Normalization by Evaluation for Martin-L 0f Type Theory
with Typed Equality Judgements

Andreas Abef Thierry Coquand
Institut fur Informatik Department of Computer Science and Engineering
Ludwig-Maximilians-Universiat Chalmers University of Technology
Oettingenstr. 67, D-80538 thchen Rannvagen 6, S-41296 Geborg
abel@tcs.ifi.Imu.de coquand@cs.chalmers.se
Peter Dybjer

Department of Computer Science and Engineering
Chalmers University of Technology
Rannvagen 6, S-41296 @Geborg
peterd@cs.chalmers.se

Abstract sional type theories such as Coq, Agda, and Epigram, all
rely on the decision algorithm far : A using normaliza-
The decidability of equality is proved for MartinsE tion: the user attempts to prove the theordrby building
type theory with a universé la Russell and typed beta- a constructioru, and the system checks thais indeed a
eta-equality judgements. A corollary of this result is that proof of A.
the constructor for dependent function types is injective, a

property which is crucial for establishing the correctness of Typed equality judgements. In spite of many years of re-

the typ_e-checklng algonthm. The dec_|5|on prc_)ced_ure US€Ssearch into the metatheory of type theory a completely sat-
normalization by evaluation, an algorithm which first in-

terprets terms in a domain with untvoed semantic element isfactory story has yet to be told. Systems with an untyped

gth ts It IIfWI uThyp s ; ! thi Isnotion of conversion, such as Barendregt’s pure type sys-
and then extracts normal forms. 1he correctness of this a “tems, are well-understood, but there are reasons why theo-
gorithm is established using a PER-model and a logical re-

lation between svntax and semanti ries with a typed notion of conversioadquality judgemenjs
ation between syntax and semantics. are more fundamental. Firstly, the constructive meaning of

equality in the sense of Martindf [22, 23] is relative to
a type; two objects are not just equal, they are equal with

1. Introduction respect to a type. For this reason all systems of Martih-L
type theory from 1973 and onwards [21, 22, 26] use equality
The most important metatheorems of Martiofls in- judgements rather than untyped conversion. Secondly, sys-

tensional intuitionistic type theory [21, 26] (and related in- tems with a typed notion of conversion have clearer math-
tensional type theories such as the Calculus of Construc-ematical semantics: we can compute the semantics of an
tions) state that its judgements are decidable. These theoelementa : A in an arbitrary model of type theory, for ex-
rems are fundamental both philosophically and practically. ample, defined as a category with families [15].
They are the main reasons for preferring intensional to ex- Although some authors have studied the decidability
tensional type theory [22, 11]. Itis a tenet of the philosophy problem for various systems with typed conversion (Martin-
of constructivism that it should be mechanically decidable Lof [21], Coquand [12], Altenkirch [7], Adams [4]), there
whether a certain constructienis a witness to the truth of is still a need for a clear treatment of the main system of
a given propositiomM. Moreover, proof checkers for inten- Martin-Lof type theory. Goguen [17] uses typed operational
- - o semantics to develop the metatheory of Luo’s system UTT
(Sloggfi;amh partially supported by the EU coordination aci¥RES ¢, ding normalization and Church-Rosser. UTT is an im-

tResearch partially supported by VR-projd@gped Lambda Calculus predicgtive system having a predicati\{e subsystem which is
and Applications a version of Martin-Iof type theory. It differs from our sys-

tem since UTT’s rules for the universe are formuladela ments. The main point here is to give an nbe-algorithm for
Tarski rather thara la Russell. Moreover, unlike our sys- this theory and to prove it correct. This algorithm consists
tem, UTT does not havg-conversion on the universe level. of an evaluation function given in 3.1 and reification and
More recently, Harper and Pfenning [18] have addressedreflection functions given in 3.2, and studied further as a
the problem for the logical framework (LF), with the aim system of rewrite rules in 3.3. The central property of the
of finding a simpler treatment of its metatheory. However, nbe-algorithm is that it returns unique representatives (nor-
their method requires injectivity of the dependent function mal forms) for equivalence class of convertible terms and
type constructor to be proved early in the development of convertible types. We prove this property in two stegsn-
LF’s metatheory. Itis not clear how to extend this method to pletenes#n Section 3 andoundnesg Section 4.
a system of dependent type theory with a universe of small By completeness we mean that terms or types which
types. The reader is referred to Harper and Pfenning [18]are convertible (we can prove the respective equality judge-
for discussion and references to related work. ments) map to identical normal forms. We establish this in
Section 3 by defining a family of PERs expressing a no-

Normalization by evaluation (nbe). We shall employ _tion of typ(_ad equali_ty in the model. We then show that the
this method for proving the main decidability theorems for interpretation function maps convertible terms and types to
the theoryAT'UN of Martin-Lof type theory with one uni- equ!valent elements in the model and that reification maps
verse and natural numbers and typed equality judgementsduivalent elements to equal normal forms. _
An important advantage of nbe is that it bypasses the need BY Soundness we mean that a term or type is convert-
for a separate proof of the Church-Rosser property, a dis—'bl_e to its norma_l form as_returned_ by the nbe-algorlthm. To
covery due to Peter Hancock [21]. Instead it follows di- this end we define a logical relation between syntactic ex-
rectly from the model construction that convertible terms Pressions and elements in the model in Section 4. Having
have equal normal forms. proved both soundness and completeness the two main re-
The nbe-method has previously been used for the combi-Sults of the paper (d_ecidability of equality and injectivity of
natory version of Martin-bf type theory [21] with a weak 1) follow as corollaries. - _
notion of conversion. This theory was however abandoned, " Section 5 we explain how our method extends if we
and the most recent version of Martitsltype theory is ~ 2dd unit types and dependent product tygesypes), and
based on a logical framework with a type of “sets” (a uni- also can be adapted to some other variations of the theory.
verse of small types) and dependent function types with
andn-conversion. In recent unpublished work Martinil. 2. Syntax and inference rules
[24] has shown how to construct an nbe-algorithm for this
system, incorporating the technique developed by Berger In this section we introduce a version of Martifltype
and Schwichtenberg [10] for the simply-typeecalculus. theory A''UN with a type of natural numberd and a uni-
Martin-Lof did however not consider a system with a uni- verseU of small types. In this system we can build fami-
verse of small types closed under dependent function setsies of small types (elements &f) by primitive recursion.
which is the main difficulty here. Such a system was in- As a consequence, we cannot erase type dependencies, a
stead considered by Abel, Aehlig, and Dybjer [1] who used technique which can otherwise be used in the metatheoretic
ideas from Aehlig and Joachimski's work on untyped nbe analysis of the system [18].
[5]. However, the system in [1] has an untyped notion of The inference rules of the theory are quite standard: we
conversion and thus differs from the present one; it was nothave the usual rules for the dependently typed lambda cal-
known whether the two systems are equivalent. culus formulated with equality judgements, the usual rules
The use of nbe has made it possible both to strengtherfor N, and the usual rules for a universea la Russell.
and to simplify previous treatments of the metatheory of We remark that we have both and n-conversion forIl-
Martin-Lof type theory with a universe and typed equality types. Moreover, the substitution rule is primitive rather
judgements. Furthermore, our method generalizes to dethan admissible, and thus standard properties of the system
pendent product type&ftypes) and also to singleton types, are proved easily. We also remark that the nbe-method is
and thus generalizes results by Stone and Harper [30]. quite robust and not so dependent on the precise formulation
We expect that our results will play a key role in the the- of the inference rules. It is only when proving decidability
oretical justification of proof systems for Martin3E type of type-checking that we need to know that typing rules are
theory, including the new version of the Agda system cur- invertible (see Lemma 2), something we can show for our
rently being developed in @eborg. system, even though we have a primitive substitution rule.

Plan of the paper. In Section 2 we introduce our version Expressions (terms and types). Since we work with
of Martin-Lof type theory\'"UN with typed equality judge- Russell-style universes it is natural to have a common syn-

tactic categon for terms and types:

Var > z,¥,2
Const > ¢ = Fun|U|N|s|z|rec
A > st u= clxz|lzt|rs

The contexts are generated by

Cxt > TA o|T,a:A

To aid the reader, we use the lettersB, C for expressions
which are to be understood as types ansl ¢ for terms.

Dependent function types, usually writt€h: : A. B, are

written Fun A (Az.B). When B does not depend on we

have a non-dependent function type and wte- B.

We identify expressions up ta-conversion and adopt
the convention that in contextsall variables must be dis-
tinct. Hence, we can vieWl’ as a map from variables to
types with finite domainrdom(I") and letT'(x) = A iff
(z: A) € T. In context extensionE, = : A we presuppose
x ¢ dom(T"). As usualFV(t) is the set of free variables
of t. We letFV(ty,...,t,) = FV(t1) U--- UFV(¢,) and
FV(F) = Umedom(F) FV(F(‘T))

Simultaneous substitutions = € Var — A are map-
pings from variables to expressions where the {get|
o(x) # z}, calleddom(o), is finite. We setFV(o) =
Uz edom(o) FV(o(2)). The identity substitution is denoted
by giq. Whenf € Var — S for some sefS, x € Var and
a € S, let f[x — a] be the functiory’ defined byf’(z) = a
andf'(y) = f(y) for y # 2. This update operation will be

used for substitutions and later also for environments map-

ping variables to elements of a semantic domain.

The termt[o] is the result of substituting () for « in ¢
for all z € FV(t) in parallel. Parallel substitutioA[o] into
contexts is defined byA[o])(x) = (A(z))[s] and compo-
sition of substitutions [’ by (o[0’])(z) = (o(z))[0”].

Judgements. The type theoryA\'"UN has the following
forms of judgement:

r+ ' is a well-formed context

r-A A'is a well-formed type i

-t A thastypedinT

'ko:A o is a well-formed substitution i
r-A=A4A A andA’ are equal types ift
Ft=t':A t andt’ are equal terms of typd in T’
I' ~o0=0'":A o ando’ are equal substitutions in

Note that the judgemeiit - A : U stating that4 is a well-

formedsmalltype inT', is a special case of the third form.
For an arbitrary judgement, we writé - J, whereJ is

a collection of the syntactic entities (terms, contexts, sub-

stitutions) to the right of-- in a judgement. The notation

J[o] is understood as the substitution@fnto all entities

in J, andFV(.J) is the union of the free variable sets of all

entities inJ. Exceptions aréV (o : A), which is defined
asU,cdom(a) FV(A(2),0(2)), andFV(o = o' : A)
Uzedom(a) FV(A(2), 0(2), o' (x)).

In our inference rules, we use the abbreviation
Rec (Az.C) for the type of the primitive recursion combi-
natorrec with the result type” depending onx: : N.

Rec (\z.C) = C[z/z] —
(Fun N (An.C[n/z] — Clsn/x])) —
FunN (\z.C)

The inference rules are given in Figure 1.

In the following, we state some simple syntactic prop-
erties of \'"VN which will be needed in Section 4. Since
substitution is a primitive rule these properties are easier to
establish than in systems without this primitive rule [18, 2].
On the other hand, if substitution is a primitive rule, the
injectivity of II does not follow easily by syntactic consid-
erations. Instead, this will be one of our main results.

Lemma 1 (Basic properties)

1. (Scope:) IT" + J thenFV(J) C dom(T).

2. (Context well-formedness:) I,z : A, J, then

I A.

. (Weakening:) Ifl’, TV + J and bothl' + A andz ¢
dom(I,I), thenl', z: A, I” + J.

4. (Context conversion:) Ldt - B = AandTl" - B. If
D,z: AT F Jthenl,z: B, T" | J.

5. (Substitution:)
(@ IfT Fo:Aandz € dom(A) thenl F o(x) :
A(z)[o].
(b) T' + _= _: Alis an equivalence relation.

(c) f T Fthenl’ Foy:Tandl’ F oy =0ig : I
Lemma 2 (Inversion)

1. fFz:Cthen' FN=C.

2. fT'Fs:CthenT FN - N=_C.

3. If T' Frec(Az.A) : CthenI' - Rec (Az.A) = C.

4. IfT Fa:Cthenl' FT'(z) =C.

5. fT + Az.t : Cthenl + FunA(M\x.B) = C and
Tz:AkFt:B.

6. fI" Frs:Cthenl' - r:FunA(Az.B) withT +
s:AandT F B[s/z] = C.

7.8 - FunA(A\x.B) : C'thenT' F A: UandTl,z:
AFB:Uwithl' FU=C.

8. f ' F Fun A (\z.B) thenl’ - Aandl',z: A + B.

Well-formed context$® .

CXT-EMPTY —— CXT-EXT i
o F Tx:AF
Well-formed typed” + A.
N-F I+ UNIVFF}_ FUNFF}_A I'z:AFB UNIVEFI—A:U
I'EN U '+ Fun A (\z.B) T'HA
Well-typed termd” + ¢ : A.
HYPI‘I— (z:A)eT CONVF}—t:A A=A
'ktz: A 'kt A
UNIV-1-N Ik UNIVIFUNFl—A:U INz:AFB:U
' =N:U I' FFun A(Az.B) : U
EUN-| I'z:A+t:B FUNEFI—T:FunA()\x.B) I'ks: A
' - Az.t: Fun A(\z.B) I'btrs: B[s/z]

' = ' = Lxz:NFC

N-1-Z — N-1-S ———— N-E
I'kFz:N PFs:N—N I Frec(A\z.C) : Rec (\z.C)

Well-formed substitution§' - o : A and parallel substitution.

I F'kFo:A AFA I'ko(x): Alo] 'Fo:A AFJ
SUBSTEMPTY — SUBSTEXT SUBST

Fko:o F'ko:(Az:A) T+ J[o]

Equal typed” + A = A’. (Congruence and equivalence rules which are omitted.)
Equaltermd” ¢ =t : A. (Congruence and equivalence rules and the type conversion rule are omitted.)

z:AFt:B F'kFs: A ' Ft:FunA(Az.B)

EQFUN-0 ' b (\x.t) s = t[s/x] : B[s/x] FQFUN (Mx.tz) =t:Fun A(A\z.B)

x & dom(T")

Lz:NFC I'Fz:Clz/x] I' Fs:Fun N (An.C[n/z] — Clsn/x])

EQ-N-¢-Z I'krec(Mx.C)zsz=z:Clz/x]

Iz:N-C I'Fz:Clz/x] I' Fs:Fun N (An.Cln/z] — Clsn/z]) ' Fn:N

EQ-N-t-S I I rec (A\z.C) 25 (sn) = sn(rec(A\z.C) zsn) : C[sn/z]

Equal substitution§' I o = ¢’ : A and functionality.

cosusstEMPTY LT cosussrexy LI o= A AFA Tho(r)=o'(2): Al
N FFo=d:9 Q FFo=0d:(Az:A)
eoruncTy L= A ARA o Tho=o A ARLiA
I' - Afo] = Alo’] T +tlo] =tlo’] : Alo]

Figure 1. Inference rules for ~ \IUN,

Lemma 3 (Syntactic validity) In the following, we letp range over environments in
) Env := Var — D. We useX,Y, F' to range over elements
1. Typing: IfI' -t : Athenl’ - A. of D which denote types. The denotatifw] , of a substi-
2. Equality: If ' - ¢ = ¢’ : Athen' - A and both tutionc is the environmengo] () = [o(z)] .
I't:Aandl H¢ : A.

3. Type equality: i’ - A = A’ thenT’ - A andT" +

o PER models. Let Per(D) denote the set of all partial

equivalences oveD. If A € Per(D) we writed = d' € A
for (d,d') € Aand|A| = {d | d = d € A} for the do-
3. Models and Completeness of NbE main of A. We often simply writed € A for d € | A|. If
A € Per(D), letFam(.A) be the set of function§ € |A| —
We now show that if we can prove an equality judgement Per(D) such thatF(d) = F'(d') foralld = d’ € A.
expressing that two types or terms are equal, then they have A PER modebf A''UN consists of a syntactic combina-
the same normal form, as computed by our algorithm. To tory algebra and two PERS C Type € Per(D) and a
this end, we build a model of"™"N over a model of the family of PERs[] € Fam(Zype) with the following clo-
untypedA\-calculus. sure conditions. The first two conditions express that the
In 3.1 we consider the class of all PER models\gN PERU of small types containl and is closed unddi:
and show soundness of the inference rules. In 3.2 we add a
few new operations and equations to our notion of syntac-PEr-1 N =N € U; thenz=z € [N], ands d = s d’ € [N]
tic combinatory algebra. One of these operationgiiica- if d=d" €[N].
tion. An abstract nbe-algorithm can be obtained by compos-

ing evaluation with the reification function of that algebra. pEr2 Fun X F = Fun X’ F' e Uif X = X' ¢ U
To establish the completeness of this nbe-algorithm we de- andFd = F'd € Uforalld = d € [X]; then
fine aresidualizing PER-modelCompleteness of nbe fol- f=/f €[FunXF]if fd = f'd € [Fd] forall

lows from the facts that (i) provably equal syntactic terms d=d €[X].
and types are evaluated to PER-equivalent elements in the
model, and (ii) PER-equivalent elements in the model are Moreover, the PERType of all types contains all small
reified to identical normal forms. types andJ, and is closed undéi:
In 3.3 we show a new way to instantiate the underlying
syntactic combinatorial algebra of the residualizing PER- PER-3 Type D U.
model by an extended lambda calculus.
PER-4 U = U € Type; then[U] = U.
3.1. PER models
PERS Fun X FF=Fun X' F' € Type if X = X' € Type

A syntactical combinatory algebra consists of a seb andFd = F'd € Type foralld = d’ € [X]; then
with an application operation (juxtaposition) € DxD — f=f €[FunXF]if fd = f'd e [Fd] forall
D, constructor constantsun, U, N, z,s and a constant for d=d € [X].

primitive recursionrec. Each constructor is injective:
cd = c éimpliesd = €. Primitive recursion satisfies the Finally, since the first argument of the recursion-constant

usual equations: rec is a family of types it is not covered by the rules fdr
above. Hence to validate the ri®-N-E it is necessary to
DEN-.-Z recFd.dsz = d. stipulate separately that it preserves PER-equalities:
DEN-¢-S rec Fd,ds (se) = dse(recFd,dse)
' . PERG If 'd = F'd" € Typeforalld =d € [N],d, =
Note that the first argument eéc is a dependent type, the & e [Fa] dod 2 ipiy A (sed[)]] or all
type of the result of the function defined lpgc. Further- 0 —a e, [I\SI] ::ndrd o ”6 T[Fd] andne e
more, there is an evaluation functifj € A x Env — D [ﬁ] thenrec F d. d. e — rec F' d' d' o' - Fel
satisfying =0 z0s '
DEN-CONST [, = ¢ (c constant) From now on we often writd = d’ € X ford = d’ € [X].
DEN-VAR [z], = »pl2)
DEN-FUN-E [rsl, = [, [s], Validity of the judgements in A™N. Letp = p/ € T
DEN-{3 [Met],d = [t],eq hold if p(z) = p/(x) € [A], for all (z: A) € T. Define
DEN-SUBST Itlell, = [t o1, I' = J, meaning thal’ + Jis valid in a given PER-model,

as follows:

= <= true
Iz:AE <~ T'EA
'=A = TEA=A
FreA=A4 «~—= Tk and
vp:pler [[Aﬂp: HA/HI[)/ EType
F'Et: A <= TEt=t:A
FEt=t:A4 «— TEAand
Vo=p €T [, = [¥], € [4],
F'Eo:A <= T'kEo=0c:A

'Eo=0¢":A < Tk andA E and
Vp=p €l [o],=[0], €A

Lemma 4 (Soundness oEQ-FuN-n) If T' E ¢
Fun A(Az.B) andz ¢ dom(T") thenT = Az.tx =t :
Fun A (Az.B).

Proof. Assumep = p' € I'andd = d' € [A] ,. By the
laws of the syntactic combinatory algebfaz.tz],d =
[ta] g = [t g d- Sincexz ¢ dom(I') we have
ple — d] = p" € T, hence[Az.tz] ,d = [t] g d =
Htﬂp’ d e [[B]]p[zn—»d]

Lemma 5 (Soundness 0EQ-FUNC-TY) If ' =0 = o' :
A andA E Athenl = Alo] = Alo’].

Proof. Assumep = p' € I'. Then[o], = [0'] , € A
and[A],; = [Al}, , € Type which implies[Alo]] , =
[A[o’]], € Type by DEN-SUBST. O

Theorem 6 (Soundness of the inference rulesf T" + J
thenl |= J.

Proof. Standard, by induction on the derivationloft- J.
This proof is straightforward since the inference rules were
designed with the PER model in mind.

3.2 An abstract nbe-algorithm and its
completeness

We shall now extend our syntactical combinatory alge-
bras with a new constructdfp which mapsneutral terms
(see below) to elements b and operations foreification
andreflection Then we can define a normalization by eval-
uation function by composing the evaluation function with
the reification function. To prove the completeness of this
algorithm we define aesidualizingPER-model. We em-
phasize again that in this section we only define an “ab-

implementation oD open. In Section 3.3 we will instanti-
ateD with an extended lambda calculis’.

We define the satif C A of g.-normal forms simultane-
ously with the sefNe C A of neutral terms (normal forms
with a head variable).

Nf s v,w, VW =Xz |z|sv|U|FunV Az W | u
Ne > u n=x|uv|recVowu

A residualizing PER-model. Given a syntactical com-
binatory algebra with an additional injective constructor
Up : Ne — D, we define aresidualizingPER model as
follows.

First defineA/ € Per(D) inductively by the following
rules.

d=d eN
z=zeN sd=sd c¢ N Upu=Upue N

We then give a simultaneous inductive-recursive definition
[16] of the PERs/ and[d]. There are several ways to
understand such definitions set-theoretically [28, 3, 9]. If
Rel(D) is the set of relations o, we can e.g. follow
[6, 1] and inductively define the graph of a partial function
[-] : D — Rel(D) such that the following equations hold:

[Up] = {(Up/, Upu') | u' € Ne}
N] = N
FunX F] = {(f,f)|(fd, f'd)ec[Fd]

forall (d,d’) € [X]}

To prove univalence of this relation we use tha, N,
andFun are constructors. Then we define the universe of
small types/ € Rel(D) inductively (using PER notation,
although we have not yet proved that it is a PER):

Upu=Upuel N=Nel

X=XclUu Fd=F'd celUforalld=d € X
FunXF=FunX'"F'c¢lU

We then show by induction on this relation thatXf =
X' € U then[X] and[X'] are well-defined and equal PERs.
It follows thati/ € Per(D). We extend the partial function
by [U] = U and define the universe of all typ&3pe <
Rel(D) inductively.

C T _
U s Type U=U e Type

X=X e€Type Fd=F'd c€Typeforalld=d € X
Fun X F = Fun X' F' € Type

As for U, we can now show thaf] € Fam(7ype)
and Type € Per(D), and it is immediate to check that
(U, Type, |]) constitutes a PER model of 'V, validating
PER-1-5. The remaining requirememeRr-6 will be ful-

stract” nbe-algorithm, which leaves the choice of the exact filled in the next section.

Reflection and reification. Assume furthermore, that for
eachX € Type there are functions

1% € Ne—|[X]| reflection
X e |[X]| — Nf reification
I € |Type| — Nf type reification
such that the following equations i hold:
(TFunXFU)d — TFd(U le)
1% u = Upu

where X in the second equation is a term beginning with
a constructor different fronfun. Moreover, we have the
following syntactical identities ir:

[FnXFp = Aa [FOT(f (1%)) *)
[Nz = z

IN(sd) = s({Nd)

NUpu) = u

VP (Upu) = u

1Vx = X

VFunX F) = Fun({X) e W(F(1%2))) (*)
UN — N

4 (Upw) = u

Ju = U

The equations (*) shall hold faall but finitely manyz €
Var. Since we considex-terms modulax-equivalence, this
is equivalent to postulating them for some “fresh” One
way to make this precise is to requiteto be a nominal set
[27] or FM-domain [29]. We leD be theA-calculus modulo

(8 and rewrite rules for recursion, reflection and reification.
We come to that later, for now let us just assume that they (4, O ¢).

reification functions always choose fresh variahles

Since we have a new constructor= Upr for neutral
values, we need to add a new equationréar

rec F'd.ds (Upr) =
1P (rec. (A2 W(F (1))

(lFZd)

(AnAy. [F e (d, (1Nn) (157y)))

)

The variablesr, n, y must be fresh forr’, s. We can now
provePER-6, the totality ofrec, by induction onV.

Summarizing the developments in this section, we have
a complete method for checking judgmental equality:

Corollary 8 (Completeness of NbE)Letp = p € T
1. If T+ A= A'theny[A], = {[AT],.

2. T Ft=t": Athen|ML] = |1 [¢] .

Proof. We have[A], = [A'],, € Type by Thm. 6, hence
U[A], is syntactically equal t¢ [A'] , by the lemma. Anal-
ogously for term equality. O

3.3 Extended)-calculus

We shall now instantiate the domalih with a lambda
calculus A'T O A extended by four new constants
Up, up,down, Down. On AT we consider3.-reduction
—, given as the reflexive-transitive compatible closure of
the g-axiom (Az.t) s — t[s/z] and thes-axioms listed in
Figure 2.

In the three rules which create an abstractien,¢
Under this assumption, each of the
reductions preserves the set of free variables. Since there

The fO”OWing central lemma shows that the above equa- gre no reductions for terms headed by constants
tions define total reflection and reification functions on the {Fun N,z s, U, Up}, thesec are constructors, whereas the

PERs of our model, and their result does not depend on thegther constantg e {rec, up, down, Down} satisfy pattern

choice of representative for each equivalence class.

Lemma 7 (Characterization of reflection and reification)
Let X = X' € Type. ThentXu = 1¥u € X and
UX = X', andifd = d’' € X then|¥d = | X'd’.

Proof. Simultaneously by induction oX = X' € Type,
showing the lemma folX = X’ € U first. In case of
function typesfun X F = Fun X' F' e Uandf = f' €
Fun X F we have by induction hypothesjs’z = 1X'z ¢
X for a freshz, hence, f1¥z = f/1X'z € F1¥z.
Since F1Xz = F'1*'z e U, by induction hypothe-
sis |F 1 (£1Xz) and | F' 1= (' 1X'z) are identical3:-
normal forms. Hence, we can abstracin both terms,
which shows thatFun X F g — |FunX"F' 7 < Nf This
was the most interesting case. |

matching equations. The left hand sides of.allles are
algebraic, linear, and non-overlapping. Reductier is a
orthogonalkonstructor combinatory reduction syst¢2d],
hence, it is confluent. Thus;— o «— is an equivalence,
which we denote by=g,. Reduction is also standardizing;
one can apply the call-by-name strategy to find the normal
form, if it exists.

Let7 denote the equivalence class-ahodulo=g,. The
set of equivalence classBs= A!T /=g, forms a syntactical
combinatory algebra with application operations = 75
and denotation operatidr], = r[c] whereo is arbitrary
with o (z) = p(z) for all z € Var. (D is even a syntactical
A-model [8].)

One easily checks that all equations assumed in the last
section are satisfied by. Since recursion is well-defined

by induction on\ and1¥, | X, || X are well-defined by in- 4 Logical Relations and Soundness of NbE
duction onX € 7ype, the implementation of these function

by rewriting is terminating on arguments which inhabit the |n this section we show soundness of NbEXIHN, that
PERs of our model. Also, fok' € Type, the free variables s, that a term (or type) is provably equal to its normal form
of the normal form ofup X v for u € Ne are exactly the as computed by the nbe-algorithin:- a = |}[a] : A. De-
free variables of, the free variables of the normal form of cidability of judgmental equality is then a direct corollary
down X v for v € X normal are exactly the free variables of soundness and completeness.

of v, and forX € Type normal the free variables of the Let Ty(I') = {C | T F C} be the set of well-formed
normal form of Down X are exactly the free variables of types in context” andTm(I',C) = {t | T' -t : C} be the
X. This simplifies the task of finding fresh variables during set of terms of type” in I. We say that\ extendsa well-
reflection and reification, since suitable candidates can beformed context’, written A > T', if A andl'(z) = A(z)

fixed in the beginning. for all z € dom(T").
By induction onX € Type, we simultaneously define
relations
_F.®X
o _®R.eX
recCzsz —z suchthatl' - - ® X) C Ty(l) and(T - _: C ®
recC z s (sn) — sn(recCszn) _€ X) C Tm(I,O) x [X]. We always assume thtis
recCzs(Upr) —up(C(Upr)) well-formed.
(rec (jown(g—> u)C) ' C®FunXF <=
own Z)z
Edown EFun)N)()\n. Cn—C(sn))s) I' H C = Fun A (\z.B) for someA, B and
r) 'rA® X and
A F B[s/z] ® Fdforal A>T
up(FunAC)t — Az.up(Cz) (t (down Az)) andA Fs: A®de X
upNt¢ — Upt
up (Upr)t — Upt Fr-CRX«—=TIl'FC=|XforX#FunY F
upUt — Upt
F'Fr:C® f €FunXF <=
down (Fun AC) ¢ — Az.down (C (up Az)) I' - C = Fun A (\z.B) for someA, B and
(t(up Ax)) I'A® X and
downNz —z Atbrs:B[s/z]® fde Fdforal A>T
down N (sn) — s(downNn) andA Fs: ARde X

down N (Up) —t

down (Upr) (Upt) — t ''FrA:CR®XelU«=TFC=Uandl FAR X

down U — Down TFr:CRdeX =T Fr=|Xd:C
Down (Fun AC) —— Fun (Down A) for X =N,Upu

(Az. Down (C (up A 2))) _— .
Down N —~N Note that these definitions do not depend on the choice of
Down (Upt) —t the representativé(, the relations are invariant under re-
Down U —u placement ofX by X' if X = X’ € Type.

Lemma9 LetX = X' € Type.
Figure 2. (-reductionin A'T. 1. fT FC® X thenT F A® X'.
2 fTHFt:CRde Xandd =d € X thenl Ft:
CRd eX'.

Our solution to freshness is similar to the work of Danvy Simultaneously with the definition one proves the fol-
[14] and Aehlig and Joachimski [5] who introduce a second- lowing lemma.
level lambda-calculus to model computationDn How-
ever, our approach is simpler, we do not need two levels, so
we can apply standard results ®fcalculus. Furthermore,
in our case recursion, reflection, and reification are always 1. (Monotonicity:) IfA > I'thenA + C ® X and
terminating, which is not the case in untyped NbE. AFt:CRdde X.

Lemma 10 (Properties of the logical relations)Let X €
Type, ' FC ® X,andl' Ht: C R d € X.

2. (IN)fTrFr=u:Cthenl’ Fr:C ® 1¥ue X.
3. (Out) T FC=|Xandl' Ft=|%Xd:C.

A consequence oDut is that the choice ofd, B in the
defining clauses of the relations fbun X F does not mat-
ter, sinced is determined byX up to judgmental equality
uniquely, andB by F'. Hence, the following lemma is easily
proved by induction otX € Type:

Lemmall LetX € Typeandl + C = C".
L.rFC®Xthenl' HFC' ® X.

26T Ht:C®de Xandl Ft =1t : C then
PHY:C"Rde X.

We relate substitution + o : I'to environmentg € T’
by the following definition:

Ato: TR p:<forallx € dom(T),
A Fo(z):D(z)lo] ® p(x) € [I(z)],

We define the propositioris - J as follows:

I+ <— lrue
Iz:AlF «— TIFA
T'FA <~ T'IFA=A
A=A «— T'IF and

A+ Alo] ®[[A’]]p
foral A Fo:T ® p.

TIFt: A — T'IFt=t: A

T'Ft=¢t:A «— TI'IFAand
A l—t[a]:A[a]@[[t’]]pe[[Aﬂp
foral A Fo: T ® p.

7.1 = Ilkr=7:T"
'kr=7:1T" < Tl andl” I+ and
Akl I"® [],
foral AFo:T®p

Theorem 12 (Fundamental theorem of logical relations)
If T + JthenD I J.

Proof. By induction onI" + J. O

We define a special valuatigi by induction onl’, where
po(x) is arbitrary andp(r .4y = pr(z — T[[A]]Pr x]. It
follows thatpr € T'andl’ F oy : ' ® pr.

Corollary 13 (Soundness of NbE)
LD t: Athenl ¢ = [l A
2. If T+ Athenl' F A= U[A], .

Corollary 14 (Decidability of equality)

1. fT Ft¢,¢' . Awe can decide whethér ¢ =1t': A.

2. IfT" - A, A’ we can decide whethér - A = A’.

Proof. It follows from soundness and completeness that
two terms or types are equal (in the sense of judgmental
equality) iff their normal forms, as computed by the nbe-

function, are equal. O

Corollary 15 (Injectivity of II) If T' + Fun A (\z.B) =
Fun A’ (Az.B')thenT - A= A’andl,z: A + B = B’.

Proof. Let p = pr. By Thm. 6, [FunA(Az.B)], =
[Fun A" (A\z.B")], € Type. First, this implies[A], =
[A'], € Type by inversion onType, hence,|l[A], and

U[A'],, are syntactically identical. With soundness of NbE,
this impliesT" = A = A’. Secondly, sincd := 14z €
[A], we get[Az.B],d = [M\z.B'],d € Type. With

o' = plz — 1Hea] = pr 4.4y this implies that] B] ,
[[B’]]p, € Type, so with soundness we gétz: A - B
B’

Ol

5 Extensions

Since we work with judgmental equality it is simple to
extend our method to a system with a unit tylpeith in-
habitantl’ - () : Landp-lawT' ¢t = () : 1forT ¢ : 1.

In the PER model, we simply let = d’ € [1] for all d,d’.
Reification| 'd = () and reflectiori '« = () return both the
constant), so the result of nbe never depends on a particu-
lar inhabitant of the unit type.

Similarly, we can extend our method to deal with
types and singleton types, constructions which present
problems in systems with untyped conversion. Such types
are handled by Harper and Pfenning’s [18] type-directed al-
gorithmic equality. However, their method is based on era-
sure of type dependencies and fails for systems which also
include universes likea N,

Finally, our approach is robust to changes of syntax. For
instance, it can deal with typed abstraction: A.t. In the
PER model, which is based on the untypedalculus, A
is simply ignored. The reification functioff" X £t then
returns an abstraction annotated with typ&. We could
also adapt it to the more explicit syntax for abstraction and
application suggested in [31]. Yet another possibility is to
use our method for proving the basic properties of the ini-
tial category with families (cwf) [15, 19], which is a more
algebraic way to present type theory.

We can now prove the correctness of a standard bidi-
rectional type checking algorithm [18] for normal terms.
This proof is a corollary of decidability of judgmental

equality together with the syntactical inversion properties [15] P. Dybjer. Internal type theory. In S. Berardi and M. Coppo,

(Lemma 2). Such algorithms are currently used in the core
languages of the dependently typed languages Agda [13]
developed at Chalmers and Epigram [25] developed at Not-

tingham University. With typed abstraction, type checking
is decidable also for non-normal terms.

References

(1]

(2]

(3]
(4]
(5]

(6]

(7]

(8]

9]

(10]

(11]

(12]

(13]

(14]

A. Abel, K. Aehlig, and P. Dybjer. Normalization by evalu-
ation for Martin-Lbf type theory with one universe. B8rd
Conference on the Mathematical Foundations of Program-
ming Semantics, MFPS XX|Electronic Notes in Theoreti-
cal Computer Science. Elsevier, 2007. To appear.

A. Abel and T. Coquand. Untyped algorithmic equality for
Martin-Lof’s logical framework with surjective pairg-un-
damenta Informaticg2007. TLCAOS special issue. To ap-
pear.

P. Aczel. Frege Structures and the Notions of Proposition,
Truth, and Setpages 31-59. North-Holland, 1980.

R. Adams. Pure type systems with judgemental equality.
Journal of Functional Programmind.6(2):219—-246, 2006.

K. Aehlig and F. Joachimski. Operational aspects of un-
typed normalization by evaluatioMathematical Structures

in Computer Sciengd 4(4):587—611, Aug. 2004.

S. Allen. A Non-Type-Theoretic Semantics for Type-
Theoretic LanguagePhD thesis, Department of Computer
Science, Cornell University, 1987.

T. Altenkirch. Constructions, Inductive Types and Strong
Normalization PhD thesis, University of Edinburgh, Nov.
1993.

H. Barendregt. The Lambda Calculus: Its Syntax and Se-
mantics North Holland, Amsterdam, 1984.

M. Beeson Foundations of constructive mathematics. Meta-
mathematical studiesrolume 6 ofErgebnisse der Mathe-
matik und ihrer Grenzgebiete, 3. Folge [A Series of Modern
Surveys in MathematicsBpringer-Verlag, 1985.

U. Berger and H. Schwichtenberg. An inverse to the evalu-
ation functional for typed\-calculus. InProceedings of the
6th Annual IEEE Symposium on Logic in Computer Science,
Amsterdampages 203-211, July 1991.

R. Constable and teanmplementing Mathematics with the
Nuprl Proof Development Systefrentice Hall, 1986.

T. Coquand. An algorithm for testing conversion in type
theory. InLogical Frameworkspages 255-279. Cambridge
University Press, 1991.

T. Coquand. An algorithm for type-checking dependent
types. InMathematics of Program Construction. Selected
Papers from the Third International Conference on the
Mathematics of Program Construction (July 17-21, 1995,
Kloster Irsee, Germanyyolume 26 ofScience of Computer
Programming pages 167-177. Elsevier Science, May 1996.
O. Danvy. Type-directed partial evaluation. In J. Hatcliff,
T. /. Mogensen, and P. Thiemann, edit®artial Evalua-
tion — Practice and Theory, DIKU 1998 International Sum-
mer School, Copenhagen, Denmark, June 29 - July 10,,1998
volume 1706 ofLecture Notes in Computer Sciengages
367—-411. Springer-Verlag, 1999.

10

(16]

(17]

(18]

(19]

(20]

(21]

[22]

(23]
(24]

[25]

(26]

(27]

(28]

[29]

(30]

(31]

editors,Types for Proofs and Programs, International Work-
shop TYPES'95, Torino, Italy, June 5-8, 1995, Selected Pa-
pers number 1158 in Lecture Notes in Computer Science,
pages 120-134. Springer-Verlag, 1996.

P. Dybjer. A general formulation of simultaneous inductive-
recursive definitions in type theoryJournal of Symbolic
Logic, (2):525-549, June 2000.

H. Goguen. A Typed Operational Semantics for Type The-
ory. PhD thesis, The University of Edinburgh, Department
of Computer Science, 1994.

R. Harper and F. Pfenning. On equivalence and canonical
forms in the LF type theoryACM Transactions on Compu-
tational Logig 6(1):61-101, 2005.

M. Hofmann. Syntax and semantics of dependent types.
In A. Pitts and P. Dybjer, editor§emantics and Logics of
ComputationCambridge University Press, 1996.

J. W. Klop. Combinatory reduction systemgathematical
Center Tracts27, 1980.

P. Martin-Lof. An intuitionistic theory of types: Predicative
part. In H. E. Rose and J. C. Shepherdson, editoogjc
Colloquium ‘73 pages 73-118. North-Holland, 1975.

P. Martin-Lof. Constructive mathematics and computer pro-
gramming. InLogic, Methodology and Philosophy of Sci-
ence, VI, 1979pages 153-175. North-Holland, 1982.

P. Martin-Lof. Intuitionistic Type TheoryBibliopolis, 1984.

P. Martin-Lof. Normalization by evaluation and by the
method of computability. Talk at JAIST, Japan Advanced
Institute of Science and Technology, Kanazawa, June 2004.
C. McBride and J. McKinna. The view from the lefiournal

of Functional Programming2004.

B. Nordstbm, K. Petersson, and J. M. SmitArogramming

in Martin Lof’'s Type Theory: An IntroductionClarendon
Press, Oxford, 1990.

A. M. Pitts. Alpha-structural recursion and induction.
In J. Hurd and T. F. Melham, editor§;heorem Proving

in Higher Order Logics, 18th International Conference,
TPHOLs 2005, Oxford, UK, August 22-25, 2005, Proceed-
ings volume 3603 ofLecture Notes in Computer Science
pages 17-34. Springer-Verlag, 2005.

D. S. Scott. Combinators and classes. In Gh&, editor,
Lambda-Calculus and Computer Science Theory, Proceed-
ings of the Symposium Held in Rome, March 25-27, 1975
volume 37 ofLecture Notes in Computer Scienpages 1—
26. Springer-Verlag, 1975.

M. R. Shinwell and A. M. Pitts. On a monadic semantics
for freshnessTheoretical Computer Sciencg2(1):28-55,
2005.

C. A. Stone and R. Harper. Extensional equivalence and sin-
gleton types. ACM Transactions on Computational Logic
7(4):676-722, 2006.

T. Streicher. Semantics of Type Theoryrogress in Theo-
retical Computer Science. Birkhaeuser Verlag, Basel, 1991.

