove lemmaA’’, lemmaB, and lemmaC. This finishes the proof of this partic-

ular subgoal.

When a proof proceeds with nested cases, the context of a subgoal may
quickly become unmanageably large and essential information may be obscured.
Besides the general points, this example demonstrates how testing lets us first
try reckless abstractions and then recover the needed pieces of information.

7 Using Dependently Typed Data Structures

We also experimented with several ways of writing a dependently typed version
of AVL-insertion. Let AVL h 1b ub be the set of AVL-trees with height h and
bounds 1b and ub. The insertion function then gets the type:

insertAVL :: (h, 1b, ub :: Nat) -> AVL h 1b ub ->
(k :: Nat) -> Between 1b k ub ->
(AVL h 1b ub + AVL (Succ h) 1b ub)

expressing that the height is either unchanged or increased by one. Between 1b
k ub abbreviates T (1b <= k && k < ub). The definition of AVL is as follows.

AVL Zero 1b ub = T (1b <= ub)
AVL (Succ Zero) 1b ub = data Leaf (k :: Nat)
(p :: Between 1b k ub)

AVL (Succ (Succ h)) 1b ub

data LH (root :: Nat) (1t :: AVL (Succ h) 1b root)
(rt :: AVL h (Succ root) ub)

| EQ (root :: Nat) (1t :: AVL (Succ h) 1b root)
(rt :: AVL (Succ h) (Succ root) ub)

| RH (root :: Nat) (1t :: AVL h 1b root)

(rt :: AVL (Succ h) (Succ root) ub)
Furthermore, we get informative types of the rotations. For example,

rotLeft :: (n, 1b, ub, root :: Nat)

-> (1t :: AVL (Succ (Succ n)) 1b root)
-> (rt :: AVL n (Succ root) ub)
-> AVL (Succ (Succ n)) 1b ub

A complete version of insertAVL which does not deal with the search tree
condition, but only with the balance condition can be found at
http://www.cs.chalmers.se/"qiao/papers/TestingProving/.

It is about one page long.

When writing these programs in Alfa, we start with their dependent type.
While building the programs the type-checker ensures that we do not do anything
wrong, hence no need for testing! However, we should keep in mind that this
algorithm was written after a certain amount of experimentation with Haskell-
style algorithms, where both testing and proving helped us to gain insight into
the logical structure of the problem. Moreover, even for this dependently typed
insertAVL, which has a type that shows that it maintains the AVL-tree property,
testing is still useful for making sure that it satisfies the insertion axiom:

(m::s8) >, y::a ->
T (member (insert m x) y == (x == y) || member m y)

when s is the set of all AVL-trees, a = Nat, member is binary search for AVL-
trees, and insert is implemented using insertAVL.

When building a library of datastructures we may go further and show that
concrete datastructures, such as AVL-trees with associated operations, satisfy
all properties of suitable abstract data types. We can use Agda/Alfa’s dependent
records (signatures and structures) for this purpose. For example, a signature for
the ADT of finite sets, including both operations and axioms, can be formalized
as follows:

AbsSet :: (a, s :: Set) -> Eq a —>

sig empty 1 s
member :: s => a -> Bool
insert 18 ->a->s
single 1t a ->s
union 118 =>s ->s
insertAx :: (m :: s) -> (x, y :: a) ->

T (member (insert m x) y
== (x == y) || member m y)

singleAx :: (m :: s) > (x, y :: a) —->
T (member (single x) y == (x == y))
unionAx :: (m,m’ :: s8) -> (x :: a) —>

T (member (union m m’) x
== member m x || member m’ x)

where the dots indicate that we may include all the usual set operations and their
axioms, and Eq a specifies that the equality (==) on the set a is an equivalence
relation:

Eq :: Set -> Set

Eq a = sig (==) :: a -> a -> Bool

ref :: (x ::a) >T (x == x)
sym :: (x,y ::a) >T (x==y) >T (y == x)
tra :: (x,y,z :: a) >T (x ==y) >

T(y==2) >T (x == 2)

Note that both Eq a and AbsSet a s eq are “testable signature” since all ax-
ioms are testable properties.

8 Discussion and Further Research

This paper is a first progress report on combining testing and proving in de-
pendent type theory. We have built a simple tool for random testing of goals
occurring during proof construction in the proof assistant Agda/Alfa. We have
also carried out some case studies.

Like Hayashi, we feel that it is indeed fruitful to combine proving and testing.
In formulating theorems and planning proofs, testing is helpful for avoiding false

starts and wrong turns, while recovering from these is costly in traditional proof
assistants.

Claessen and Hughes report three common kinds of errors discovered by test-
ing: errors in programs, errors in specifications, and errors in test data generators
which sometimes are complex programs themselves. Since our test data gener-
ators are written in Agda/Alfa, we can prove properties, such as surjectivity,
about them. In this way we increase confidence in successful test runs. We can
also use the dependent type system to ensure that generated test data have the
expected property.

Testing encourages an experimental frame of mind. You try this and you try
that. Once you have access to suitable test data generators it is easy to test
different lemmas. Proving on the other hand requires that you think very clearly
about the problem. It is a familiar observation that you pay a high price for lack
of elegance when trying to prove a property. So you are forced to think more
deeply about the reasons why a program works.

A consequence of this is that you feel inclined to improve the design of your
program. Much work on program verification and derivation has been based on
what seems like a too simple model of programming. First you write a specifi-
cation. Then you write a program. Then you prove that the program meets the
specification. Alternatively, you may try to systematically derive the program
from the specification in such a way that it meets the specification. (This lat-
ter view has been popular in the type theory community.) This seems to be an
unrealistic model of program development, however. What happens in practice
seems to be that both the specification and the program evolve gradually. We
believe that both testing and formal proof can help during this process, and it
is advantageous to have a system where you can easily switch between the two.

We believe that combining testing and proving will give rise to new research
problems distinct from those which arise when doing testing and proving sepa-
rately. Here are some questions that we asked ourselves, while carrying our case
studies:

— How often in a proof do we encounter (efficiently) testable subgoals? In the
small examples in this paper testable subgoals appeared sufficiently often to
make testing a useful guide for proving. But will this be the case when doing
larger and more complex proofs?

— Can we automate test data generation more? At the moment test data gen-
eration has to be done manually, but the technique of generic (or polytypic)
programming [2] may help us write domain-based test data generators uni-
formly for alarge class of data types. Can even the activity of writing special
purpose generators be automated to some extent? Another question is to con-
sider alternatives to the approach of the present paper where random binary
trees are first generated and then converted to appropriate data types.

— Should we consider systematic test data generation instead? Can we use the
structure of the specification term q[x1, ..., xn] to generate test data
with good coverage properties?

— Can we generalize the class of testable properties that our tool accepts?
In a sense Martin-Lo6f’s meaning explanations for type theory say that all
judgements are testable! (A discussion of this point is outside the scope of
this paper.) Can we make use of this observation?

References

1. Lennart Augustsson: Cayenne: a Language with Dependent Types. In Proceedings
of the third ACM SIGPLAN International Conference on Functional Programming
(ICFP-98), ACM SIGPLAN Notices, 34(1), pages 239-250, 1998.

2. R. Backhouse, P. Jansson, J. Jeuring, and L. Meertens: Generic Programming —
An Introduction. LNCS 1608, pages 28-115, 1999.

3. Ana Bove: General Recursion in Type Theory. PhD thesis. Chalmers University of
Technology. 2002.

4. Magnus Carlsson and Thomas Hallgren: Fudgets - Purely Functional Processes with
applications to Graphical User Interfaces. PhD thesis. Chalmers University of Tech-
nology. 1998.

5. Koen Claessen and John Hughes: QuickCheck: a lightweight tool for random testing
of Haskell programs. In Proceedings of the ACM Sigplan International Conference
on Functional Programming (ICFP-00) volume 35.9, pages 18-22. ACM Press, 2000.

6. Koen Claessen and John Hughes: QuickCheck: Automatic Specification-Based Test-
ing: http://www.cs.chalmers.se/ rjmh/QuickCheck/.

7. Catarina Coquand: Agda, available from http: //www.cs.chalmers.se/ catarina/agda.

8. Thierry Coquand: Pattern Matching with Dependent Types. In Bengt Nordstrom,
Kent Petersson and Gordon Plotkin, editors, Proceedings of The 1992 Workshop on
Types for Proofs and Programs pages 71-84. Bastad, 1992.

9. Thierry Coquand: Structured Type Theory. draft, 1999, available from
http://www.cs.chalmers.se/”coquand/type.html.

10. Peter Dybjer: Inductive Families. In Formal Aspects of Computing, volume 6, pages
440-465, 1994.

11. Peter Dybjer and Anton Setzer: A finite axiomatization of inductive-recursive def-
initions. In Typed Lambda Calculi and Applications, Lecture Notes in Computer
Science 1581, pages 129-146. 1999.

12. Peter Dybjer and Anton Setzer: Indexed Induction-Recursion. In Proof Theory in
Computer Science, LNCS 2183, pages 93-113, 2001.

13. Thomas Hallgren: Alfa, available from http://www.cs.chalmers.se/ “hallgren/Alfa.

14. Susumu Hayashi and Hiroshi Nakano: PX, a Computational Logic. The MIT Press.
1988.

15. Susumu Hayashi, Ryosuke Sumitomo and Ken-ichiro Shii: Towards Animation of
Proofs - testing proofs by examples. In Theoretical Computer Science, volume 272,
pages 177-195, 2002.

16. Per Martin-Lof: Constructive Mathematics and Computer Programming. In Logic,
Methodology and Philosophy of Science, VI, 1979, pages 153-175. North-Holland,
1982.

17. Per Martin-Lof: Intuitionistic Type Theory. Bibliopolis, 1984.

18. Chris Okasaki: An Overview of Edison. In Haskell Workshop, pages 34-54, Septem-
ber 2000.

19. Catherine Parent: A collection of examples using the Program tactic. available
from http://pauillac.inria.fr/coq/contribs-eng.html.

20. Programatica: Integrating Programming, Properties, and Validation.
http://www.cse.ogi.edu/PacSoft /projects/programatica/.

21. F.A. Rabhi and G. Lapalme: Algorithms: a functional programming approach.
Addison-Wesley Press, 1999.

22. David Wahlstedt: Detecting termination using size-change in parameter values.
Master thesis. Chalmers University of Technology, 2000.

23. Hongwei Xi and Frank Pfenning: Dependent types in practical programming. In
Proceedings of the 26th ACM SIGPLAN-SIGACT on Principles of programming
languages, pages 214-227, ACM Press, 1999.

A Haskell Programs in Section 2

isBST :: Int -> Int -> BT -> Bool

isBST 1b ub Empty = 1lb < ub

isBST 1b ub (Branch root left rt) = 1b < root && root < ub
&& isBST 1b root left && isBST root ub rt

The membership algorithm for general binary trees is

member :: BT -> Int -> Bool

member Empty key = False
member (Branch root 1t rt) key = key == root
|| member 1t key || member rt key

The binary search algorithm is

binSearch :: BT -> Int -> Bool
binSearch Empty key = False
binSearch (Branch root 1t rt) key
| key < root = binSearch 1t key
| key == root = True
| key > root = binSearch rt key

