
MFPS 2008

The Interpretation of Intuitionistic Type Theory
in Locally Cartesian Closed Categories

– an Intuitionistic Perspective
to Phil Scott on the occasion of his 60th birthday year

Alexandre Buisse1

Programming, Logic and Semantics Group
IT University of Copenhagen

Rued Langgaards Vej 7, 2300 København S

Peter Dybjer2

Department of Computer Science and Engineering
Chalmers University of Technology
Rännvägen 6, S-41296 Göteborg

Abstract

We give an intuitionistic view of Seely’s interpretation of Martin-Löf’s intuitionistic type theory in locally cartesian closed
categories. The idea is to use Martin-Löf type theory itself as metalanguage, and E-categories, the appropriate notion
of categories when working in this metalanguage. As an E-categorical substitute for the formal system of Martin-Löf
type theory we use E-categories with families (E-cwfs). These come in two flavours: groupoid-style E-cwfs and proof-
irrelevant E-cwfs. We then analyze Seely’s interpretation as consisting of three parts. The first part is purely categorical:
the interpretation of groupoid-style E-cwfs in E-locally cartesian closed categories. (The key part of this interpretation has
been type-checked in the Coq system.) The second is a coherence problem which relates groupoid-style E-cwfs with proof-
irrelevant ones. The third is a purely syntactic problem: that proof-irrelevant E-cwfs are equivalent to traditional lambda
calculus based formulations of Martin-Löf type theory.

1 Introduction

In this lecture we draw together two of Phil Scott’s interests: the relationship between type
theory and category theory on the one hand and constructive category theory on the other.
Let us begin with a quotation from the book Introduction to higher order categorical logic
by Lambek and Scott [10]:

We also claim that intuitionistic type theories and toposes are closely related, in as much
as there is a pair of adjoint functors between their respective categories. This is worked

1 Email: abui@itu.dk
2 Email: peterd@cs.chalmers.se

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:abui@itu.dk
mailto:peterd@cs.chalmers.se

Buisse and Dybjer

out in Part II. The relationship between Martin-Löf type theories and locally cartesian
closed categories was established too recently (by Robert Seely) to be treated here.

We shall here discuss Seely’s interpretation from an intuitionistic perspective. Our key idea
is to work in a constructive metalanguage. In fact we shall use Martin-Löf type theory itself
as a metalanguage! We shall use the same mindset as in the paper Normalization and the
Yoneda Embedding by Čubrić, Dybjer, and Scott [4]. In that paper we used the constructive
notion of a P-category where each hom-set is equipped with a partial equivalence relation.
We showed how the decision problem for equality in cartesian closed categories follows
more or less directly from a constructive reading of a few well-known facts about presheaf
categories including the Yoneda lemma. This provides a categorical and constructive alter-
native to the traditional solution, where equality in cartesian closed categories is decided by
using the normalization and Church-Rosser properties of the simply typed lambda calculus.

Note also that Martin-Löf called his theory "intuitionistic type theory", although it is
quite different from the "usual" intuitionistic type theory of Lambek and Scott which is
an intuitionistic version of type theory in the tradition of Russell and Church. Unlike the
usual type theory Martin-Löf type theory is a programming language. It is based on the
Curry-Howard identification of propositions and types, and the notion of dependent type
is primitive. When we talk about "intuitionistic type theory" in this paper we henceforth
always mean Martin-Löf’s intuitionistic type theory.

Seely’s interpretation is described in the paper Locally cartesian closed categories and
type theory [15]. His main result states that the following two categories are equivalent:

• the category of "Martin-Löf theories" with types ∏x∈A B[x],∑x∈A B[x], and I(a,b), where
the rules for the identity type I are those of the extensional intuitionistic type theory of
Martin-Löf [12,13].

• the category of locally cartesian closed categories.

Close scrutiny of Seely’s proof however reveals some issues in need of further clarifi-
cation. These issues were discussed by Curien in his paper Substitution up to isomorphism
[5]. Curien proposes a way

... to solve a difficulty arising from a mismatch between syntax and semantics: in lo-
cally cartesian closed categories, substitution is modelled by pullbacks (more generally
pseudo-functors), that is, only up to isomorphism, unless split fibrational hypotheses are
imposed. ... but not all semantics do satify them, and in particular not the general descrip-
tion of the interpretation in an arbitrary locally cartesian closed category. In the general
case, we have to show that the isomorphisms between types arising from substitution are
coherent in a sense familiar to category theorists.

Due to this coherence problem at the level of types, we are led to:
• switch to a syntax where substitutions are explicitly present (in traditional presenta-

tions substitution is a meta-operation, defined by induction);
• include type equality judgements in this modified syntax: we consider here only equal-

ities describing the stepwise performance as substitution.
...
To our knowledge, the work presented here is the first solution to this problem, which,

until very recently, had not even been clearly identified, mainly due to an emphasis on
interesting mathematical models rather than on syntactic issues.

2

Buisse and Dybjer

Curien proceeded to show that it is possible to interpret type equality as isomorphism in
lcccs, and solve the coherence problem, for intuitionistic type theory with Π-types.

Somewhat later, Hofmann [7] showed how to construct a model of dependent type
theory (category with attributes) with Π-types, Σ-types, and (extensional) identity types
from a locally cartesian closed category by using a construction of Bénabou [2].

In this talk we shall revisit the Seely-Curien-Hofmann interpretation from an intuition-
istic perspective. Seely, Curien and Hofmann of course all worked with the usual notion
of category and with the usual classical (informal set-theoretic) metalanguage. We shall
show how we get a new perspective on the problem if we work in an intuitionistic meta-
language, In particular, we shall explain why we are naturally led to interpret equality of
types as isomorphism of objects in a category; why constructions of intuitionistic category
theory nevertheless come with a choice (of pullbacks for example); and why the intuition-
istic perspective helps us to understand the construction of a term models of intuitionistic
type theory. Moreover, we point out that Seely’s abstract fact about an equivalence of cat-
egories becomes a computer program. We write a "compiler" between two "programming
languages": the language of intuitionistic type theory and the language of lcccs. Metamath-
ematics has become metaprogramming!

Our approach will be based on the notion of an E-category. This is the standard notion
of a category in the constructive sense. An E-category is just like a P-category, but hom-sets
are equipped with equivalence relations rather than partial equivalence relations.

In the remainder of the paper we shall

• use intuitionistic type theory itself as metalanguage; in fact, we only need the very core
of intuitionistic type theory, the "logical framework" with Π,Σ, and a universe;

• use the notion of an E-locally cartesian closed category (E-lccc);
• introduce the notion of an E-category with families (E-cwf) as a categorical substitute

for the formal system of intuitionistic type theory;
• show two alternative definitions: groupoid-style and proof-irrelevant E-cwfs;
• outline the proof that any E-lccc is a groupoid style E-cwf with Π, Σ, and I-types
• show some code which suggests how this result is implemented in the Coq-system;
• introduce the coherence problem of relating groupoid-style and proof-irrelevant E-cwfs.

The key part of the proof that any E-lccc is a groupoid style E-cwf has been implemented in
the Coq system by the first author. He has constructed the E-category of (groupoid style) E-
families EFam and also shown how to construct an E-functor T : C → EFam whenever C
has finite limits. We plan to present the details of the Coq-implementation in a forthcoming
publication.

Acknowledgements
These notes are based on a lecture given by the second author in the Special Session

to honour Phil Scott on the occasion of his 60th birthday year. It was held in conjunction
with MFPS XXIV in Philadelphia in May 2008. The second author is grateful for the many
things Phil Scott has taught him about the connections between logic, types, and categories,
and for very enjoyable collaboration. He would also like to thank Rick Blute and Andre
Scedrov for organizing the Special Session and for inviting him to contribute to it.

3

Buisse and Dybjer

2 E-locally cartesian closed categories

In Martin-Löf type theory a set is the same as a data type in a programming language.
However, many sets (the real numbers, the rationals, the carrier of the free group, etc)
come equipped with a notion of "equality" which is not the intrinsic identity of objects of
the data type. Since quotient formation is not a constructive operation on sets, constructive
mathematicians instead work with sets which are equipped with an equivalence relation.
We shall follow the terminology of Čubrić, Dybjer, and Scott [4] and call them "E-sets”,
although they are usually called "setoids" in the type-theoretic community. Martin-Löf has
proposed to call them "extensional sets". Bishop simply called them "sets", and used the
term "preset" for the underlying representing data type.

E-sets and E-functions
An E-set (setoid, Bishop set, extensional set) is a set with an equivalence relation.

Type-theoretically, an equivalence relation is a quadruple: a relation together with proofs
of reflexivity, transitivity, and symmetry. Hence an E-set is a quintuple, a set together with
the four components of the equivalence relation. In Coq we use records to represent tuples
and the type of E-sets is thus defined as follows, bearing in mind that "sets" in the sense of
Martin-Löf are implemented as "types" in Coq.

Record ESet : Type := {
carrier :> Type;
eq : carrier → carrier → Type;
refl : ∀x : carrier, eq x x;
trans : ∀x y z : carrier, eq x y → eq y z → eq x z;
sym : ∀x y : carrier, eq x y → eq y x

}.
Notation "x ≡ y" := (eq x y) (at level 70).

We would like to remark that this definition uses a form of universe polymorphism. The
level of the two instances of Type is implicit and will be determined by the context in which
the E-set is used. By choosing the levels appropriately we can both get a notion of "small"
E-set and various levels of "large" E-sets. Note that the type of ESet must be one level
higher in the universe hierarchy than the type of carrier.

Moroever, the sign :> signifies a coercion which allows us to use the same name for an
E-set and its carrier set.

An E-function (setoid map, Bishop function, extensional function) preserves the equiv-
alence relation:

Record EFun (A B : ESet) : Type := {
func :> A → B;
pres : ∀x y : A, x ≡ y → func x ≡ func y

}.

E-categories
As already mentioned, the constructive notion of category has E-homsets. However,

we do not include a notion of equality of objects as part of the structure of an E-category.

4

Buisse and Dybjer

As category-theorists often point out, the moral notion of equality of objects is isomor-
phism; we do not need another distinct, primitive notion of equality of objects. Our Coq
implementation is as follows:

Record ECat : Type := {
ob : Type;
hom :> ob → ob → ESet;
id : ∀A:ob, hom A A;
comp : ∀A B C:ob, hom B C ⇒ hom A B ⇒ hom A C;
idL : ∀(A B:ob) (f:hom A B), comp _ _ _ (id _) f ≡ f;
idR : ∀(A B:ob) (f:hom A B), comp _ _ _ f (id _) ≡ f;
assoc : ∀(A B C D:ob) (f:hom C D) (g:hom B C) (h:hom A B),

comp _ _ _ (comp _ _ _ f g) h ≡
comp _ _ _ f (comp _ _ _ g h)

}.

The⇒-notation expresses that composition is a binary E-function on E-homsets.
We have used a coercion which allows us to use the notation C A B for the E-set of

arrows between A and B in the E-category C .
As for the definition of E-set, the definition of E-category can be instantiated to yield

various notions of small and large category.

E-pullbacks
It is quite straightforard to formalize the basic E-categorical notions, see Huet and Saibi

[9]. For example, the constructive notion of E-pullback is implemented by the following
Coq code which states that an E-pullback is a function which maps a triple of objects A, B,
C and pair of arrows f, g (with appropriate sources and target) to a quintuple consisting
of the object D (the apex), the projection arrows h, k, and the proofs sq and un (of the
commutativity of the pullback square and of the universal property, respectively):

Record EPullback (C : ECat) (A B C : ob C)
(f : C B A) (g : C C A) : Type := {

D : ob C;
h : C D B;
k : C D C;
sq : f ◦ h ≡ g ◦ k;
un : ...

}.

Since it is a constructive function an E-pullback always comes with a computable
choice. We essentially have an instance of the type-theoretic axiom of choice, which ex-
presses (in Coq-notation) how to construct a choice function f from a set A to an A-indexed
family of sets B:

(∀ x : A, ∃ y : B x, C x y) →
(∃ f : (∀ x : A, B x), ∀ x : A, C x (f x))

The validity of this axiom is a direct consequence of the constructive meaning of the
logical constants following the Brouwer-Heyting-Kolmogorov (and Curry-Howard-Martin-
Löf) interpretation.

5

Buisse and Dybjer

Note however that the "extensional" axiom of choice [14] is not valid. If A and B are
E-sets, there is no reason why the choice function f should preserve the equivalence rela-
tion. But does the E-pullback come with an extensional choice? This is only a meaningful
question if we equip the set of objects of the category with an equivalence relation. If this is
isomorphism, then the answer is yes, E-pullbacks map equal arrows to isomorphic objects.

E-locally cartesian closed categories
We can now define the notion of an E-locally cartesian closed category as an E-category

C such that all E-slice categories C/A are E-cccs for all objects A. The objects of the E-slice
category C/A are arrows of C with target A. The arrows of C/A are commuting triangles,
formalized type-theoretically as pairs of arrows and proofs that the triangle commutes.

Note that since there is no primitive notion of equality of objects in C/A, the equality
of arrows in C is not passed on to these objects. However, we can prove that equal arrows
of C become isomorphic objects of C/A.

Since it is straightfoward to define the notion of E-cartesian closure, we can define the
notion of E-lccc as follows:

Record ELCCC : Type := {
C :> ECat;
ccc : ∀ A : ob C, ECCC (C/A)

}.

3 E-categories with families

What is Martin-Löf’s intuitionistic type theory?
Having completed the E-categorical definition of lcccs, we now ask ourself how to for-

malize Martin-Löf type theory. And since Martin-Löf type theory is also our metalanguage,
the question actually is how to formalize it in itself!

Before we address this question we need to ask ourselves exactly where to find a precise
definition of Martin-Löf type theory. Looking through the literature it becomes apparent
that it is not clear that there is a canonical definition. When writing down the syntax and
inference rules for intuitionistic type theory, we have to make some choices. Should we
use typed lambda calculus a la Church or a la Curry? Is the rule of substitution primitive or
derived? Is the substitution operation explicit (a constructor of syntax) or implicit (an op-
eration on the metalevel)? How are variables represented, with names or de Bruijn indices
or de Bruijn levels? Are universes formulated a la Russell or a la Tarski? Etc. Of course,
we believe that there is a number of equivalent formulations, but it may not be so easy to
prove this rigorously. And how do we make sure that we do not forget any inference rules?
The lack of a canonical definition is somewhat disturbing.

We here propose to use an abstract algebraic characterization of intuitionistic type the-
ory as the initial category with families (cwfs) with extra structure [6,8,3,1]. This is a
notion defined up to isomorphism. Cwfs provide the "minimal algebraization" of intuition-
istic type theory: substitution is made explicit and variables are replaced by projections.
However, dependent types are not modelled by fibrations as in lcccs and many other cate-
gorical notions of model of dependent types.

Note that cwfs are similar to indexed categories. However, cwfs match the syntac-

6

Buisse and Dybjer

tic structure of dependent type theory better, whereas indexed categories are closer to the
syntactic structure of predicate logic.

Categories with families (cwfs)
A category with families consists of

• C, a category of contexts. Its objects are called contexts and its morphisms are called
substitutions.

• T : Cop→ Fam, a functor where the
object part maps a context Γ to the family of sets of terms {a | Γ ` a : A} indexed by

the set of types {A | Γ ` A type} in Γ.
arrow part maps a substitution γ to a pair of functions which perform substitution of γ

in types and terms respectively. We write A[γ] for substitution of γ in a type A and a[γ]
for substitution of γ in the term a.

• A terminal object [] of C called the empty context. The unique arrow into [] is the empty
substitution.

• A context comprehension operation which to an object Γ of C and a type A in Γ associates
four components
context extension: an object Γ;A of C;
weakening: a morphism pΓ,A : Γ;A→ Γ of C - the first projection
assumption: a term qΓ,A ∈ Γ;A ` A[pΓ,A] - the second projection
substitution extension: for each object ∆ in C, morphism γ : ∆→ Γ, and term a ∈ ∆ `

A[γ], there is a unique morphism θ = 〈γ,a〉 : ∆→ Γ;A, such that pΓ,A ◦ θ = γ and
qΓ,A[θ] = a. This is the universal property of context comprehension.

Context comprehension in categories with families is similar to Lawvere’s comprehension
schema in hyperdoctrines [11].

E-cwfs and the E-category of E-families
It is clear how to understand the above definition of cwf if we base it on the usual (set-

theoretic) notions of category, functor, etc. But how are cwfs understood constructively as
"E-cwfs"? It should consist of

• an E-category C .
• an E-functor T : C → EFam.
• an E-terminal object.
• an E-context comprehension.

The crucial question is how to define the E-category of E-families EFam, since the other E-
categorical notions are clear. It turns out that there are two interesting alternatives: groupoid
style E-families and proof-irrelevant E-families.

The first alternative uses the analogy between E-sets and groupoids. As already men-
tioned an E-set is a quintuple consisting of a set, a relation, and proofs of reflexivity, transi-
tivity, and symmetry. If we equate all proofs we get a groupoid, where the carrier becomes
the set of objects, the proofs that two objects are related become arrows, the proofs of re-
flexivity become an identity arrows, transitivity proofs become composition arrows, and
symmetry proofs become inverse arrows in a groupoid.

7

Buisse and Dybjer

Hence an E-set indexed E-family should be analalogous to a groupoid-indexed family of
groupoids. These are isomorphism-preserving functors from a groupoid A to the category
of groupoids:

B : A →Groupoid
We write down the resulting definition in ordinary mathematical notation, since the Coq-
code is somewhat lengthy.

If A is an E-set, then an A-indexed family of E-sets consists of

• a family B of E-sets indexed by the carrier set of A;
• a reindexing map ι(p) : B(x′)→ B(x) whenever p : x≡A x′.

such that

• ι(refl)≡ext id (the identity map);
• ι(trans(p, p′))≡ext ι(p)◦ ι(p′) (composition of maps);
• ι(p) is an E-bijection with inverse ι(sym(p)).

Here,≡ext refers to extensional equality of E-functions, that is, functions which map equiv-
alent elements of the domain to equivalent elements of the codomain.

Let B be an A-indexed family of E-sets and let B′ be an A′-indexed family with reindex-
ings ι and ι′, respectively. A morphism between these two families consists of

• an E-function f : A→ A′;
• an A-indexed family of E-functions g(x) : B(x)→ B′(f (x)) for x : A.
• which is natural in x:

B(x′)
g(x′)

- B′(f (x′))

B(x)

ι(p)

?

g(x)
- B′(f (x))

ι′(f (p))

?

whenever p : x≡A x′.

There is an obvious definition of equivalence of morphisms of E-families.
The first author has implement the E-category EFam in Coq, but we have to postpone

showing the details of this implementation to a forthcoming publication. Given this defi-
nition and definitions of E-functors, E-terminal objects, and E-context comprehension, the
code for E-cwfs can be given as the following Coq-record:

Record ECwf : Type := {
C :> ECat;
T : EFunctor C EFam;
te : ETerminal C;
cc : EContextComprehension C T

}.

Cwfs only capture the most basic structure of dependent types, but it is easy to add extra
structure for interpreting Π-types, Σ-types, and I-types [6,1]:

8

Buisse and Dybjer

Record ECwfPiI : Type := {
C :> ECwf;
pi : EPi C;
sigma : ESigma C
i : EI C

}.

We have ended up with an iterated record structure. For example, the first component of an
E-cwf is an E-category which itself is a record, and the second component of an E-category,
the family of E-homsets, is a binary record-valued function.

E-cwfs as a flat record
Our iterated record structure can however be flattened (in the sense of functional pro-

gramming). If we reorder and rename the components we see that this flattened record
bears a strong similarity with the structure of the inference rules for the judgements of
Martin-Löf type theory. The first seven components of the flattened record codify the seven
forms of judgement of a substitution calculus in the style of Martin-Löf:

Record FlatECwf = := {
Ctxt : Type;
Hom : Ctxt -> Ctxt -> Type;
EHom : ∀ G D : Ctxt, Hom G D → Hom G D → Type;
Ty : Ctxt -> Type;
ETy : ∀ G : Ctxt, Ty G → Ty G → Type;
Tm : Ctxt -> Ty -> Type;
ETm : ∀ G : Ctxt, ∀ A : Ty G, Tm G A → Tm G A → Type;
...
inference rules
...

}.

Note that there is no judgement for equality of contexts, since our category of context does
not have an equality of objects.

The remaining components of the flattened record correspond to the inference rules of
a substitution calculus for dependent types. We only give one example of an inference rule:
the type equality rule (conversion rule). It comes from the reindexing map of E-families:

iota : ∀ G : Ctxt, ∀ A A’ : Ty G,
ETy G A A’ -> Tm G A’ -> Tm G A

E-cwfs as a flat record resembles Curien’s [5] explicit substitution calculus for dependent
types with explicit witnesses of type equalities. We can view it is a systematic reconstruc-
tion of Curien’s syntactic calculus, where we have relied on E-categorical structures.

4 Seely’s interpretation, intuitionistically

E-cwfs from E-categories with finite limits
We can now prove an E-categorical version of Seely’s theorem. As in Seely [15] we

get the E-cwf structure (with Π,Σ, and extensional identity types) from an E-lccc C in the

9

Buisse and Dybjer

following way:

• The base E-category is C .
• A type in a context Γ is an object of the slice E-category C/Γ. Equality of types is

isomorphism in the slice E-category.
• A term of type A in context Γ is a section of A. Equality of terms is inherited from

equality of arrows in the base E-category.
• Substitution in types is obtained from the E-pullback construction. We can here verify

the laws of groupoid-style E-cwfs.
• Etc, essentially following Seely, but with explicit treatment of inference rules of (flat-

tened) E-cwfs relating to the interpretation of type equalities as isomorphisms in C .

We have implemented the key part in Coq, the construction of the groupoid style E-category
EFam and the E-functor T : EFunctor C EFam. To prove this result, and more generally to
construct the groupoid style E-cwf structure it suffices for C to be an E-category with
finite limits. The details of this implementation are planned to appear in a forthcoming
publication.

The coherence problem
Have we now finished our constructive version of Seely’s theorem? No, although we

have argued that the flattened version of the E-cwf record has a close correspondence to
Curien’s calculus of explicit substitution we need to relate this to the "usual" syntax. The
usual syntax however corresponds to proof irrelevant E-cwfs, the second alternative men-
tioned above. This is because proofs of type-equalities do not matter in the usual inference
system.

We define an E-cwf to be proof irrelevant iff the following principle holds.

coh : ∀ G : Ctxt, ∀ A A’ : Ty G,
∀ p p’ : ETy G A A’, ∀ a : Tm G A,
ETm (iota G A A’ p a) (iota G A A’ p’ a)

The coherence problem is to relate groupoid style E-cwfs and proof irrelevant ones. Curien
solved a similar coherence problem by a process of cut-elimination. We expect that it is
possible to provide an E-categorical version of Curien’s proof, but have to leave this as a
conjecture for future work. It is not clear to us whether Hofmann’s use of the Bénabou
construction [7] can be transfered to our constructive setting.

References
[1] A. Abel, T. Coquand, and P. Dybjer. On the algebraic foundation of proof assistants for intuitionistic type theory. In

FLOPS, pages 3–13, 2008.

[2] J. Bénabou. Fibred categories and the foundation of naive category theory. Journal of Symbolic Logic, 50:10–37, 1985.

[3] A. Buisse and P. Dybjer. Towards formalizing categorical models of type theory in type theory. Electr. Notes Theor.
Comput. Sci., 196:137–151, 2008.

[4] D. Čubrić, P. Dybjer, and P. Scott. Normalization and the Yoneda embedding. Mathematical Structures in Computer
Science, 8:153–192, 1998.

[5] P.-L. Curien. Substitution up to isomorphism. Fundamenta Informaticae, 19(1,2):51–86, 1993.

10

Buisse and Dybjer

[6] P. Dybjer. Internal type theory. In TYPES ’95, Types for Proofs and Programs, number 1158 in Lecture Notes in
Computer Science, pages 120–134. Springer, 1996.

[7] M. Hofmann. On the interpretation of type theory in locally cartesian closed categories. In L. Pacholski and J. Tiuryn,
editors, CSL, volume 933 of Lecture Notes in Computer Science. Springer, 1994.

[8] M. Hofmann. Syntax and semantics of dependent types. In A. Pitts and P. Dybjer, editors, Semantics and Logics of
Computation. Cambridge University Press, 1996.

[9] G. Huet and A. Saibi. Constructive category theory. In Proceedings of the Joint CLICS-TYPES Workshop on Categories
and Type Theory, Göteborg, January 1995.

[10] J. Lambek and P. Scott. Introduction to Higher Order Categorical Logic. Cambridge University Press, 1986.

[11] F. W. Lawvere. Equality in hyperdoctrines and comprehension schema as an adjoint functor. In A. Heller, editor,
Applications of Categorical Algebra, Proceedings of Symposia in Pure Mathematics. AMS, 1970.

[12] P. Martin-Löf. Constructive mathematics and computer programming. In Logic, Methodology and Philosophy of
Science, VI, 1979, pages 153–175. North-Holland, 1982.

[13] P. Martin-Löf. Intuitionistic Type Theory. Bibliopolis, 1984.

[14] P. Martin-Löf. 100 years of Zermelo’s axiom of choice: what was the problem with it? The Computer Journal,
49(3):343–350, 2006.

[15] R. Seely. Locally cartesian closed categories and type theory. Math. Proc. Camb. Phil. Soc., 95(33), 1984.

11

	Introduction
	E-locally cartesian closed categories
	E-categories with families
	Seely's interpretation, intuitionistically
	References

