Verifying Haskell Programs
by Combining Testing, Model Checking
and Interactive Theorem Proving

Peter Dybjer, Qiao Haiyan *

Department of Computing Science,
Chalmers University of Technology and Gdteborg University
412 96 Goteborg, Sweden

Makoto Takeyama

Research Center for Verification and Semantics
National Institute of Advanced Industrial Science and Technology
Nakoji 8-11-46, Amagasaki, Hyogo, 661-0974 Japan

Abstract

We propose a program verification method that combines random testing, model
checking and interactive theorem proving. Testing and model checking are used for
debugging programs and specifications before a costly interactive proof attempt.
During proof development, testing and model checking quickly eliminate false con-
jectures and generate counterexamples which help to correct them. With an in-
teractive theorem prover we also ensure the correctness of the reduction of a top
level problem to subproblems that can be tested or proved. We demonstrate the
method using our random testing tool and BDD-based (binary decision diagrams)
tautology checker, which are added to the Agda/Alfa interactive proof assistant for
dependent type theory. In particular we apply our techniques to the verification of
Haskell programs. The first example verifies the BDD checker itself by testing its
components. The second uses the tautology checker to verify bitonic sort together
with a proof that the reduction of the problem to the checked form is correct.

Key words: program verification, random testing, proof-assistants, type theory,
binary decision diagrams, Haskell.

* A preliminary version of this paper was presented at the 3rd International Con-

ference on Quality Software (QSIC03)[12]

* Corresponding author. Email address: qiao@cs.chalmers.se (Qiao Haiyan).
Email addresses: peterd@cs.chalmers.se (Peter Dybjer),

makoto.takeyama®@aist.go.jp (Makoto Takeyama).

Preprint submitted to Elsevier Science

1 Introduction

A main goal of the theorem proving community is to use proof assistants
for producing correct programs. However, in spite of continuous progress in
the area (better implementations, more automatic proof search, better user
interfaces, larger proof libraries, etc.), proving programs correct is still very
time consuming, and requires great skill of the user.

Testing has often been disregarded by the theorem proving community be-
cause, as Dijkstra emphasised, testing can only show the presence of errors,
not the absence of them. Nevertheless, testing is still very useful as a tool for
detecting and eliminating bugs.

Most research on testing has been concerned with traditional imperative pro-
grams. However, an interesting tool called Quick Check for random testing
of functional programs (written in the lazy functional programming language
Haskell) has recently been developed by Claessen and Hughes [6]. With this
tool, correctness properties of functional programs can be tested by running it
on randomly generated inputs. Experience shows that this is a useful method
for debugging programs [6].

Nevertheless, missing rare counterexamples is unacceptable for certain appli-
cations. Furthermore, not all correctness properties have a directly testable
form. Therefore we thought that it would be interesting to combine testing
and proving in one system. The idea is to use testing to debug programs and
specifications before a proof is attempted. More generally, we can debug sub-
goals that occur during proof. Analysing the counter examples returned by
failed tests, we can focus the search for error to smaller fragments of code
and specifications. Moreover, we can balance cost and confidence by testing
assumptions instead of proving. It may also be interesting to study testing
methods systematically in the context of the logic of functional programs.

To demonstrate the methodology, we have extended the Agda/Alfa proof as-
sistant for dependent type theory with a QuickCheck-like testing tool.

QuickCheck [6] is an automatic random testing tool for Haskell programs.
It is a combinator library written in Haskell for an embedded specification
language with test data generation and test execution. It can test whether a
given function f satisfies a specification Vx € A. Plz, f(x)] with a decidable
property P by randomly generating values for x.

When f is defined in terms of component functions fi, fo, - - -, testing only the
top-level of f is often inadequate. It gives little information about how much
each f; is tested, what sub-properties have been tested and why P follows from
those sub-properties.

Our method combines testing and interactive proving to obtain such informa-
tion. Testing and proving are complementary. Proving is used to decompose
the property P of the function f into sub-properties P; of components f; and to
show why P;’s are sufficient for P. Testing each f; with respect to P; increases
confidence in test code coverage and locates potential bugs more precisely.
Testing is also used during proving to eliminate wrongly formulated lemmas
quickly.

As a first example, we show how a Haskell implementation of the BDD algo-
rithm by J. Bradley ([3], see Appendix B) is verified. BDDs (Binary Decision
Diagrams) [4] are a canonical representation for Boolean functions that makes
testing of functional properties such as satisfiability and equivalence very ef-
ficient. BDD based model checkers are widely used. Various formulations of
BDD algorithms have been verified in several theorem provers, e.g., [21,25],
but our interest is rather in trying to verify an existing Haskell program not
necessarily written with verification in mind.

We then extend Agda/Alfa with a tool for checking if a boolean formula is a
tautology. This tool is written in Haskell and is based on the BDD algorithm
that we verified,

Finally, we show the verification of a sorting algorithm (bitonic sort) using a
combination of interactive proving, model checking, and random testing. The
main idea is that the combination can make a rigorous connection between
a higher level description of a problem and what is actually model checked
after modelling, abstraction, etc. A technique due to Day, Launchbury, and
Lewis [10], uses parametricity to reduce the correctness of a polymorphic pro-
gram to the correctness of its boolean instance. We show how to interactively
prove the following results beyond the realm of model checking: (1) the para-
metricity result itself; (2) that the reduction is correct, that is, the symbolic
expression fed to the checker correctly relates to the correctness of the boolean
instance. We then show how to model check the correctness of the boolean
instance.

Related Work: The idea of combining proving and testing is part of the
Cover project [9] at Chalmers University of Technology, the goal of which is to
develop a system that integrates a wide range of techniques and tools that are
currently available only separately. It is partly inspired by the Programatica
project [23] at the Oregon School of Science and Engineering, which has similar
goals. The combination of testing and proving has also been investigated by
Chen, Tse and Zhou [5], who propose to check the correctness of a program
by proving selected metamorphic relations with respect to the function. Some
early work on combining proving and testing was done by Hayashi [19], who
used testing to debug lemmas while doing proofs in his PX-system. Geller [16]
argued that test data can be used while proving programs correct. This paper

reports a case study based on our previous work on combining testing and
proving in dependent type theory [13].

Plan of the paper: In Section 2 we describes our testing tool. Section 3 is
a general discussion on the benefits of combining testing and proving. In Sec-
tion 4 we discuss how to verify Haskell programs in Agda/Alfa. In Section 5 we
show how to verify a BDD implementation written in Haskell. In Section 6 we
discuss the tool using BDDs. In Section 7 we discuss how a sorting algorithm
is verified. Section 8 concludes the article with future directions for the work.

2 The Random Testing Tool

We have extended Agda/Alfa with a testing tool similar to QuickCheck, a
tool for random testing of Haskell programs. However, our tool can express

a wider range of properties and is integrated with the interactive reasoning
capabilities of Agda/Alfa.

The form of properties that can be tested is

Va1 €Dy, -+ YV, € Dylxy, -+, 21

Pilzy, - zp) = -0 = Pyl 2] =

Q[xla e axn] .
Here D;[z1,---,x; 1] is a type depending on zi,---,x; 1; P; is a precondition
satisfied by relevant data; and @) is the target property, typically relating the
outputs of functions being tested with the inputs zi,---,x,. The predicates

P; and () must be decidable.

Under the Curry-Howard correspondence between predicate logic and de-
pendent type theory, such a property is a dependent function type of the
Agda/Alfa language:

(1 ::Dy) > v (x4 1 Dn[$1, © ‘al"n—1]) ->

Pl[xla"'axn] > e _>Pm[l‘1""axn] ->

Q[xla e 7~Tn]

For decidability, we require the predicates (now themselves dependent types)
to have the decidable form T (p[x1,---,x,]|) (the term p:: Bool lifted! to the

type level). We call properties of this form testable.

An example is the following property of the function taut :: BoolExpr ->
Bool, which decides if a given boolean expression is a tautology (see Ap-
pendix B, C).

(t :: BoolExpr) -> (x :: Nat) ->
T (taut t) ->
T (taut(t[x:=0]) && taut(t[x:=1]))

(If t is a tautology, so are the results of replacing the variable Var x by con-
stants. We use taut (t[x:=0]) (and taut(t[x:=1])) to denote the expression
t where the boolean variable Var x is replaced by the boolean value False
(and True, respectively).

By making this a goal (7,), tests can be invoked from the Alfa menu (Fig. 1).

[TautPropl e (t € Boollopr,x & Nat,p e T (taut £)) =
T (taut (tHx=0]) && taut (Hx=11))

TawtProp? = fo [@][3][2] Menu

@ [TE:shrd] TEST: show test result
@ [TE:sod] TEST: solve goal using

Fig. 1. Testing tool (:: is displayed as €)
The testing procedure is as follows:

do (at most maxCheck times)
repeat generate test data (t, x) randomly
until the precondition taut t computes to True
while taut(t[x:=0]) && taut(t[x:=0])
computes to True

where maxCheck is a predetermined parameter. The tool then reports the suc-
cess of maxCheck tests, or the counterexample (t,x) found. In the displayed
case the tool reports success.

A test data generator genD for the type D is a function written in Agda/Alfa.
It maps random seeds of a fixed type to elements of D. The current imple-
mentation uses binary trees of natural numbers as seeds:

data Rand = Leaf(n :: Nat)
| Branch(n :: Nat)(1l :: Rand) (r :: Rand)

1 See Appendix A, but we mostly omit writing T in what follows.

So genD has type Rand — D. The idea is that the tool randomly generates
t1,to,--- : : Rand while using genD t;, genD to, --- :: D as test data. For ex-
ample, one possible way to write genBoolExpr (see Appendix B for BoolExpr)
is

genBoolExpr :: Rand -> BoolExpr
genBoolExpr (Leaf n) = Var n
genBoolExpr (Branch n 1 r) =
let x = genNat 1
v = genBool r
el = genBoolExpr 1
e2 = genBoolExpr r
in choice4 n (Var x) (Val v) (Not el) (And el e2)

where choice4 chooses one of the four constructs depending on mod n 4.

The advantage of writing genD in Agda/Alfa is that we may formally prove its
properties. For example, we can prove the important property of surjectivity
(“any z : : D could be generated.”)

(x::D)->dr ::Rand. genDr==x

The above genBoolExpr is surjective when genNat and genBool are, and
proving so in Agda/Alfa is immediate.

The reader is referred to [13] for more information about the testing tool and
test data generation.

3 Combining Testing and Proving

Our method interleaves proof steps and tests, as we see in the next sections.
The benefits are the following:

e The essence of creative user interaction is the introduction of lemmas, in-
cluding strengthening of induction hypotheses. This is often a speculative
process. If a user fails to prove a possible lemma or its hypotheses, she must
backtrack and try another formulation. Testing before proving is a quick
way to discard false conjectures and inapplicable lemmas.

e Analysis of failed tests gives useful information for proving. Tests can fail
both because of bugs in programs and because of bugs in specifications.
Concrete counterexamples help our search for bugs of either type. Further-
more, applying interactive proof steps to properties that are known to be
false is an effective way to analyse the failure.

e All goals (properties to be proved) do not have a form that makes them
testable, and even if they have testable form it may be hard to test them
properly because it is difficult to write good test data generators.

When interaction with the proof assistant produces testable subgoals, it is
guaranteed that testing all of them is at least as good as testing the original
goal; we know that no logical gaps are introduced.

e Interactive proving increases confidence in the code coverage of testing. Sup-
pose a program consists of various components and branches, and it passes
a top-level test for a property. When we try to prove the goal, the proof
assistant typically helps us to derive appropriate subgoals for the different
components and branches. Testing these subgoals individually reduces the
risk of missing test cases in the top-level testing.

We will demonstrate how Haskell programs can be verified by using the system.

4 Verifying Haskell Programs in Agda/Alfa

Haskell is a functional programming language with higher order functions
and lazy evaluation. As a consequence it supports the writing of modular
programs [20]. Haskell programs are often more concise and easier to read and
write than programs written in more traditional languages.

Haskell programs are thus good candidates for formal verification. In particu-
lar, we are interested in verification in the framework of type theory [22], as we
believe that its logic matches Haskell’s functional style well. Our case studies
are developed in the proof assistant Agda/Alfa [7,17] for dependent type the-
ory developed at Chalmers University of Technology. For a brief introduction,
see Appendix A.

Despite the good match, current proof-assistant technology is such that a
complete correctness proof of even a moderately complex program requires
great user effort. If full correctness of the program is not vital, then the cost
of such an effort may exceed its value. In a system where we can combine
testing and proving we can keep the cost of verification down by leaving some
lemmas to be tested only. In this way it is possible to balance the cost of
verification and the confidence in the correctness of the program in a more
appropriate way.

In this section we briefly describe how we faithfully translate Haskell programs
into Agda/Alfa. Testing is already helpful at this stage.

The non-dependent fragment of the Agda/Alfa language is already close to
the basic part of Haskell, but function definitions are required to be total.

Two causes of partiality in Haskell are non-terminating computation and ex-
plicit use of the error function. Here we concentrate on the latter (The BDD
implementation is structurally recursive). For example, totalEvalBoolExpr
is undefined on open expressions, which evaluates boolean expressions to their
values (see Appendix B).

totalEvalBoolExpr :: BoolExpr -> Bool
totalEvalBoolExpr t =

case t of
(Var x) -> error '"vars still present"
(Val v) > v

Such a partial function is made total in Agda/Alfa by giving it a more pre-
cise dependent type. One way? is to require, as an extra argument, a proof
that the arguments are in the domain. With the domain constraint closed
characterising the domain, the translation becomes:

closed :: BoolExpr -> Bool

closed t =
case t of
(Var x) -> False
(Val v) —> True
(Not t1) -> closed t1
(And t1 t2) -> closed t1 && closed t2

totalEvalBoolExpr :: (t :: BoolExpr) -> T (closed t) -> Bool
totalEvalBoolExpr t p =
case t of
(Var x) -> case p of { }
(Val v) —> v

Type-checking statically guarantees that totalEvalBoolExpr is never applied
to an open t at run-time: in that case T (closed t) is an empty type, so there
can be no well-typed value p to make totalEvalBoolExpr t p well-typed.

The only modification we allow in translating from Haskell to Agda/Alfa is
the addition of those extra proof-arguments (and extra type arguments, see
Appendix A). This is a faithful translation in the sense that the two versions
have the same computational behaviour.

The domain constraint for one function propagates to others. For example,

2 Another is to redesign the data structure using dependent types. This is often
more elegant but requires changes in program structure as well.

getNextBddTableNode h has a constraint that the argument h :: BddTable
be non-null. This propagates to the same constraint for insertBdd h - - - and
makeBddTableNode h through a chain of function calls.

This propagation represents both benefits and difficulties. On the one hand,
we locate a source of run-time errors when constraints on a caller function do
not imply those on a called function. On the other hand, this may be a result
of wrong characterisation of domains, which are not known a priori. Testing
can help during the translation.

At one stage, we characterised the constraint on buildBDDTable by VarIn t vs
(free variables of expression t are contained in the list vs):

buildBddTable® :: (t :: BoolExpr) ->
(vs :: [Nat]) -> VarIn t vs —>
BddTI -> BddTI

The function constructs an intermediate value hl :: BddTable with two re-
cursive calls and then calls makeBddTableNode h1 ---. As above, this h1 must
be non-null, but it is not immediately clear whether VarIn t vs implies that.
Now we might attempt a proof, but this may be costly if our guess turns out
to be wrong. So we test instead.

A sufficient condition for the implication to hold is:

(t :: BoolExpr) ->

(vs :: [Nat]) -> (p :: VarIn t vs) ->
(hi :: B4dTI) ->

NotNull (buildBddTable t vs p hi).fst?

A test immediately reveals this to be false (see Fig. 2 for a counter example,
where 0 is displayed as zer).

Further, counterexamples always have hi.fst = []. Analysing the code in
this light, we realise that buildBddTable is never called with hi.fst == [].

3 The function buildBddTable computes t’s BDD with a variable ordering given by
vs. A BDD is represented by a pair of type BdTI = (BddTable, BddTableIndex).
The first component is the list of linked, shared nodes of the BDD. The second is
the index into the root node of the BDD. The function’s last BAddTI argument is an
accumulating argument of ‘currently constructed’ BDD, threaded through recursion.
* The record struct{fst = a; snd = b} in Agda/Alfa is used to represent the
pair (a, b) in Haskell, and the dot notation is used to select a field value in a
record.

Counterexample where
t == Var zer

Bs = 2Uud zer:Ezer:Ezm‘: []):I

Fig. 2. A counter example

So we revise the constraint in the Agda/Alfa version to

buildBddTable :: (t :: BoolExpr)->
(vs :: [Nat]) -> VarIn t vs ->
(hi :: BAdTI) -> NotNull hi.fst -> BddTI

The revised sufficient condition

(t :: BoolExpr) ->

(vs :: [Nat]) -> (p :: VarIn t vs) ->
(hi :: BAdTI) -> (q :: NotNull hi.fst) ->
NotNull (buildBddTable t vs p hi q).fst

passes the tests and the proof-argument required for that call to makeBdd-
TableNode is constructed.

5 Checking the Correctness of the BDD Implementation

The correctness of the BDD implementation is verified through a combination
of testing and proving.

The informal statement of the correctness is: “the implementation computes
a boolean expression to the BDD 1 (truth) if and only if it is a tautology.”
We formalise this as the following equivalence. ®

(t :: BoolExpr) ->
(vs :: [Nat]) -> (p :: VarIn t vs) ->
iff (isBddOne (buildBddTable t vs p initBddOne tt)) (taut t)

5 isBddOne (table, index) is true if indez points to the node ‘1’ in table. initBddOne

is the initial value for the accumulating argument, containing nodes ‘1’ and ‘0’. tt
is the trivial proof that this is non-null.

Here we omitted the T on the last line. The function taut :: BoolExpr ->
Bool is the direct BDD implementation without sharing (see Appendix C).
It can be seen as a definition of tautology in terms of the boolean algebra on
binary decision trees.

The correctness statement has a testable form, and it passes the test. Being
reasonably sure that this statement is formulated correctly, we start proving it
by decomposing it to a completeness (if part) and a soundness (only if part).
The completeness part is

(t :: BoolExpr) ->
(vs :: [Nat]) -> (p :: VarIn t vs) ->
taut t -> isBddOne (buildBddTable t vs p initBddOne tt)

A naive induction on vs does not go through, because the step case vs =
(v:vs') requires

isBddOne (buildBddTable t[v:=0] vs’ pl hl qil)
isBddOne (buildBddTable t[v:=1] vs’ p2 h2 q2)

where hl and h2, the values for the accumulating argument, are different
from the initial value initBddOne. So we need to strengthen the induction
hypothesis, generalising with respect to this accumulating argument.

In this situation, we typically need to analyse values that can occur (are reach-
able from the initial value) in the course of buildBddTable recursion and for-
mulate an appropriate property of them. However, testing is cheap, so before
such an analysis we try the strongest form (the most general form, within the
constraint on buildBddTable from Section 4):

(t :: BoolExpr) ->

(vs :: [Nat]l) -> (p :: VarIn t vs) ->

(hi :: BdAdTI) -> (q :: NotNull hi.fst) ->
taut t -> isBddOne (buildBddTable t vs p hi q)

Surprisingly, testing returns no counterexample. So we start verifying this in
more detail. The base case amounts to

(t :: BoolExpr) -> (p :: Closed t) ->
taut t -> totalEvalBoolExpr t p == True

This requires a logically straightforward but tedious proof: we content our-
selves with successful tests and move on. With the strengthened induction
hypothesis, the step case is reduced to the following properties:

(h :: BddTable) -> (p :: NotNull h) ->
(i, v0, vl :: BddTableIndex) ->

v0 == 1 && vi== 1 -> (5.1)
(makeBddTableNode h p (i, v0, v1)).snd ==

(t :: BoolExpr) -> (x :: Nat) ->
taut t -> taut (t[x:=0]) && taut (t[x:=11) (5.2)

We prove the first property. The second property, which can be considered as
a natural property that a definition of tautology must satisfy in any case, is
however only tested.

The proof of soundness also requires a strengthening of the induction hypoth-
esis. Again, we start by testing the strongest form.

(t :: BoolExpr) ->

(vs :: [Nat]) -> (p :: VarIn t vs) -> (5.3)
(hi :: BAdTI) -> (q :: NotNull hi.fst) ->

isBddOne (buildBddTable t vs p hi gq) -> taut t

Testing this fails. This time we need to formulate an appropriate property
of the reachable values for the accumulating argument hi in the course of
buildBddTable recursion.

Here we aim to find an appropriate decidable predicate Pos :: BddTable
-> Bool on hi.fst that makes the induction go through. Combined testing
and proving is useful in this context too. Counterexamples from a failed test
hint at what should be excluded. When this is not specific enough, we may
interactively decompose the failing property into more specific properties of
components that fail. Counterexamples to these give better information for
defining Pos, as well as a better understanding of the program.

The values of hi.fst in counterexamples to (5.3) give little information except
that they are not reachable from initBddOne. Interactive steps show that (5.3)
follows from the reverse direction of (5.1) and (5.2). At least one of them must
fail, and tests reveal that the former, i.e.,

(h :: BddTable) -> (p :: NotNull h) ->

(i, v0, vl :: BddTableIndex) ->

(makeBddTableNode h p (i, v0, v1)).snd == 1 -> (5.4)
v == 1 && vl ==

is false. Counterexamples to this are still not very informative. So we continue
to decompose it to possible properties of component functions:

(h :: BddTable) -> (p :: NotNull h) ->
(e :: BddTableEntry) -> (5.5)
(insertBddTable h p e).snd /= 1

(h :: BddTable) -> (p :: NotNull h) ->
(e :: BddTableEntry) -> (q :: isJust(findBddTableEntry h e) ->
fromJust (findBddTableEntry h e) q /= 1 (5.6)

Both (5.5) and (5.6) are false. The false statements and counterexamples
are specific enough to help us define a predicate, Pos, that characterises
the set of possible BDD values. In all counterexamples to (5.5), h has the
form® (0,---) :h’, and in counterexamples to (5.6) h always contains a node
of the form (1, Just ---). These are impossible because a BDD table is built
up from the initial one [(1,Nothing), (0,Nothing)] by insertBddTable,
which only adds nodes of the form (i, Just e) at the head, with increasing
node index i > 1. It is easy to see this from the program, but only after we
know what to look for.

To exclude these cases, we define Pos as follows:

Pos :: BddTable -> Bool

Pos [x1,x2] = [x1,x2] == initBddTable
Pos (x1:x2:xs) = x1.fst > 1 && Pos (x2:xs)
Pos = False

This is weaker but much simpler than an exact characterisation of reachable
values. There is no guarantee that this is strong enough, but testing again can
quickly give a good indication.

Adding Pos hi.fst as a precondition to (5.3), a strengthening of the sound-
ness property becomes the following:

(t :: BoolExpr) ->

(vs :: [Nat]) -> (p :: VarIn t vs) ->

(hi :: BAdTI) -> (q :: NotNull hi.fst) ->

Pos hi.fst -> (5.3")

isBddOne (buildBddTable t vs p hi q) -> taut t

Now (5.3") passes the tests. So do (5.4), (5.5), and (5.6) with precondition
Posh added (let us call them (5.4°), (5.5%), and (5.6’), respectively).

The proofs of implications (5.5) A(5.6) = (5.4) and (reverse direction of 5.2) A
(5.4) = (5.3) can easily be adapted to the primed versions (5.5’) A (5.6") =
(5.4’) and (reverse direction of 5.2) A (5.4’) = (5.3’) respectively. It uses the
lemma

(t :: BoolExpr) ->
(vs :: [Nat]) -> (q :: VarIn t vs) ->

6 A table h is a list of nodes, each of that is (node index, Just(var index, high
branch, low branch)) except for (0, Nothing), (1, Nothing) for the constants.

(hi :: BAdTI) -> (p :: NotNull hi.fst) ->
Pos hi.fst -> Pos (buildBddTable t vs q hi p).fst

that is tested and proved. (5.5%) is trivial to prove. A proof of (5.6’), which is
‘clear’ from a code inspection, would take slightly more effort than it is worth,
so it is left as a tested assumption. Finally, the proof of (5.3’) is instantiated
with hi = initBdd0One and trivial proofs of NotNull and Pos. This concludes
the proof of soundness.

6 Combining Testing and Model Checking

We often need to check if a boolean formula is a tautology. We could use taut,
but it is computationally expensive. BDDs (Binary Decision Diagrams) is an
efficient method for this purpose. We augment Agda/Alfa with a plug-in that
is based on the BDD implementation in Haskell we verified before. When the
current goal has a type of the form Taut e in Alfa, the user can invoke the
BDD tool via an Alfa menu to check if e is a tautology. It computes the BDD
for a given boolean expression, and signals success or returns a counter model.

For example, if we model check the following goal (v0 abbreviates Var 0):
Taut ((vO => v1) => ((v1 => v2) => (v0 => v2))) (6.1)

then the BDD tool returns “success”. The goal can also be solved interactively
by the proof object eqBddref I, a proof that the equality on Bdd is reflexive
(see Fig. 3; Taut t = T (egBdd t I)).

teut! € Tout (o0 ==of) == (0] <==02) == (00 == 02)))
tart] = eqgBddref |

Fig. 3. Solved by reflexivity

Now suppose we want to check the goal in Fig. 4 parenthesised differently
from (6.1):

In this case, we get a counter model. Fig. 5 shows how this is displayed as an
assignment of boolean values to variables that makes the property in Fig. 4
false. In this example, v2 = 0, vl = 0, v0 = 1.

test! & Towt ({00 == vl) == (vl == 02)) == (v == 02)]
testd = o

Fig. 4. A false property

Counterexample where
assignments [f2:0,1:0,0:111

Fig. 5. A counter model

Our testing tool combines testing and model checking in one system. If a
boolean formula contains parameters, then we can use our random testing
tool to test if the formula is a tautology on randomly generated parameters.

More generally, our model checking tool can check properties of the following
form by using both testing and model checking:

(xy :: D) => -+« =>(xp :: Dplay, -+, 20n1]) =>
Pl[xl,...,xn] > 0 => Pm[xl,...,iEn] -> (62)
Taut (Q[xla R :I:n])

Here D;[zy,---,x;_1] is a type depending on zi,---,z;_1; P; is a precondition

satisfied by relevant data; and ¢ is the boolean formula being tested with the
parameters 1, ---,x,. The predicates P, must be decidable.

The user chooses an option “BDD-check” in one of the menus provided by
Alfa. The plug-in checks the property in the following way:

For predefined maxCheck (the number of maximum checks) and maxFail (the
number of maximum test cases that fail the preconditions), the procedure is

s=1; f=1
while (s < maxCheck and f < maxFail)
generate test data (zq,...,2,)
if some Pj[xy,...,x,] is false then
f=f+1
else if q[x1,...,z,| computes to BDD 1 then
s=s5+1
else return (zy,...,x,) as a counterexample and stop

if s > maxCheck then
report ‘“‘success”’ and stop
else report ‘“‘argument exhausted’ and stop.

The test data z; is generated by a user-defined generator genD; :: Rand — D;
as explained in Section 2.

Users can also define special purpose generators to generate only and all those
data satisfying preconditions (and prove them so). This is particularly useful
when data satisfying preconditions are sparse among all data of appropriate

types, or when filtering by preconditions distort the distribution of data. See
also [13].

When model checking succeeds for a goal without parameters, it is guaranteed
to be solved by the proof object eqBddref I asin Fig. 3.

7 Verifying a Sorting Algorithm

In this section, we demonstrate how to use the system to verify a polymorphic
bitonic sort algorithm. We follow the approach taken by Day, Launchbury
and Lewis [10] but formalise it in Agda/Alfa. First a parametricity theorem
for the function bitonic is proved interactively. This reduces the correctness
of polymorphic bitonic sort to that of bitonic sort on lists of booleans. The
latter is then checked by the BDD based testing tool.

7.1 The Bitonic Sort Algorithm

Bitonic sort is an efficient divide-and-concur sorting algorithm. In the first
phase, an input list is divided into two halves, the first of which is recursively
sorted in ascending order, and the second descending. The concatenation of
the two is a ‘bitonic’ list. The second phase sorts bitonic lists. It divides a
bitonic list into two and compares and swaps their elements at each position
pairwise. The result is a pair of bitonic lists where each element in one is no
smaller than any element of the other. Applying the second phase recursively
to each list, we obtain the sorted result.

Bitonic sort is parameterised by a comparison-swap function. We took the
Haskell program in [10] (Appendix E) and implemented a dependently typed
version in Agda/Alfa: it takes a list of length n and returns a list of the same
length. 7

In what follows, we use letters a, b for type variables. We write a™ for the type
Vec a n of lists of length n with elements in a, and a x b for the cartesian
product type Prod a b. A typical object in @™ is written (z1,...,x,). (See
appendix A.)

6 Paul Taylor’s diagrams package was used to prepare this section.

T The bitonic sort algorithm assumes lists of length 2”. We could implement the
algorithm on lists of length 2™ in Agda/Alfa using dependent types. Here we imple-
ment the algorithm on lists of any length following [10].

Bitonic sort is defined by the following function:

bitonic_sort :: (a :: Set) -> (f :: a X a -> a X a) ->
(n :: Nat) -> a™ -> Bool -> a®

bitonic_sort a f Zero O up =0

bitonic_sort a f (Succ Zero) (x) up = (%)

bitonic_sort a f (Succ (Succ n)) xs up

let nl1 = fst (splitN n)
n2 = snd (splitN n)
yzs :: a™ x a™ = splitV n xs
ys’ :: a™ = bitonic_sort a f nl (fst yzs) True
zs’ :: a™ = bitonic_sort a f n2 (snd yzs) False

in bitonic_to_sorted a f n (ys’ ++ zs’) up

Here we list the types of some functions used; Appendix F has their definitions.

bitonic_to_sorted :: (a :: Set) -> (f :: a X a -=> a X a) ->
(n :: Nat) -> a® -> Bool -> a*
pairwise :: (a :: Set) -> (f :: a X a -> a X a) ->
(n :: Nat) -> a™ x a™ -> a® x a™
splitV :: (a :: Set) -> (n :: Nat) —-> a® -> a™ x a™

splitN :: Nat -> Nat X Nat

Later we will instantiate the parameter f of the function bitonic_sort to
a comparison-swap function. Assuming a total ordering < on the set a, the
comparison-swap function f is

f (x, y)=if x <y) (, y) (y, x)

Then bitonic_sort f n xs up sorts xs in increasing order if up is True, and
in decreasing order if up is False.

We define the increasing order bitonic sort function:

bitonic :: (a :: Set) > (f :: a X a -> a X a) ->
(n :: Nat) -> a®* -> a

bitonic a f n xs = bitonic_sort a f n xs True

7.2 The Specification of Sorting Functions

A list bs is a (the) sorted list of as, if bs is a permutation of as and if elements
in bs are in increasing order, that is, sorted. A function sort is a correct

sorting function if sort as is a sorted list of as for any list as. However, we will
only discuss the sortedness in this paper, ignoring the (easier) permutation
property.

One way to define the sortedness of a list with respect to a given order relation
is the following.

sorted :: (a :: Set) -> ((X) :: a -> a -> Bool) ->
(n :: Nat) -> a® -> Bool

sorted a (<) Zero QO = True

sorted a (<) (Succ Zero) (x) = True

sorted a (<) (Succ (Succ n)) (x1,x2,xs’)
(x1 < x2) && (sorted a (<) (Succ n) (x2, xs’))

Sorted :: (a :: set) -> ((X) :: a -> a —-> Bool) —>
(n :: Nat) -> a® -> Set

Sorted a (<) n xs =T (sorted a (<) n xs)

The formal statement that sort :: (n:: Nat) — a® — a® is a sorting function
with respect to an order (<) is

(n::Nat) — (xs :: a") — Sorted a (<) n (sort n xs)

7.8 Proving The Parametricity Theorems

Knuth has a theorem on those sorting algorithms that are based only on
comparison-swaps: if such a sorting algorithm can sort booleans correctly, then
it can sort integers correctly. His theorem is an instance of the parametricity
theorem [24], that is, one of “theorems for free” [26] derivable from the type of
a function. In this section we state the parametricity theorem for the function
bitonic.

The parametricity theorem for the typing of bitonic is that, for all functions
f, g, and h making the left diagram commute, the right diagram commutes
too, for each n.

bitonic a f

n n

aXa—aXa a >

(h, h) (h,h) = map h map h
bitoni

bxb— ~hxb pr Pitonicbg

Here we used functions (h, h) and map h defined by (h, h)(z1, z2) = (hz1, hxs)
and map h (zq,---,2,) = (hzy,---, hx,) (map h actually takes a, b, and n as
arguments. Here and elsewhere, we sometimes suppress such arguments for
readability). The formal statement in Agda/Alfa is

(f :: axa ->axa) —>

(g :: bXb ->bxb) —>

(h :: a ->b) >

(q :: (x :: axa) > T ((h,h) (f x) == g ((h,h) x)))
(n :: Nat) —->

(xs :: a*) ->

T (map h (bitonic a f n xs) == bitonic b g n (map h xs))
where we overloaded the equality symbol ==.

This theorem is proved by induction on the size n®. While proving this the-
orem, we need to prove similar parametricity theorems for other component
functions. For example, the theorem for the function pairwise is

, Ppairwisea f

axXxa———>axXa a - a”

(h,h) (h, h) = map h map h

pairwise b g

bxb—2 ~hxb b b

Another for the function splitV is

. splitV a " X g™
map h map h X map h
5 splitV b 4 pn2

where (nl,n2) = splitN n.

7.4 The Correctness of Bitonic Sort

To prove that bitonic f is a sorting function, we need that the parameter £
is really a comparison-swap function. The comparison-swap function parame-

8 Tt is also possible to prove it at once for all appropriate functions, by induction
on type- and term-expressions that are suitably internalised.

terised on an order le on set a is

cmpSwap :: (a -> a -> Bool) -> a X a -> a X a
cmpSwap le (x, y) = if (le x y) (x, y) (y, %)

Bitonic sort parameterised in set a of list elements and an order leA (<) is

bitonicA :: (a :: Set) -> (a -> a -> Bool) —>
(n :: Nat) -> a®* -> a®
bitonicA a leA = bitonic a (cmpSwap leA)

Bitonic sort on booleans is an instance with 1eB being the implication.

bitonicB :: (n :: Nat) -> Bool™ -> Bool™
bitonicB = bitonicA Bool 1leB

Our goal now is to formally prove that if bitonicB is a sorting function, then
bitonicA a leA is also a sorting function:

(a :: Set) > (n :: Nat) —>
((bs :: Bool™) -> Sorted Bool leB (bitonicB n bs)) -> (7.1)
(as :: a"™) -> Sorted a leA (bitonicA a leA n as)

We note that this goal is not of the form amenable to model checking or
testing.

The proof uses the parametricity theorem for the function bitonic in the
following argument. Suppose that the list bitonicA a leA n xs is not sorted
for some xs :: a®. Then it must contain an x occurring before y such that
x > y (not (leA x y)). Let h be the functionh z = z > y. The premise of
the parametricity theorem for bitonic holds with this h.

cmpSwap leA

axa axa
(h,h) (h,h)
cmpSwap leB
Bool X Bool » Bool X Bool

So we have the diagram below commuting.

bitonicA a leAn

map h map h

bitonicB n
Bool® » Bool™

Now, in the list ys = map h (bitonicA a leA n xs), True occurs before
False, because h x = True and h y = False. Hence ys is not sorted with
respect to 1eB. But the diagram shows ys is equal to bitonicB n (map h xs),
which is sorted by assumption, whatever the list map h xs may be. This is a
contradiction.

We have thus reduced the correctness of bitonic on any type (that the result
is sorted) to checking of the following.

(n :: Nat) —>
(bs :: Bool?) -> Sorted leB (bitonicB 2° bs) (7.2)

This property is easy to test using our testing tool. We can randomly generate
values for n and bs, and check if bitonic sort sorts bs.

Using our BDD tool, however, we can do much better. For each n, we can
model check the whole of universally quantified proposition (type)

(bs :: Boolzn) -> Sorted leB (bitonicB 2® bs)

We do so by constructing a boolean expression such that it is a tautology if
and only if this type is inhabited. The boolean expression, which we call ok n,
is parameterised in n :: Nat.

ok :: Nat -> BoolExpr

Combining random generation of values for n and model checking of ok n by
the BDD tool, we can check whether bitonic sort on lists of booleans is correct
for all inputs of size 2. This is of course much stronger than just testing it
for some of inputs out of 22° possibilities!

The boolean expression ok n reflects (internalises) in its structure the con-
struction of Sorted 1eB (bitonicB 2" bs). To define ok n, we first generalises
the function sorted to sorted’ with more parametrisation.

sorted’ :: (a, b :: Set) > b -> (b -> b -> b) ->
(a->a->b) —>
(n :: Nat) > a* > b
sorted’ a b true (x) (<) Zero O
sorted’ a b true (x) (<) (Succ Zero) (x)
sorted’ a b true (*) (<) (Succ (Succ n)) (x1,x2,xs’)
(x1 < x2) * (sorted’ a b true (x) (<) (Succ n) (x2, xs?))

true
true

While sorted computes a value in Bool using True and (&&), the function
sorted’ takes the the return type b as a parameter along with appropriately

typed operations on it. So sorted as previously defined can be recovered from
sorted’ using True and (&&).

sorted a = sorted’ a Bool True (&&)

The function sortedBE instead uses the constant expression Val True and
the syntactic operation (*) that forms conjunction expressions.

sortedBE a = sorted’ a BoolExp (Val True) (%)

Given a function R :: a -> a -> BoolExp, sortedBE a R 4 (xi, X, X3, X4) is
the boolean expression (R x; x5) * ((R x2 x3) * ((R X3 X4) * (Val True))) stating
that the list is sorted with respect to R.

We define ok n as follows, where (+) and (=>) are the syntactic operations
to form disjunction and implication expressions, respectively.

nVars :: (n :: Nat) -> BoolExpn
nVars Zero = ()
nVars (Succ n) = (Var n, nVars n)

cmpSwapBE :: BoolExp -> BoolExp -> BoolExp
cmpSwapBE el e2 = (el * e2, el + e2)

ok :: Nat -> BoolExp
ok n = sortedBE BoolExp (=>) n
(bitonic BoolExp cmpSwapBE n (nVars n))

This is a form of symbolic evaluation. We start from the list nVars n of n
distinct input variables. Each element of the list (bitonic ...) is a boolean
expression that represents the output of bitonic at that position as the func-
tion of those input variables. The expression ok n is the one stating that those
outputs are sorted with respect to (=>), which is a complex function of the
input variables.

Our task now is devided in two parts. The first is to check that
(n :: Nat) -> Taut (ok 2°) (7.3)

This fits in the form (6.2), and our BDD tool can check this by combining
random generation and model checking.

The second is to prove that (7.3) implies (7.2). The proof, given in Appendix D,
uses the parametricity theorem for sorted’. We remark that the relationship
between the program to be verified and the formulas to be input to model
checkers is usually an informal one. We can formally reason this because the

program, the specification, and moreover the tool (the function ok) to con-
struct the formula are all in a single framework. We believe this to be a unique
advantage of our integrated approach based on an expressive type theory.

Note that bitonic is correct only when n is a power of 2. Replacing Boo1?" by
Bool® in (7.3) yields counterexamples. In Fig. 6, where n = 3, the second list
[1:1, 0:0] represents the assignment vi = 1 and vO = 0, which is a counter
model.

Counteresaemple where
7= suc [suc (suc zer))

wssignments f2:1,100:10(1:1,000{2:1,10,00H

Fig. 6. A counter model to ok n for n = 3

In general, we can test and model check a parameterised boolean expression
ok :: A -> BoolExpr in goals of the form

(x :: A) => T (p x) -> Taut (ok x)
by randomly generating values for x.

Admittedly, the present example of generating sizes randomly is not very
convincingly useful; it is probably just as good in practise to systematically
tryn=20,1,---.

Nevertheless, we have illustrated the principle, and hope to find more useful
applications in the future, and thus show that having a system combining
testing, model checking and interactive proving is useful.

8 Conclusions and Future Work

Random testing and interactive theorem proving benefit each other. Though
obvious as a general idea, few systems make it easy to combine the two. Us-
ing our testing extension to the proof-assistant Agda/Alfa in the context of
Haskell program verification, we have illustrated some benefits: testing before
proving; testing to help formulating domain-constraints of functions; starting
optimistically from a strong but false statement and then using counterexam-
ples and interactive proof steps to obtain the right formulation; decomposing
testing tasks; balancing the cost of proof-efforts against the gain in confidence;
etc.

Model checking and theorem proving are also complementary. One typical
method of combining model checking and theorem proving is to use abstrac-
tion. Day, Launchbury and Lewis [10] connected Haskell with a BDD package
and illustrated how the parametric nature of Haskell’s polymorphism is used
to lift the result of the BDD analysis to arbitrary datatypes. This is done
informally. By comparison, using an extended version of Agda/Alfa, this can
also be done formally in one system.

One direction of future work is to add various automatic theorem proving
techniques to our system. Currently, a user must write a decidable predicate
in the special form accepted by our tool. This is inflexible and inefficient both
in terms of human efforts and testing implementation. There are many other
forms of predicates with efficient decision procedures. We believe that the
combination of such decision procedures with random test data generation
and support for interactive proving has a great potential to be explored.

Another direction is to extend and automate the method, covering more fea-
tures of functional programming not present in type theory: possibly non-
terminating general recursion, lazy evaluation manipulating infinite objects,
IO operations, etc. Bove [2] provides a uniform method for representing gen-
eral recursive partial programs in type theory. Hancock and Setzer [18] model
interactive systems in type theory with a structure related to the Haskell’s
[O-monad. Applying these and other works, we hope to make our method
more practical.

We are looking at a tableau prover in Haskell in that lazy evaluation and 10
operations are essential. The experiment is promising. The Cover project at
Chalmers University of Technology is actively studying approaches to bridge
remaining gaps between Agda/Alfa and Haskell, both foundational (e.g., im-
plicit quantification, internal representations of logic of functional programs)
and technological (e.g., automatic translation tools).

Logical aspects of testing also need further investigation. What it means to
be a “faithful” translation for, e.g., a partial Haskell functions? Can we have
a logic in Agda/Alfa that gives some guarantee on the quality of testing?
Can tests be designed to fulfil such guarantees, similarly to terms constructed
against goal types?

Although each of testing, model checking, and interactive theorem proving
is a highly developed research area, the combination of the three will expose
many more exciting research topics of their own right. We hope to contribute to
software quality through such research, developing further the methodologies
and tools reported in this article.

References

[1]

[2]

[9]

Lennart Augustsson: Cayenne: a Language with Dependent Types. In
Proceedings of the third ACM SIGPLAN International Conference on
Functional Programming (ICFP-98), ACM SIGPLAN Notices, 34(1), pages 239-
250, 1998.

Ana Bove: General Recursion in Type Theory. PhD thesis. Chalmers University
of Technology. 2002.

Jeremy Bradley: Binary Decision Diagrams - A Functional Implementation.
http://www.cs.bris.ac.uk/ bradley/publish/bdd/.

Randal E. Bryant: Symbolic Boolean Manipulation with Ordered Binary-
Decision Diagrams. In ACM Computing Surveys, volume 24, number 3, pages
293-318, 1992.

T.Y. Chen, T. H. Tse, and Zhiquan Zhou: Semi-Proving: an Integrated Method
Based on Global Symbolic Evaluation and Metamorphic Testing. In Proceedings
of the ACM SIGSOFT 2002 International Symposium on Software Testing and
AnalysisISSTA-02 volume 27.4, pages 191-195. ACM Press, 2002.

Koen Claessen and John Hughes: QuickCheck: a lightweight tool for random
testing of Haskell programs. In Proceedings of the ACM Sigplan International
Conference on Functional Programming (ICFP-00) volume 35.9, pages 18-22.
ACM Press, 2000.

Catarina, Coquand: Agda, available from http://www.cs.chalmers.se/
“catarina/agda.

Thierry Coquand, Randy Pollack, and Makoto Takeyama: A Logical Framework
with Dependently Typed Records. In Proceedings of TLCA 2003, volume 2701
of LNCS, pages 105-119, 2003.

Cover: Combining Verification Methods in Software Development. http: //www.
coverproject.org/.

[10] Nancy A. Day, John Launchbury, and Jeff Lewis: Logical Abstractions in

Haskell. In Proceedings of the 1999 Haskell Workshop, Utrecht University
Department of Computer Science, Technical Report UU-CS-1999-28, 1999.

[11] Peter Dybjer: Inductive Families. In Formal Aspects of Computing, volume 6,

pages 440-465, 1994.

[12] Peter Dybjer, Qiao Haiyan, and Makoto Takeyama: Verifying Haskell Programs

by Combining Testing and Proving. In Proceedings of Third International
Conference on Quality Software, pages 272-279, IEEE Press, 2003.

[13] Peter Dybjer, Qiao Haiyan, and Makoto Takeyama: Combining Testing and

Proving in Dependent Type Theory. In Proceedings of Theorem Proving in
Higher Order Logics, pages 188-203, volume 2758 of Lecture Notes in Computer
Science, Springer-Verlag, 2003.

[14] Peter Dybjer and Anton Setzer: A finite axiomatization of inductive-recursive
definitions. In Typed Lambda Calculi and Applications, Lecture Notes in
Computer Science 1581, pages 129-146, 1999.

[15] Peter Dybjer and Anton Setzer: Indexed Induction-Recursion. In Proof Theory
in Computer Science, LNCS 2183, pages 93-113, 2001.

[16] Matthew N. Geller: Test Data as an Aid in Proving Program Correctness. In
Communications of the ACM, pages 368-375, volume 21.5, 1978.

[17] Thomas Hallgren: Alfa, available from http://www.cs.chalmers.se/
“hallgren/Alfa.

[18] Peter Hancock and Anton Setzer: Interactive programs in dependent type
theory. Computer Science Logic. 14th international workshop, CSL, pages 317—
331, volume 1863 of Lecture Notes in Computer Science, 2000.

[19] Susumu Hayashi, Ryosuke Sumitomo, and Ken-ichiro Shii: Towards Animation
of Proofs — testing proofs by examples. In Theoretical Computer Science, volume
272, pages 177-195, 2002.

[20] John Hughes: Why functional programming matters. In The Computer Journal,
volume 32(2), pages 98-107, 1989.

[21] Sava Krstic and John Matthews: Verifying BDD Algorithms through Monadic
Interpretation, In Lecture Notes in Computer Science, pages 182-195, volume
2294, 2002.

[22] Bengt Nordstrom, Kent Petersson, and Jan M. Smith: Programming in Martin-
Lof Type Theory: an Introduction. Oxford University Press, 1990.

[23] Programatica: Integrating Programming, Properties, and Validation. http://
www.cse.ogi.edu/PacSoft/projects/programatica.

[24] John C. Reynolds: Types, Abstraction and Parametric Polymorphism. In Proc.
of 9th IFIP World Computer Congress, Information Processing ’83, pages 513—
523, North-Holland, 1983.

[25] Kumar Neeraj Verma, Jean Goubault-Larrecq, Sanjiva Prasad, and S. Arun-
Kumar: Reflecting BDD in Coq. In Proc. 6th Asian Computing Science
Conference (ASIAN’2000), pages 162-181, volume 1961 of Lecture Notes in
Computer Science, Springer-verlag, 2000.

[26] Philip Wadler: Theorem for Free. In Functional Programming Languages and
Computer Architecture, pages 347-359, ACM, 1989.

A The Proof Assistant Agda/Alfa

Agda [7] is the latest version of the ALF-family of proof systems for depen-
dent type theory developed in Goteborg since 1990. Alfa [17] is a window

interface for Agda. They assist users as structure editors for well-typed pro-
grams and correct proofs, by checking each step of the construction on the fly,
by presenting possible next steps, by solving simple problems automatically,
etc.

Roughly speaking, the language of Agda/Alfa is a typed lambda calculus ex-
tended with the type Set of (small) types, which is equipped with formation of
inductive data types, dependent function types, and dependent record types.
Its concrete syntax comes to a large extent from Cayenne [1], a Haskell-related
language with dependent types.

Basic data types are introduced much as in Haskell, for example, the types of
booleans and natural numbers are

Bool :: Set
Nat :: Set

data True | False
data Zero | Succ (n :: Nat)

Dependent types may refer to terms of other types. For example, one may have
the type Vec A n :: Set for lists of specified length n : : Nat with elements
in A :: Set.

A dependent function type (z :: A) -> B[z] is the type of functions that
sends argument a :: A to a value of type B[a|, which may depend on a. As a
special case in the above dependent function type, if the variable x does not
appear in B, then we get the ordinary function type A -> B. As an example,
we show how dependent types are used for representing the type of all lists of
length n:

Vec :: (A :: Set) -> (n :: Nat) -> Set
Vec A Zero = Unit
Vec A (Succ n) Prod A (Vec A n)

where Prod A B is the set of pairs of elements of A and elements of B:
data Prod (A, B :: Set) = Pair (x :: A) (y :: B)
Now we can define the head function for nonempty lists:

head :: (A :: Set) -> (n :: Nat) -> Vec A (Succ n) -> A
head A n (Pair x y) = x

As above, polymorphic functions take explicit type arguments (e.g., head Nat
and head Bool). Agda can infer them in most cases, and Alfa has an option
that hides them from the user’s view. In the paper, when showing Agda/Alfa
code, we will use this feature and omit some type arguments when the omitted
arguments are clear from the context. For example, we may write head n xy

for some xy :: Vec Bool (Succ n) instead of head Bool n xy.

A dependent record type, also called a signature, sig {zy :: Ay,---, 2, :: A,
is the type of records (tuples) struct {z; = v1,-- -, z, = v,} labelled with z;’s,
where v; :: A; and A; may depend on x4, ---,x;_;. Haskell tuples are a non-
dependent special case. The x; component of record r is written r.x;.

Constructive logic is represented in type theory by recognising propositions as
types of their proofs. A proposition holds when it has a proof, i.e., when it is a
non-empty type. A predicate P on type D is a function P :: D -> Set, which
is regarded as a propositional function because sets represent propositions.
Logical connectives map to type forming operations; e.g., a function of type
A -> B is a proof of an implication, sending a proof of A to a proof of
B; similarly, a function of type (z :: D) -> Px is a proof of a universally
quantified statement.

Truth values in Bool lift to propositions (sets) by

T :: Bool -> Set
T True = data tt (singleton of trivial proof)
T False = data (empty type; no proofs)

A predicate P on D is decidable if Vo € D. Pz V =P z constructively. It is
equivalent to having some p : : D -=> Bool such that Vo € D.Pz < T (p(z)) .
In our tool, we require decidable predicates to have the latter form.

For a more complete account of the logical framework underlying Agda/Alfa
including record types see the paper about structured type theory [8] and for
the inductive definitions available in type theory, see Dybjer [11] and Dybjer
and Setzer [14,15].

Remark 1 The reader is warned that the dependent type theory code given
here is not accepted verbatim by the Agda/Alfa system, although it is very close
to it. To get more readable notation and avoiding having to discuss some of
the special choices of Agda/Alfa we borrow some notations from Haskell, such
as writing [A] for the set of lists of elements in A.

B Part of the BDD Implementation in Haskell ([3])

module BddTable where

type BddTableIndex = Int

type BddTableEntry (BddTableIndex,BddTableIndex,BddTableIndex)

-- (Variable Index, Low branch pointer, High branch pointer)
type BddTable = [(BddTableIndex, Maybe BddTableEntry)]
type BddTI = (BddTable, BddTableIndex)

initBddTable :: BddTable
initBddTable = (1, Nothing) : (0, Nothing) : []

initBddOne :: BddTI
initBddOne = (initBddTable, 1)

toIndex :: Bool -> BddTablelndex
toIndex v = if v then 1 else O

makeBddTableNode :: BddTable -> BddTableEntry -> BddTI
makeBddTableNode h (i, vO, v1)

| (vO == v1) = (h, vO0)

| (isJust f) (h, fromJust f)

| otherwise (insertBddTable h (i, v0, v1)) where
findBddTableEntry h (i, v0, v1)

Hh
I

insertBddTable :: BddTable -> BddTableEntry -> BddTI
insertBddTable [] _ =
error "table not initialised"
insertBddTable hs e = ((ni, Just e):hs, ni)
where ni = getNextBddTableNode hs

getNextBddTableNode :: BddTable -> BddTablelIndex
getNextBddTableNode [] = error "table not initialised"
getNextBddTableNode ((i,_):_) = (i + 1)

findBddTableEntry :: BddTable -> BddTableEntry -> Maybe BddTableIndex
findBddTableEntry h e
| null h2 = Nothing
| otherwise = Just (fst $ head h2) where
h2 = dropWhile (f e) h
f :: BddTableEntry ->
(BddTableIndex, Maybe BddTableEntry) -> Bool
f _ (_, Nothing) = True
f el (_, Just e2) = (el /= e2)

buildBddTable :: BoolExpr -> [BoolVar] -> BddTI -> BddTI
buildBddTable t [1 (h, _) = (h, toIndex $ totalEvalBoolExpr t)
buildBddTable t (x:xs) (h, i) = makeBddTableNode hi (i, v0, v1)
where
(h0, v0) = buildBddTable (rewriteBoolExpr t (False,x)) xs (h,i + 1)

(h1, v1) = buildBddTable (rewriteBoolExpr t (True,x)) xs (hO, i + 1)
module BoolAlgebra where
type BoolVar = Int

data BoolExpr = Var BoolVar
| Val Bool

| Not BoolExpr
I

And BoolExpr BoolExpr

totalEvalBoolExpr :: BoolExpr -> Bool
totalEvalBoolExpr t =
case t of
Var x -> error "variables still present in expression"
Val v -> v
Not (Val v) -> if v then False else True
Not (Not x) -> (totalEvalBoolExpr x)
Not x -> not $ totalEvalBoolExpr x
And (Val v) y ->
if v then (totalEvalBoolExpr y) else False
And x (Val v) ->
if v then (totalEvalBoolExpr x) else False
And x y -> (totalEvalBoolExpr x) && (totalEvalBoolExpr y)

C The Tautology Checker (Thierry Coquand)

module Bdt where
data Bdd = 0 | I | (/\) Bdd Bdd

neg :: Bdd -> Bdd

neg 0 =1

neg I =0

neg (b /\ d) = neg b/\ neg d

and_bdd :: Bdd -> Bdd -> Bdd
and_bdd 0 h’ =0

and_bdd I h’ = h’
and_ bdd h 0 =0
and ' bdd h I =h

and_bdd (b /\ d) (b’ /\ d’) = mkt (and_bdd b b’) (and_bdd d d’)

mkt :: Bdd -> Bdd -> Bdd
mkt 0 O =0
mkt I T =1

mkt hl h2 = hl /\ h2

next :: Bdd -> Bdd
next h= h /\ h

var :: Nat -> Bdd
I/\O

next (var n)

var Zero

var (Succ n)

bdt :: BoolExpr -> Bdd

bdt (Val True) =1

bdt (Val False) =0

bdt (Var n) = var n

bdt (Not t) = neg (bdt t)

bdt (And t1 t2) and_bdd (bdt t1)(bdt t2)

taut :: BoolExpr -> Bool
taut t = bdt t == 1

Taut t = T (taut t)

D Proving that (7.3) implies (7.2)

We first state the parametricity theorem for sorted’: if A’ true; = true, and
the following diagrams commute

<1 *1
a1 X aq by by X by —— by
(h,) K| and (W, R) B
<
a9 X a9 —2 bz bg X bQ *24' bQ

then the following diagram also commutes.

. sorted a; by true; (¥1) (<y)
ai > bl

map h h

sorted’ ay by truey (ko) (<o)
[45) b2

This theorem allows us to lift a property on Bool to a property on BoolExpr
that can be model checked.

We take BoolExpr as a; and by, Bool as ay and by. Both h and h’ are the
evaluation function

eval :: Bool™ -> BoolExpr -> Bool
eval (bl,...,bn) t = t[bl/vl,...,bn/vn]

where vi are the free variables®in t. Furthermore, el <; €2 = el = ¢2 and
el <5 e2 = 1eB el e2. We can check that the premises of the parametricity
theorem for sorted’ hold, that is,

eval bs (el <y e2) = (eval bs el) <, (eval bs e2)
eval bs (el * e2) = (eval bs el) && (eval bs e2)
Hence, for any bs = (b1, ...,bn) :: Bool®, we have

eval bs (sorted’ (Val True) (x¥) (=>) n

(bitonic cmpSwapBE n (v1,...,vn)))
= sorted’ True (&%) leB n
(map (eval bs) (bitonic cmpSwapBE n (vi,...,vn)))
= sorted’ True (&&) leB n
(bitonic cmpSwapB n (map (eval bs) (vi,...,vn)))

sorted 1leB n (bitonicB n bs)

where the first equality follows from the parametricity theorem for sorted’,
and the second equality follows from that for bitonic.

It is semantically clear, and can be proved so too, that Taut ¢ is equivalent to
(bs :: Bool™) — T (eval bs t == True). Therefore, if (7.3) is a tautology, then
sorted 1leB n (bitonic cmpSwap n bs) is always equal to True for any bs,
that is, (7.2) holds.

E Bitonic Sort: the Haskell Version ([10])

0
[x]

bitnoic_to_sorted cmpSwap [] up
bitnoic_to_sorted cmpSwap [x] up
bitnoic_to_sorted cmpSwap xs up
let k = length xs ‘div‘ 2
(ys, zs) = pairwise cmpSwap (splitAt k xs)
(ys?, zs’) = if up then (ys, zs) else (zs, ys)

in bitnoic_to_sorted cmpSwap ys’ up ++

9 In this Appendix, we display (lists of) variables informally for readability.

bitnoic_to_sorted cmpSwap zs’ up

pairwise £ ([1, [1)

pairwise f (x:xs, y:ys)

(a1,

let (x’, y) =fxy
(xs’, ys’) = pairwise f (xs, ys)
in (x’:xs8’, y’:ys’)

pairwise f (xs,ys

bitonic_sort cmpSwap [] wup
bitonic_sort cmpSwap [x] up
bitonic_sort cmpSwap xs up

)

= (XS ,YS)

[
[x]

let k = length xs ‘div‘ 2

(ys, zs) =

sp

1itAt k xs

ys’ = bitonic_sort cmpSwap ys True
zs’ = bitonic_sort cmpSwap zs False

in bitnoic_to_sorted cmpSwap (ys’ ++ zs’) up

cmpSwap x y = if x < y then (x, y) else (y, x)

sort :: Ord a => [a] -> [a]
sort xs = bitonic_sort cmpSwap xs True

sorted :: Boolean
sorted test []
sorted test [x]

b

=> (a->a->b) > [a] > b
true
true

sorted test (x: ys @(y:.)) =
(test x y) <&> sorted test ys

F Bitonic Sort: the Agda/Alfa Version

bitonic_to_sorted ::

(a :: Set) > (a x a-> a X a) —>
(n :: Nat) -> a® -> Bool -> a®

bitonic_to_sorted f Zero O up = xs
bitonic_to_sorted f (Succ Zero) (x) up = (x)
bitonic_to_sorted £ (Succ m) (x, x8) up =

let nl1 :: Nat

n2 :: Nat
yzs :: a™
ys :: a™
zs :: a™?
yzsl :: a"

fst (splitN n)
snd (splitN n)

a" = pairwise a f n (splitV a n xs)
fst yzs
snd yzs

appl a n (bitonic_to_sorted a f nl ys up)
(bitonic_to_sorted a f n2 zs up)

yzs2 :: a" = app2 a n (bitonic_to_sorted a f n2 zs up)

(bitonic_to_sorted a f nl ys up)
in if up yzsl yzs2

pairwise :: (a :: Set) -> (f :: a X a -> a X a) =>
(n :: Nat) -> a™ x a"® -> gl x a®?

pairwise a f Zero XS = Xxs

pairwise a £ (Succ Zero) Xs = xs

pairwise a f (Succ (Succ m)) ((x,y), (x’, y’)) =
let nl :: Nat = fst (splitN m)
n2 :: Nat = snd (splitN m)

xy’ :: ax a=*f (x, x?)

xys’ :: a® x a™ = pairwise a f m (y, y’)
zsl :: a® = fst xys’

zs2 :: a"™ = snd xys’

in ((fst xy’, zsl), (snd xy’, zs2))

splitV :: (a :: Set) -> (n :: Nat) -> a® -> a% x a™?
splitV a Zero O = (0, O)
splitV a (Succ Zero) (x) = ((x), O)

splitV a (Succ (Succ n)) (x1,x2,xs)
let n12 = splitN n
nl = fst nl12
n2 = snd ni2

ts :: a" X a = shiftr a n (x2, xs)
hs :: a® x a™ = splitV a n (fst ts)
ts’ :: a x a"™ = shiftl a n2 ((snd hs), snd ts)

in ((x1, fst hs), ts?)

splitN :: Nat -> Nat X Nat

splitN Zero
splitN (Succ Zero)
splitN (Succ (Succ n))
let n12 = splitN n
in (Succ (fst n12), Succ (snd ni2))

(Zero, Zero)
(Succ Zero, Zero)

shiftl :: (a :: Set) > (n :: Nat) -> a® X a -> a x a"

shiftr :: (a :: Set) -> (n :: Nat) -> a x a® -> a" X a

