
The Biequivalence
of Locally Cartesian Closed Categories

and Martin-Löf Type Theories

Pierre Clairambault and Peter Dybjer

University of Bath and Chalmers University of Technology

Abstract. Seely’s paper Locally cartesian closed categories and type the-
ory contains a well-known result in categorical type theory: that the
category of locally cartesian closed categories is equivalent to the cat-
egory of Martin-Löf type theories with Π,Σ, and extensional identity
types. However, Seely’s proof relies on the problematic assumption that
substitution in types can be interpreted by pullbacks. Here we prove a
corrected version of Seely’s theorem: that the Bénabou-Hofmann inter-
pretation of Martin-Löf type theory in locally cartesian closed categories
yields a biequivalence of 2-categories. To facilitate the technical devel-
opment we employ categories with families as a substitute for syntactic
Martin-Löf type theories. As a second result we prove that if we remove
Π-types the resulting categories with families are biequivalent to left
exact categories.

1 Introduction

It is “well-known” that locally cartesian closed categories (lcccs) are equivalent
to Martin-Löf’s intuitionistic type theory [9,10]. But how known is it really?
Seely’s original proof [13] contains a flaw, and the papers by Curien [3] and Hof-
mann [5] who address this flaw only show that Martin-Löf type theory can be
interpreted in locally cartesian closed categories, but not that this interpretation
is an equivalence of categories provided the type theory has Π,Σ, and exten-
sional identity types. Here we complete the work and fully rectify Seely’s result
except that we do not prove an equivalence of categories but a biequivalence
of 2-categories. In fact, a significant part of the endeavour has been to find an
appropriate formulation of the result, and in particular to find a suitable notion
analogous to Seely’s “interpretation of Martin-Löf theories”.

Categories with families and democracy. Seely turns a given Martin-Löf theory
into a category where the objects are closed types and the morphisms from type
A to type B are functions of type A → B. Such categories are the objects of
Seely’s “category of Martin-Löf theories”.

Instead of syntactic Martin-Löf theories we shall employ categories with fam-
ilies (cwfs) [4]. A cwf is a pair (C, T) where C is the category of contexts and
explicit substitutions, and T : Cop → Fam is a functor, where T (Γ) represents

the family of sets of terms indexed by types in context Γ and T (γ) performs
the substitution of γ in types and terms. Cwf is an appropriate substitute for
syntax for dependent types: its definition unfolds to a variable-free calculus of
explicit substitutions [4], which is like Martin-Löf’s [11,14] except that variables
are encoded by projections. One advantage of this approach compared to Seely’s
is that we get a natural definition of morphism of cwfs, which preserves the
structure of cwfs up to isomorphism. In contrast Seely’s notion of “interpreta-
tion of Martin-Löf theories” is defined indirectly via the construction of an lccc
associated with a Martin-Löf theory, and basically amounts to a functor preserv-
ing structure between the corresponding lcccs, rather than directly as something
which preserves all the “structure” of Martin-Löf theories.

To prove our biequivalences we require that our cwfs are democratic. This
means that each context is represented by a type. Our results require us to build
local cartesian closed structure in the category of contexts. To this end we use
available constructions on types and terms, and by democracy such constructions
can be moved back and forth between types and contexts. Since Seely works with
closed types only he has no need for democracy.

The coherence problem. Seely interprets type substitution in Martin-Löf theories
as pullbacks in lcccs. However, this is problematic, since type substitution is
already defined by induction on the structure of types, and thus fixed by the
interpretation of the other constructs of type theory. It is not clear that the
pullbacks can be chosen to coincide with this interpretation.

In the paper Substitution up to isomorphism [3] Curien describes the funda-
mental nature of this problem. He sets out

... to solve a difficulty arising from a mismatch between syntax and
semantics: in locally cartesian closed categories, substitution is modelled
by pullbacks (more generally pseudo-functors), that is, only up to iso-
morphism, unless split fibrational hypotheses are imposed. ... but not all
semantics do satisfy them, and in particular not the general description
of the interpretation in an arbitrary locally cartesian closed category. In
the general case, we have to show that the isomorphisms between types
arising from substitution are coherent in a sense familiar to category
theorists.

To solve the problem Curien introduces a calculus with explicit substitutions for
Martin-Löf type theory, with special terms witnessing applications of the type
equality rule. In this calculus type equality can be interpreted as isomorphism
in lcccs. The remaining coherence problem is to show that Curien’s calculus is
equivalent to the usual formulation of Martin-Löf type theory, and Curien proves
this result by cut-elimination.

Somewhat later, Hofmann [5] gave an alternative solution based on a tech-
nique which had been used by Bénabou [1] for constructing a split fibration from
an arbitrary fibration. In this way Hofmann constructed a model of Martin-Löf
type theory with Π-types, Σ-types, and (extensional) identity types from a lo-
cally cartesian closed category. Hofmann used categories with attributes (cwa)

in the sense of Cartmell [2] as his notion of model. In fact, cwas and cwfs are
closely related: the notion of cwf arises by reformulating the axioms of cwas
to make the connection with the usual syntax of dependent type theory more
transparent. Both cwas and cwfs are split notions of model of Martin-Löf type
theory, hence the relevance of Bénabou’s construction.

However, Seely wanted to prove an equivalence of categories. Hofmann con-
jectured [5]:

We have now constructed a cwa over C which can be shown to be
equivalent to C in some suitable 2-categorical sense.

Here we spell out and prove this result, and thus fully rectify Seely’s theorem. It
should be apparent from what follows that this is not a trivial exercise. In our
setting the result is a biequivalence analogous to Bénabou’s (much simpler) re-
sult: that the 2-category of fibrations (with non-strict morphisms) is biequivalent
to the 2-category of split fibrations (with non-strict morphisms).

While carrying out the proof we noticed that if we remove Π-types the result-
ing 2-category of cwfs is biequivalent to the 2-category of left exact (or finitely
complete) categories. We present this result in parallel with the main result.

Plan of the paper. An equivalence of categories consists of a pair of functors
which are inverses up to natural isomorphism. Biequivalence is the appropriate
notion of equivalence for bicategories [8]. Instead of functors we have pseudofunc-
tors which only preserve identity and composition up to isomorphism. Instead of
natural isomorphisms we have pseudonatural transformations which are inverses
up to invertible modification.

A 2-category is a strict bicategory, and the remainder of the paper consists
of constructing two biequivalences of 2-categories. In Section 2 we introduce
cwfs and show how to turn a cwf into an indexed category. In Section 3 we
define the 2-categories CwFIextΣ

dem of democratic cwfs which support extensional
identity types and Σ-types and CwFIextΣΠ

dem which also support Π-types. We
also define the notions of pseudo cwf-morphism and pseudo cwf-transformation.
In Section 4 we define the 2-categories FL of left exact categories and LCC of
locally cartesian closed categories. We show that there are forgetful 2-functors
U : CwFIextΣ

dem → FL and U : CwFIextΣΠ
dem → LCC. In section 5 we construct

the pseudofunctors H : FL→ CwFIextΣ
dem and H : LCC→ CwFIextΣΠ

dem based on
the Bénabou-Hofmann construction. In section 6 we prove that H and U give
rise to the biequivalences of FL and CwFIextΣ

dem and of LCC and CwFIextΣΠ
dem .

An appendix containing the full proof of the biequivalences can be found at
http://www.cse.chalmers.se/~peterd/papers/categorytypetheory.html/.

Acknowledgement. We are grateful to the anonymous reviewers for several useful
remarks which have helped us improve the paper. We would also like to acknowl-
edge the support of the (UK) EPSRC grant RC-CM1025 for the first author and
of the (Swedish) Vetenskapsr̊adet grant “Types for Proofs and Programs” for
the second author.

2 Categories with Families

2.1 Definition

Definition 1. Let Fam be the category of families of sets defined as follows. An
object is a pair (A,B) where A is a set and B(x) is a family of sets indexed by
x ∈ A. A morphism with source (A,B) and target (A′, B′) is a pair consisting of
a function f : A→ A′ and a family of functions g(x) : B(x)→ B′(f(x)) indexed
by x ∈ A.

Note that Fam is equivalent to the arrow category Set→.

Definition 2. A category with families (cwf) consists of the following data:

– A base category C. Its objects represent contexts and its morphisms rep-
resent substitutions. The identity map is denoted by id : Γ → Γ and the
composition of maps γ : ∆→ Γ and δ : Ξ → ∆ : Ξ → Γ is denoted by γ ◦ δ
or more briefly by γδ : Ξ → Γ .

– A functor T : Cop → Fam. T (Γ) is a pair, where the first component rep-
resents the set Type(Γ) of types in context Γ , and the second component
represents the type-indexed family (Γ ` A)A∈Type(Γ) of sets of terms in con-
text Γ . We write a : Γ ` A for a term a ∈ Γ ` A. Moreover, if γ is a
morphism in C, then T (γ) is a pair consisting of the type substitution func-
tion A 7→ A[γ] and the type-indexed family of term substitution functions
a 7→ a[γ].

– A terminal object [] of C which represents the empty context and a terminal
map 〈〉 : ∆→ [] which represents the empty substitution.

– A context comprehension which to an object Γ in C and a type A ∈ Type(Γ)
associates an object Γ ·A of C, a morphism pA : Γ ·A→ Γ of C and a term
q ∈ Γ ·A ` A[p] such the following universal property holds: for each object
∆ in C, morphism γ : ∆ → Γ , and term a ∈ ∆ ` A[γ], there is a unique
morphism θ = 〈γ, a〉 : ∆ → Γ ·A, such that pA ◦ θ = γ and q[θ] = a.
(We remark that a related notion of comprehension for hyperdoctrines was
introduced by Lawvere [7].)

The definition of cwf can be presented as a system of axioms and inference
rules for a variable-free generalized algebraic formulation of the most basic rules
of dependent type theory [4]. The correspondence with standard syntax is ex-
plained by Hofmann [6] and the equivalence is proved in detail by Mimram [12].
The easiest way to understand this correspondence might be as a translation
between the standard lambda calculus based syntax of dependent type theory
and the language of cwf-combinators. In one direction the key idea is to trans-
late a variable (de Bruijn number) to a projection of the form q[pn]. In the
converse direction, recall that the cwf-combinators yield a calculus of explicit
substitutions whereas substitution is a meta-operation in usual lambda calculus.
When we translate cwf-combinators to lambda terms, we execute the explicit
substitutions, using the equations for substitution in types and terms as rewrite

rules. The equivalence proof is similar to the proof of the equivalence of cartesian
closed categories and the simply typed lambda calculus.

We shall now define what it means that a cwf supports extra structure cor-
responding to the rules for the various type formers of Martin-Löf type theory.

Definition 3. A cwf supports (extensional) identity types provided the follow-
ing conditions hold:

Form. If A ∈ Type(Γ) and a, a′ : Γ ` A, there is IA(a, a′) ∈ Type(Γ);
Intro. If a : Γ ` A, there is rA,a : Γ ` IA(a, a);
Elim. If c : Γ ` IA(a, a′) then a = a′ and c = rA,a.

Moreover, we have stability under substitution: if δ : ∆→ Γ then

IA(a, a′)[δ] = IA[δ](a[δ], a′[δ])
rA,a[δ] = rA[δ],a[δ]

Definition 4. A cwf supports Σ-types iff the following conditions hold:

Form. If A ∈ Type(Γ) and B ∈ Type(Γ ·A), there is Σ(A,B) ∈ Type(Γ),
Intro. If a : Γ ` A and b : Γ ` B[〈id, a〉], there is pair(a, b) : Γ ` Σ(A,B),
Elim. If a : Γ ` Σ(A,B), there are π1(a) : Γ ` A and π2(a) : Γ ` B[〈id, π1(a)〉]

such that

π1(pair(a, b)) = a

π2(pair(a, b)) = b

pair(π1(c), π2(c)) = c

Moreover, we have stability under substitution:

Σ(A,B)[δ] = Σ(A[δ], B[〈δ ◦ p, q〉])
pair(a, b)[δ] = pair(a[δ], b[δ])

π1(c)[δ] = π1(c[δ])
π2(c)[δ] = π2(c[δ])

Note that in a cwf which supports extensional identity types and Σ-types sur-
jective pairing, pair(π1(c), π2(c)) = c, follows from the other conditions [10].

Definition 5. A cwf supports Π-types iff the following conditions hold:

Form. If A ∈ Type(Γ) and B ∈ Type(Γ ·A), there is Π(A,B) ∈ Type(Γ).
Intro. If b : Γ ·A ` B, there is λ(b) : Γ ` Π(A,B).
Elim. If c : Γ ` Π(A,B) and a : Γ ` A then there is a term ap(c, a) : Γ `

B[〈id, a〉] such that

ap(λ(b), a) = b[〈id, a〉] : Γ ` B[〈id, a〉]
c = λ(ap(c[p], q)) : Γ ` Π(A,B)

Moreover, we have stability under substitution:

Π(A,B)[γ] = Π(A[γ], B[〈γ ◦ p, q〉])
λ(b)[γ] = λ(b[〈γ ◦ p, q〉])

ap(c, a)[γ] = ap(c[γ], a[γ])

Definition 6. A cwf (C, T) is democratic iff for each object Γ of C there is
Γ ∈ Type([]) and an isomorphism Γ ∼=γΓ []·Γ . Each substitution δ : ∆→ Γ can
then be represented by the term δ = q[γΓ δγ−1

∆] : []·∆ ` Γ [p].

Democracy does not correspond to a rule of Martin-Löf type theory. However, a
cwf generated inductively by the standard rules of Martin-Löf type theory with
a one element type N1 and Σ-types is democratic, since we can associate N1

to the empty context and the closed type Σx1 : A1. · · · .Σxn : An to a context
x1 : A1, . . . , xn : An by induction on n.

2.2 The Indexed Category of Types in Context

We shall now define the indexed category associated with a cwf. This will play
a crucial role and in particular introduce the notion of isomorphism of types.

Proposition 7 (The Context-Indexed Category of Types). If (C, T) is a
cwf, then we can define a functor T : Cop → Cat as follows:

– The objects of T (Γ) are types in Type(Γ). If A,B ∈ Type(Γ), then a mor-
phism in T (Γ)(A,B) is a morphism δ : Γ ·A→ Γ ·B in C such that pδ = p.

– If γ : ∆ → Γ in C, then T (γ) : Type(Γ) → Type(∆) maps an object
A ∈ Type(Γ) to A[γ] and a morphism δ : Γ ·A→ Γ ·B to 〈p, q[δ〈γ ◦ p, q〉]〉 :
∆·A[γ]→ ∆·B[γ].

We write A ∼=θ B if θ : A → B is an isomorphism in T (Γ). If a : Γ ` A, we
write {θ}(a) = q[θ〈id, a〉] : Γ ` B for the coercion of a to type B and a =θ b if
a = {θ}(b). Moreover, we get an alternative formulation of democracy.

Proposition 8. (C, T) is democratic iff the functor from T ([]) to C, which maps
a closed type A to the context []·A, is an equivalence of categories.

Seely’s category ML of Martin-Löf theories [13] is essentially the category of
categories T ([]) of closed types.

Fibres, slices and lcccs. Seely’s interpretation of type theory in lcccs relies on
the idea that a type A ∈ Type(Γ) can be interpreted as its display map, that is,
a morphism with codomain Γ . For instance, the type list(n) of lists of length
n : nat would be mapped to the function l : list → nat which to each list
associates its length. Hence, types and terms in context Γ are interpreted in the
slice category C/Γ , since terms are interpreted as global sections. Syntactic types
are connected with types-as-display-maps by the following result, an analogue
of which was one of the cornerstones of Seely’s paper.

Proposition 9. If (C, T) is democratic and supports extensional identity and
Σ-types, then T (Γ) and C/Γ are equivalent categories for all Γ .

Proof. To each object (type) A in T (Γ) we associate the object pA in C/Γ . A
morphism from A to B in T (Γ) is by definition a morphism from pA to pB in
C/Γ .

Conversely, to each object (morphism) δ : ∆ → Γ of C/Γ we associate a
type in Type(Γ). This is the inverse image x : Γ ` Inv(δ)(x) which is defined
type-theoretically by

Inv(δ)(x) = Σy : ∆.IΓ (x, δ(y))

written in ordinary notation. In cwf combinator notation it becomes

Inv(δ) = Σ(∆[〈〉], IΓ [〈〉](q[γΓp], δ[〈〈〉, q〉]) ∈ Type(Γ)

These associations yield an equivalence of categories since pInv(δ) and δ are iso-
morphic in C/Γ .

It is easy to see that T (Γ) has binary products if the cwf supports Σ-types
and exponentials if it supports Π-types. Simply define A×B = Σ(A,B[p]) and
BA = Π(A,B[p]). Hence by Proposition 9 it follows that C/Γ has products and
C has finite limits in any democratic cwf which supports extensional identity
types and Σ-types. If it supports Π-types too, then C/Γ is cartesian closed and
C is locally cartesian closed.

3 The 2-Category of Categories with Families

3.1 Pseudo Cwf-Morphisms

A notion of strict cwf-morphism between cwfs (C, T) and (C′, T ′) was defined by
Dybjer [4]. It is a pair (F, σ), where F : C→ C′ is a functor and σ : T •→ T ′F is
a natural transformation of family-valued functors, such that terminal objects
and context comprehension are preserved on the nose. Here we need a weak
version where the terminal object, context comprehension, and substitution of
types and terms of a cwf are only preserved up to isomorphism. The pseudo-
natural transformations needed to prove our biequivalences will be families of
cwf-morphisms which do not preserve cwf-structure on the nose.

The definition of pseudo cwf-morphism will be analogous to that of strict cwf-
morphism, but cwf-structure will only be preserved up to coherent isomorphism.

Definition 10. A pseudo cwf-morphism from (C, T) to (C′, T ′) is a pair
(F, σ) where:

– F : C→ C′ is a functor,
– For each context Γ in C, σΓ is a Fam-morphism from TΓ to T ′FΓ . We will

write σΓ (A) : Type′(FΓ) for the type component and σAΓ (a) : FΓ ` σΓ (A)
for the term component of this morphism.

The following preservation properties must be satisfied:

– Substitution is preserved: For each context δ : ∆→ Γ in C and A ∈ Type(Γ),
there is an isomorphism of types θA,δ : σΓ (A)[Fδ] → σ∆(A[δ]) such that
substitution on terms is also preserved, that is, σA[γ]

∆ (a[γ]) =θA,γ σ
A
Γ (a)[Fγ].

– The terminal object is preserved: F [] is terminal.
– Context comprehension is preserved: F (Γ ·A) with the projections F (pA) and
{θ−1
A,p}(σ

A[p]
Γ·A (qA)) is a context comprehension of FΓ and σΓ (A). Note that

the universal property on context comprehensions provides a unique isomor-
phism ρΓ,A : F (Γ ·A)→ FΓ ·σΓ (A) which preserves projections.

These data must satisfy naturality and coherence laws which amount to the fact
that if we extend σΓ to a functor σΓ : T (Γ) → T ′F (Γ), then σ is a pseudo
natural transformation from T to T ′F . This functor is defined by σΓ (A) =
σΓ (A) on an object A and σΓ (f) = ρΓ,BF (f)ρ−1

Γ,A on a morphism f : A→ B.

A consequence of this definition is that all cwf structure is preserved.

Proposition 11. Let (F, σ) be a pseudo cwf-morphism from (C, T) to (C′, T ′).

(1) Then substitution extension is preserved: for all δ : ∆→ Γ in C and a : ∆ `
A[δ], we have F (〈δ, a〉) = ρ−1

Γ,A〈Fδ, {θ
−1
A,δ}(σ

A[δ]
∆ (a))〉.

(2) Redundancy terms/sections: for all a ∈ Γ ` A, σAΓ (a) = q[ρΓ,AF (〈id, a〉)].

If (F, σ) : (C0, T0)→ (C1, T1) and (G, τ) : (C1, T1)→ (C2, T2) are two pseudo
cwf-morphisms, we define their composition (G, τ)(F, σ) as (GF, τσ) where:

(τσ)Γ (A) = τFΓ (σΓ (A))

(τσ)AΓ (a) = τ
σΓ (A)
FΓ (σAΓ (a))

The families θGF and ρGF are obtained from θF , θG and ρF and ρG in the obvious
way. The fact that these data satisfy the necessary coherence and naturality
conditions basically amounts to the stability of pseudonatural transformation
under composition. There is of course an identity pseudo cwf-morphism whose
components are all identities, which is obviously neutral for composition. So,
there is a category of cwfs and pseudo cwf-morphisms.

Since the isomorphism (Γ ·A)·B ∼= Γ ·Σ(A,B) holds in an arbitrary cwf which
supports Σ-types, it follows that pseudo cwf-morphisms automatically preserve
Σ-types, since they preserve context comprehension. However, if cwfs support
other structure, we need to define what it means that cwf-morphisms preserve
this extra structure up to isomorphism.

Definition 12. Let (F, σ) be a pseudo cwf-morphism between cwfs (C, T) and
(C′, T ′) which support identity types, Π-types, and democracy, respectively.

– (F, σ) preserves identity types provided σΓ (IA(a, a′)) ∼= IσΓ (A)(σAΓ (a), σAΓ (a));
– (F, σ) preserves Π-types provided σΓ (Π(A,B)) ∼= Π(σΓ (A), σΓ·A(B)[ρ−1

Γ,A]);

– (F, σ) preserves democracy provided σ[](Γ) ∼=dΓ FΓ [〈〉], and the following
diagram commutes:

FΓ
FγΓ //

γFγ ��

F ([]·Γ)
ρ[],Γ��

[]·FΓ oo
〈〈〉,q〉

F []·FΓ [〈〉] oo
dΓ

F []·σ[](Γ)

These preservation properties are all stable under composition and thus yield
several different 2-categories of structure-preserving pseudo cwf-morphisms.

3.2 Pseudo Cwf-Transformations

Definition 13 (Pseudo cwf-transformation). Let (F, σ) and (G, τ) be two
cwf-morphisms from (C, T) to (C′, T ′). A pseudo cwf-transformation from (F, σ)
to (G, τ) is a pair (φ, ψ) where φ : F •→ G is a natural transformation, and for
each Γ in C and A ∈ Type(Γ), a morphism ψΓ,A : σΓ (A) → τΓ (A)[φΓ] in
T ′(FΓ), natural in A and such that the following diagram commutes:

σΓ (A)[Fδ]
T ′(Fδ)(ψΓ,A) //

θA,δ
��

τΓ (A)[φΓF (δ)]

T ′(φ∆)(θ′A,δ)
��

σ∆(A[δ])
ψ∆,A[δ]

// τ∆(A[δ])[φ∆]

where θ and θ′ are the isomorphisms witnessing preservation of substitution in
types in the definition of pseudo cwf-morphism.

Pseudo cwf-transformations can be composed both vertically (denoted by
(φ′, ψ′)(φ, ψ)) and horizontally (denoted by (φ′, ψ′) ? (φ, ψ)), and these compo-
sitions are associative and satisfy the interchange law. Note that just as coher-
ence and naturality laws for pseudo cwf-morphisms ensure that they give rise
to pseudonatural transformations (hence morphisms of indexed categories) σ to
τ , this definition exactly amounts to the fact that pseudo cwf-transformations
between (F, σ) and (F, τ) correspond to modifications from σ to τ .

3.3 2-Categories of Cwfs with Extra Structure

Definition 14. Let CwFIextΣ
dem be the 2-category of small democratic categories

with families which support extensional identity types and Σ-types. The 1-cells
are cwf-morphisms preserving democracy and extensional identity types (and Σ-
types automatically) and the 2-cells are pseudo cwf-transformations.

Moreover, let CwFIextΣΠ
dem be the sub-2-category of CwFIextΣ

dem where also Π-
types are supported and preserved.

4 Forgetting Types and Terms

Definition 15. Let FL be the 2-category of small categories with finite limits
(left exact categories). The 1-cells are functors preserving finite limits (up to
isomorphism) and the 2-cells are natural transformations.

Let LCC be the 2-category of small locally cartesian closed categories. The 1-
cells are functors preserving local cartesian closed structure (up to isomorphism),
and the 2-cells are natural transformations.

FL is a sub(2-)category of the 2-category of categories: we do not provide
a choice of finite limits. Similarly, LCC is a sub(2-)category of FL. The first
component of our biequivalences will be forgetful 2-functors.

Proposition 16. The forgetful 2-functors

U : CwFIextΣ
dem → FL

U : CwFIextΣΠ
dem → LCC

defined as follows on 0-, 1-, and 2-cells

U(C, T) = C
U(F, σ) = F

U(φ, ψ) = φ

are well-defined.

Proof. By definition U is a 2-functor from CwF to Cat, it remains to prove
that it sends a cwf in CwFIextΣ

dem to FL and a cwf in CwFIextΣΠ
dem to LCC, along

with the corresponding properties for 1-cells and 2-cells.
For 0-cells we already proved as corollaries of Proposition 9 that if (C, T)

supports Σ-types, identity types and democracy, then C has finite limits; and if
(C, T) also supports Π-types, then C is an lccc.

For 1-cells we need to prove that if (F, σ) preserves identity types and democ-
racy, then F preserves finite limits; and if (F, σ) also preserves Π-types then F
preserves local exponentiation. Since finite limits and local exponentiation in C
and C′ can be defined by the inverse image construction, these two statements
boil down to the fact that if (F, σ) preserves identity types and democracy then
inverse images are preserved. Indeed we have an isomorphism F (Γ · Inv(δ)) ∼=
FΓ·Inv(Fδ). This can be proved by long but mostly direct calculations involving
all components and coherence laws of pseudo cwf-morphisms.

There is nothing to prove for 2-cells.

5 Rebuilding Types and Terms

Now, we turn to the reverse construction. We use the Bénabou-Hofmann con-
struction to build a cwf from any finitely complete category, then generalize this
operation to functors and natural transformations, and show that this gives rise
to a pseudofunctor.

Proposition 17. There are pseudofunctors

H : FL→ CwFIextΣ
dem

H : LCC→ CwFIextΣΠ
dem

defined by

HC = (C, TC)
HF = (F, σF)
Hφ = (φ, ψφ)

on 0-cells, 1-cells, and 2-cells, respectively, and where TC, σF , and ψφ are defined
in the following three subsections.

Proof. The remainder of this Section contains the proof. We will in turn show
the action on 0-cells, 1-cells, 2-cells, and then prove pseudofunctoriality of H.

5.1 Action on 0-Cells

As explained before, it is usual (going back to Cartmell [2]) to represent a type-
in-context A ∈ Type(Γ) in a category as a display map [15], that is, as an object
pA in C/Γ . A term Γ ` A is then represented as a section of the display map
for A, that is, a morphism a such that pA ◦ a = idΓ . Substitution in types is
then represented by pullback. This is essentially the technique used by Seely for
interpreting Martin-Löf type theory in lcccs. However, as we already mentioned,
it leads to a coherence problem.

To solve this problem Hofmann [5] used a construction due to Bénabou [1],
which from any fibration builds an equivalent split fibration. Hofmann used it
to build a category with attributes (cwa) [2] from a locally cartesian closed
category. He then showed that this cwa supports Π,Σ, and extensional identity
types. This technique essentially amounts to associating to a type A, not only
a display map, but a whole family of display maps, one for each substitution
instance A[δ]. In other words, we choose a pullback square for every possible
substitution and this choice is split, hence solving the coherence problem. As we
shall explain below this family takes the form of a functor, and we refer to it as
a functorial family.

Here we reformulate Hofmann’s construction using cwfs. See Dybjer [4] for
the correspondence between cwfs and cwas.

Lemma 18. Let C be a category with terminal object. Then we can build a
democratic cwf (C, TC) which supports Σ-types. If C has finite limits, then (C, TC)
also supports extensional identity types. If C is locally cartesian closed, then
(C, TC) also supports Π-types.

Proof. We only show the definition of types and terms in TC(Γ). This construc-
tion is essentially the same as Hofmann’s [5].

A type in TypeC(Γ) is a functorial family, that is, a functor
−→
A : C/Γ → C→

such that cod ◦
−→
A = dom and if Ω

δα
��88
α // ∆

δ
����

Γ

is a morphism in C/Γ , then
−→
A (α) is

a pullback square:
−→
A(δ,α) //

−→
A(δα)

��
−→
A(δ)
��

Ω α
// ∆

Following Hofmann, we denote the upper arrow of the square by
−→
A (δ, α).

A term a : Γ `
−→
A is a section of

−→
A (idΓ), that is, a morphism a : Γ →

Γ ·
−→
A such that

−→
A (idΓ)a = idΓ , where we have defined context extension by

Γ ·
−→
A = dom(

−→
A (idΓ)). Interpreting types as functorial families makes it easy to

define substitution in types. Substitution in terms is obtained by exploiting the
universal property of pullback squares, yielding a functor TC : Cop → Fam.

Note that (C, TC) is a democratic cwf since to any context Γ we can associate
a functorial family “〈〉 : C/[]→ C→, where 〈〉 : Γ → [] is the terminal projection.
The isomorphism γΓ : Γ → []·“〈〉 is just idΓ .

5.2 Action on 1-Cells

Suppose that C and C′ have finite limits and that F : C → C′ preserves them.
As described in the previous section, C and C′ give rise to cwfs (C, TC) and
(C′, TC′). In order to extend F to a pseudo cwf-morphism, we need to define, for
each object Γ in C, a Fam-morphism (σF)Γ : TC(Γ)→ TC′F (Γ). Unfortunately,
unless F is full, it does not seem possible to embed faithfully a functorial family−→
A : C/Γ → C→ into a functorial family over FΓ in C′. However, there is such an
embedding for display maps (just apply F) from which we will freely regenerate
a functorial family from the obtained display map.

The “hat” construction. As remarked by Hofmann, any morphism f : ∆ → Γ
in a category C with a (not necessarily split) choice of finite limits generates a
functorial family f̂ : C/Γ → C→. If δ : ∆ → Γ then f̂(δ) = δ∗(f), where δ∗(f)
is obtained by taking the pullback of f along δ (δ∗ is known as the pullback
functor):

δ∗(f)
��

//

f
��

∆
δ
// Γ

Note that we can always choose pullbacks such that f̂(idΓ) = id∗Γ (f) = f .
If Ω

δα
 AA
α // ∆

δ
~~}}

Γ

is a morphism in C/Γ , we define f̂(α) as the left square in the

following diagram:

f̂(δ,α) //

f̂(δα)
��

f̂(δ)
��

//

f
��

∆′ α
// ∆

δ
// Γ

This is a pullback, since both the outer square and the right square are pullbacks.

Translation of types. The hat construction can be used to extend F to types:

σF (
−→
A) =

Ÿ�
F (
−→
A (id))

Note that F (Γ ·
−→
A) = F (dom(

−→
A (id))) = dom(F (

−→
A (id))) = dom(σΓ (

−→
A)(id)) =

FΓ ·σΓ (
−→
A), so context comprehension is preserved on the nose. However, substi-

tution on types is not preserved on the nose. Hence we have to define a coherent
family of isomorphisms θ−→

A,δ
.

Completion of cwf-morphisms. Fortunately, whenever F preserves finite limits
there is a canonical way to generate all the remaining data.

Lemma 19 (Generation of isomorphisms). Let (C, T) and (C′, T ′) be two
cwfs, F : C→ C′ a functor preserving finite limits, σΓ : Type(Γ)→ Type′(FΓ)
a family of functions, and ρΓ,A : F (Γ ·A)→ FΓ ·σΓ (A) a family of isomorphisms
such that pρΓ,A = Fp. Then there exists an unique choice of functions σAΓ on
terms and of isomorphisms θA,δ such that (F, σ) is a pseudo cwf-morphism.

Proof. By item (2) of Proposition 11, the unique way to extend σ to terms is to
set σAΓ (a) = q[ρΓ,AF (〈id, a〉)]. To generate θ, we use the two squares below:

F∆·σΓ (A)[Fδ]
〈(Fδ)pq〉 //

p

��

FΓ ·σΓ (A)

p

��
F∆

Fδ
// FΓ

F∆·σ∆(A[δ])
ρΓ,AF (〈δp,q〉)ρ−1

∆,A[δ] //

p

��

FΓ ·σΓ (A)

p

��
F∆

Fδ
// FΓ

The first square is a substitution pullback. The second is a pullback because F
preserves finite limits and ρΓ,A and ρ∆,A[δ] are isomorphisms. The isomorphism
θA,δ is defined as the unique mediating morphism from the first to the second.
It follows from the universal property of pullbacks that the family θ satisfies the
necessary naturality and coherence conditions. There is no other choice for θA,δ,
because if (F, σ) is a pseudo cwf-morphism with families of isomorphisms θ and
ρ, then ρΓ,AF (〈δp, q〉)ρ−1

∆,A[δ]θA,δ = 〈(Fδ)p, q〉. Hence if F preserves finite limits,
θA,δ must coincide with the mediating morphism.

Preservation of additional structure. As a pseudo cwf-morphism, (F, σF) au-
tomatically preserves Σ-types. Since the democratic structure of (C, TC) and
(C′, TC′) is trivial it is clear that it is preserved by (F, σF). To prove that it also
preserves type constructors, we use the following proposition.

Proposition 20. Let (F, σ) be a pseudo cwf-morphism between (C, T) and (C′, T ′)
supporting Σ-types and democracy. Then:

– If (C, T) and (C′, T ′) both support identity types, then (F, σ) preserves iden-
tity types provided F preserves finite limits.

– If (C, T) and (C′, T ′) both support Π-types, then (F, σ) preserves Π-types
provided F preserves local exponentiation.

Proof. For the first part it remains to prove that if F preserves finite limits, then
(F, σ) preserves identity types. Since a, a′ ∈ Γ ` A, pIA(a,a′) : Γ ·IA(a, a′) → Γ
is an equalizer of 〈id, a〉 and 〈id, a′〉 and F preserves equalizers, it follows that
F (pIA(a,a′)) is an equalizer of 〈id, σAΓ (a)〉 and 〈id, σAΓ (a′)〉, and by uniqueness of
equalizers it is isomorphic to IσΓ (A)(σAΓ (a), σAΓ (a′)).

The proof of preservation of Π-types exploits in a similar way the uniqueness
(up to iso) of “Π-objects” of A ∈ Type(Γ) and B ∈ Type(Γ ·A).

5.3 Action on 2-Cells

Similarly to the case of 1-cells, under some conditions a natural transformation
φ : F •→ G where (F, σ) and (G, τ) are pseudo cwf-morphisms can be completed
to a pseudo cwf-transformation (φ, ψφ), as stated below.

Lemma 21 (Completion of pseudo cwf-transformations). Suppose (F, σ)
and (G, τ) are pseudo cwf-morphisms from (C, T) to (C′, T) such that F and
G preserve finite limits and φ : F •→ G is a natural transformation, then there
exists a family of morphisms (ψφ)Γ,A : σΓ (A)→ τΓ (A)[φΓ] such that (φ, ψφ) is
a pseudo cwf-transformation from (F, σ) to (G, τ).

Proof. We set ψΓ,A = 〈p, q[ρ′Γ,AφΓ·Aρ
−1
Γ,A]〉 : FΓ ·σΓA→ FΓ ·τΓ (A)[φΓ]. To check

the coherence law, we apply the universal property of a well-chosen pullback
square (exploiting the fact that G preserves finite limits).

This completion operation on 2-cells commutes with units and both notions
of composition, as will be crucial to prove pseudofunctoriality of H:

Lemma 22. If φ : F •→ G and φ′ : G •→ H, then

(φ′, ψφ′)(φ, ψφ) = (φ′φ, ψφ′φ)
(φ, ψφ) ? 1 = (φ ? 1, ψφ?1)
1 ? (φ, ψφ) = (1 ? φ, ψ1?φ)

(φ′, ψφ′) ? (φ, ψφ) = (φ′ ? φ, ψφ′?φ)

whenever these expressions typecheck.

Proof. Direct calculations.

5.4 Pseudofunctoriality of H

Note that H is not a functor, because for any F : C→ D with finite limits and
functorial family

−→
A over Γ (in C), σΓ (

−→
A) forgets all information on

−→
A except

its display map
−→
A (id), and later extends F (

−→
A (id)) to an independent functo-

rial family. However if F : C → D and G : D → E preserve finite limits, the
two pseudo cwf-morphisms (G, σG) ◦ (F, σF) = (GF, σGσF) and (GF, σGF) are
related by the pseudo cwf-transformation (1GF , ψ1GF), which is obviously an iso-
morphism. The coherence laws only involve vertical and horizontal compositions
of units and pseudo cwf-transformations obtained by completion, hence they are
easy consequences of Lemma 22.

6 The Biequivalences

Theorem 23. We have the following biequivalences of 2-categories.

FL
H // CwFIextΣ

dem
U
oo LCC

H // CwFIextΣΠ
dem

U
oo

Proof. Since UH = Id (the identity 2-functor) it suffices to construct pseudo-
natural transformations of pseudofunctors:

Id
η //

HU
ε

oo

which are inverse up to invertible modifications. Since HU(C, T) = (C, TC),
these pseudonatural transformations are families of equivalences of cwfs:

(C, T)
η(C,T) // (C, TC)
ε(C,T)
oo

which satisfy the required conditions for pseudonatural transformations.

Construction of η(C,T). Using Lemma 19, we just need to define a base functor,
which will be IdC, and a family σηΓ which translates types (in the sense of T)
to functorial families. This is easy, since types in the cwf (C, T) come equipped
with a chosen behaviour under substitution. Given A ∈ Type(Γ), we define:

σηΓ (A)(δ) = pA[δ]

σηΓ (A)(δ, γ) = 〈γp, q〉

For each pseudo cwf-morphism (F, σ), the pseudonaturality square relates two
pseudo cwf-morphisms whose base functor is F . Hence, the necessary invertible
pseudo cwf-transformation is obtained using Lemma 21 from the identity natural
transformation on F . The coherence conditions are straightforward consequences
of Lemma 22.

Construction of ε(C,T). As for η, the base functor for ε(C,T) is IdC. Using Lemma
19 again we need, for each context Γ , a function σεΓ which given a functorial
family

−→
A over Γ will build a syntactic type σεΓ (

−→
A) ∈ Type(Γ). In other terms,

we need to find a syntactic representative of an arbitrary display map, that is,
an arbitrary morphism in C. We use the inverse image:

σεΓ (
−→
A) = Inv(

−→
A (id)) ∈ Type(Γ)

The family ε is pseudonatural for the same reason as η above.

Invertible modifications. For each cwf (C, T), we need to define invertible pseudo
cwf-transformations m(C,T) : (εη)(C,T) → id(C,T) and m′(C,T) : (ηε)(C,T) →
id(C,T). As pseudo cwf-transformations between pseudo cwf-morphisms with the
same base functor, their first component will be the identity natural transfor-
mation, and the second will be generated by Lemma 21. The coherence law for
modifications is a consequence of Lemma 22.

References

1. Jean Bénabou. Fibred categories and the foundation of naive category theory.
Journal of Symbolic Logic, 50:10–37, 1985.

2. John Cartmell. Generalized algebraic theories and contextual categories. Annals
of Pure and Applied Logic, 32:209–243, 1986.

3. Pierre-Louis Curien. Substitution up to isomorphism. Fundamenta Informaticae,
19(1,2):51–86, 1993.

4. Peter Dybjer. Internal type theory. In TYPES ’95, Types for Proofs and Programs,
number 1158 in Lecture Notes in Computer Science, pages 120–134. Springer, 1996.

5. Martin Hofmann. On the interpretation of type theory in locally cartesian closed
categories. In Leszek Pacholski and Jerzy Tiuryn, editors, CSL, volume 933 of
Lecture Notes in Computer Science. Springer, 1994.

6. Martin Hofmann. Syntax and semantics of dependent types. In Andrew Pitts and
Peter Dybjer, editors, Semantics and Logics of Computation. Cambridge University
Press, 1996.

7. F. William Lawvere. Equality in hyperdoctrines and comprehension schema as an
adjoint functor. In A. Heller, editor, Applications of Categorical Algebra, Proceed-
ings of Symposia in Pure Mathematics. AMS, 1970.

8. Tom Leinster. Basic bicategories. arXiv:math/9810017v1, 1999.
9. Per Martin-Löf. Constructive mathematics and computer programming. In Logic,

Methodology and Philosophy of Science, VI, 1979, pages 153–175. North-Holland,
1982.

10. Per Martin-Löf. Intuitionistic Type Theory. Bibliopolis, 1984.
11. Per Martin-Löf. Substitution calculus. Notes from a lecture given in Göteborg,

November 1992.
12. Samuel Mimram. Decidability of equality in categories with families. Report,

Magistère d’Informatique et Modelisation, École Normale Superieure de Lyon,
http://www.pps.jussieu.fr/~smimram/, 2004.

13. Robert Seely. Locally cartesian closed categories and type theory. Math. Proc.
Cambridge Philos. Soc., 95(1):33–48, 1984.

14. Alvaro Tasistro. Formulation of Martin-Löf’s theory of types with explicit substi-
tutions. Technical report, Department of Computer Sciences, Chalmers University
of Technology and University of Göteborg, 1993. Licentiate Thesis.

15. Paul Taylor. Practical Foundations of Mathematics. Cambridge University Press,
1999.

