
Verifying a Semantic βη-Conversion Test for
Martin-Löf Type Theory

Andreas Abel,1 Thierry Coquand,2 and Peter Dybjer2?

1 Department of Computer Science, Ludwig-Maximilians-University, Munich
abel@tcs.ifi.lmu.de

2 Department of Computer Science, Chalmers University of Technology
coquand,peterd@cs.chalmers.se

Abstract. Type-checking algorithms for dependent type theories often
rely on the interpretation of terms in some semantic domain of values
when checking equalities. Here we analyze a version of Coquand’s algo-
rithm for checking the βη-equality of such semantic values in a theory
with a predicative universe hierarchy and large elimination rules. Al-
though this algorithm does not rely on normalization by evaluation ex-
plicitly, we show that similar ideas can be employed for its verification.
In particular, our proof uses the new notions of contextual reification and
strong semantic equality.
The algorithm is part of a bi-directional type checking algorithm which
checks whether a normal term has a certain semantic type, a technique
used in the proof assistants Agda and Epigram. We work with an abstract
notion of semantic domain in order to accommodate a variety of possible
implementation techniques, such as normal forms, weak head normal
forms, closures, and compiled code. Our aim is to get closer than previous
work to verifying the type-checking algorithms which are actually used
in practice.

1 Introduction

Proof assistants based on dependent type theory have now been around for
about 25 years. The most prominent representative, Coq [INR07], has become
a mature system. It can now be used for larger scale program development
and verification, as Leroy’s ongoing implementation of a verified compiler shows
[Ler06]. Functional programmers have also become more and more interested in
using dependent types to ensure program and data structure invariants. New
functional languages with dependent types such as Agda 2 [Nor07] and Epigram
2 [CAM07] enjoy increasing popularity.

Although many questions about properties of dependent type theories have
been settled in the 1990s, some problems are still waiting for a satisfactory
solution. One example is the treatment of equality in implementations of proof
assistants. When we check that a dependently typed program is well-typed,
? Research partially supported by the EU coordination action TYPES (510996) and

the project TLCA of Vetenskapsr̊adet.

we may need to test whether two types are definitionally equal (convertible).
Although it is of course impossible for a system to recognize all semantically
equal types, a user will feel more comfortable if it can recognize as many as
possible. Whenever it fails the user has to resort to proving manually that the
types are equal. This has the additional drawback of introducing proof-objects
for these equalities. In recent years there has therefore been a move from β-
equality (computational equality) to the stronger βη-equality (computational
and extensional equality).

Recently, algorithms for testing βη-equality have been formulated and ver-
ified by the authors both for an untyped notion of conversion [AAD07] and
for typed equality judgements [ACD07]. These algorithms use the technique
of normalization by evaluation (NbE). However, the algorithms used by proof
assistants such as Agda and Epigram [CAM07], use Coquand’s βη-conversion
test for semantic ”values”, and do not employ the NbE-technique of the above-
mentioned papers. Moreover, there is a gap between algorithms on paper and
their actual implementation. Proofs on paper are often informal about the treat-
ment of variable names, and they tend to represent values as pieces of abstract
syntax. Besides Pollack’s [Pol94], Coquand’s algorithm [Coq96] is a notable ex-
ception: values are represented as closures, and the algorithm explicitly deals
with α-equivalence by replacing variables by numbers (de Bruijn levels).

We here continue the work of the second author and verify an implementation
of the βη-conversion test close to the one used in practice. In particular:

– Equality is checked incrementally, and not by full normalization followed by
a test for syntactical identity.

– The representation of values is abstract. We only require that they form a
syntactical applicative structure. In this way, several possible implementa-
tions, such as normal forms, closures, and abstract machine code, are covered
by our verification.

– The verification approach is extensible: Although we only spell out the proofs
for a core of type theory with predicative universes, our development extends
to richer languages. We can for example include a unit type, Σ types, proof
irrelevance, and inductive types with large eliminations.

Overview. In Sec. 2 we present an abstract type and equality checking algorithm,
which only assumes that the domain of values forms a syntactical applicative
structure. In Sec. 3 inference rules for typing and type equality are given for a
version of Martin-Löf type theory with explicit substitutions. An outline of the
verification is given in Sec. 4 together with a definition of contextual reification,
our main tool for verification. Using contextual reification, an alternative equal-
ity test can be formulated, which is shown complete in Sec. 5, by construction
of a Kripke model, and proven sound in Sec. 6 via a Kripke logical relation.
Completeness of the original algorithm then follows easily in Sec. 7. For sound-
ness, we have to introduce a Kripke logical relation and the concept of strong
semantic equality in Sec. 8. In Sec. 9 we discuss the problem of termination of
the equality algorithm, which remains open. More proof details can be found in
the accompanying technical report [ACD08].

2 Semantic Type and Equality Checking

We consider dependently typed programs p to be given as lists of the form

x0 : V0 = v0
...

xn−1 : Vn−1 = vn−1

where xi is a identifier, Vi its type, and vi the definition of xi for i < n. (Typically
xi will be a function identifier and vi the function definition.) The identifiers
are not defined simultaneously (which would correspond to mutual recursion),
but one-after-another. Hence, Vi and vi may only refer to previously defined
identifiers xj for j < i. A program is type correct if each Vi is a well-formed type
and each vi is a term of type Vi. To establish this, the type and definition of the
previously defined identifiers may be used. It is reasonable to assume and easy
to check that the global identifiers xi are all distinct; global declarations should
not be shadowed. However, local shadowing is allowed; the identifiers xi may be
reused in some of the vj or Vj . Our type checking algorithm handles shadowing
correctly without any informal use of α-conversion.

Dependent types need to be evaluated during type checking. Thus it is com-
mon to store them in evaluated form. Without going into further details now,
let vρ (V ρ) denote the evaluation of term v (type V) in environment ρ. The
environment maps already checked identifiers to their values. A typing context
∆ maps already checked identifiers to their types (in evaluated form). Checking
a program starts in an empty environment ρ0 and an empty typing context ∆0.
For i = 0, . . . , n− 1, we execute the following steps:

1. Check that Vi is a well-formed type in the current context ∆i.
2. Evaluate Vi in the current environment: Xi = Viρi.
3. Check that vi is of type Xi in the current context. This test is written
∆i ` vi δid ⇑ Xi, where δid is the identity map on names.

4. Evaluate vi and extend the current environment by binding xi to the result:
ρi+1 = (ρi, xi = viρi).

5. Extend the current context: ∆i+1 = ∆,xi :Xi.

The details of type checking depend on the language. We here show how to verify
an algorithm for a core language with dependent function types and predicative
universes. In the accompanying technical report [ACD08] we consider also nat-
ural numbers with primitive recursion. However, the algorithms and proofs in
this work directly extend to dependent tuples (Σ and unit type).

2.1 Syntax

Expressions r, s, t are formed from variables x and constants c by application r s
and function abstraction λxt. The types Vi and terms vi of a program p ≡ (xi :

Vi = vi)i must be in normal form.

Var 3 x, y, z ::= . . . , x1, x2, . . . variables
Const 3 c ::= Fun | Seti constants (i ∈ N)
Exp 3 r, s, t ::= c | x | λxt | r s expressions
Nf 3 v, w, V,W ::= u | λxv | FunV λxW | Seti β-normal expressions
Ne 3 u ::= x | u v neutral expressions

The set Var of variable identifiers contains, among others, the special variables
x1, x2, . . . which are called de Bruijn levels. To aid the reader, we use the let-
ters A,B,C, V,W for expressions which are to be understood as types and
r, s, t, u, v, w for terms. Dependent function types, usually written Πx : A.B,
are written FunAλxB. When B does not depend on x we have a non-dependent
function type and write A→ B.

An expression like FunAλxB is parsed as (FunA) (λxB); application is left-
associative. To save on parentheses, we introduce the notation λx. t where the
dot opens a parenthesis which closes as far to the right as syntactically possible.
For instance λx. r s is short for λx (r s), whereas λxr s means (λxr) s.

The hello world program of dependent types, the polymorphic identity, be-
comes in our notation

id : Fun Set0 λA.A→ A = λAλa a.

The predicative universes Seti are types of types. A well-formed type V : Seti
lives in universe i and above. A universe Seti lives in higher universes Setj , j > i.

2.2 Values

In implementations of dependently typed languages, different representations
of values have been chosen: Twelf [PS99] uses de Bruijn terms with explicit
substitutions; Agda 2 [Nor07] de Bruijn terms in normal form; and Epigram
2 [CAM07] higher-order abstract syntax. Furthermore, the second author has
suggested to use closures [Coq96]. In this article, we abstract over several possible
representations, by considering a syntactical applicative structure with atoms.

Applicative structure with atoms. This is an applicative structure (D, ·) which
includes all variables and constants as atoms (Var ∪ Const ⊆ D). Elements of D
are denoted by d, e, f,X, Y, Z,E, F and called values or objects. Neutral values
are given inductively by e, E ::= x | e · d. Neutral application is injective: If
e · d = e′ · d′, then e = e′ and d = d′. Neutral values are distinct, for instance,
x ·d 6= y ·d′. We will sometimes write application as juxtaposition, especially in
neutral and constructed values.

The constants Seti are constructors of arity 0 and Fun is a constructor of
arity 2. Constructors are injective, thus, FunX F = FunX ′ F ′ implies X = X ′

and F = F ′. Constructed values, i. e., of the form cd, are distinguished from
each other and from neutral values. It is decidable whether an object is neutral,
constructed, or neither. If an object is neutral, we can extract the head variable
and the arguments, and similar for constructed objects.

Syntactical applicative structure with atoms. We enrich the applicative structure
with an evaluation operation tρ ∈ D for expressions t ∈ Exp in an environment
ρ : Var ⇀ D. Let ρid denote the identity environment. The following axioms must
hold for evaluation.

eval-c cρ = c
eval-var xρ = ρ(x)
eval-fun-e (r s)ρ = rρ · sρ
app-fun (λxt)ρ · d = t(ρ, x=d)

An applicative structure which satisfies these equations is called a syntactical
applicative structure (D, · ,). Barendregt [Bar84, 5.3.1.] adds a sanity con-
dition that the evaluation of an expression may only depend on the valuations
of its free variables, but we will not require it. All syntactical λ-models [BL84]
[Bar84, 5.3.2.(ii)] are instances of syntactical applicative structures, yet they
must additionally fulfill weak extensionality (ξ).

An instance: closures. There are applicative structures which are neither λ-
models nor combinatory algebras, for example the representation of values by
closures. Values are given by the grammar

D 3 d ::= [λxt]ρ | e
e ::= c | x | e d

where [λxt]ρ is a closure such that ρ provides a value for each free variable in
λxt. Evaluation does not proceed under binders; it is given by the above axioms
plus:

eval-fun-i (λxt)ρ = [λxt]ρ
app-ne e · d = e d

Closures are a standard tool for building interpreters for λ-calculi; the second au-
thor has used them to implement a type checker [Coq96]. While for the soundness
proof he requires weak extensionality in D, we will not; instead, extensionality
of functions in Type Theory is proven via a Kripke model (Section 5).

2.3 Type Checking

In this section, we present a bidirectional type-checking algorithm [PT98] which
checks a normal term against a type and infers the type of a normal expression.
In the dependently typed setting, where types may contain computations, the
principled approach is to keep types in evaluated form. During the course of
type-checking we will have to evaluate terms (see rule inf-fun-e below). To
avoid non-termination, it is crucial to only evaluate terms which have already
been type checked.

We are ready to present the semantic type checking algorithm, where “se-
mantic” refers to the fact that types are values in D and not type expressions.
As usual we describe it using inference rules. These can be read as the clauses

of logic programs and we specify the modes (input and output). Note that the
modes are not part of the mathematical definition of the inductive judgements—
they only describe how the judgements should be executed. Since the rules are
deterministic, they also describe a functional implementation of type checking,
which can be obtained mechanically from the rules.

In the following definitions δ ranges over special environments, renamings,
which are finite maps from variables to de Bruijn levels. As before, tδ denotes
the evaluation of t in environment δ.

Semantic (typing) contexts are given by the grammar ∆ ::= � | ∆,x : X,
where x 6∈ dom(∆). If (x :X) ∈ ∆ then ∆(x) = X. We write x∆ for the first de
Bruijn level which is not used in ∆, x∆+1 for the next one, etc.

Type checking algorithm. We define bidirectional type checking of normal terms
and well-formedness checking of normal types by the following three judgements.
Herein, ∆ ∈ SemCxt, u ∈ Ne, v, V ∈ Nf, δ ∈ Var ⇀ Var, X ∈ D and i ∈ N.

∆ ` u δ ⇓ X the type of neutral u is inferred as X
∆ ` v δ ⇑ X normal v checks against type X
∆ ` V δ ⇑ Set i V is a well-formed type of inferred level i.

In all judgements we maintain the invariant that ∆ assigns types to the free
variables in X and ∆ ◦ δ to the free variables in u, v, V .

Type inference ∆ ` u δ ⇓ X. (Inputs: ∆,u, δ. Output: type X of u or fail.)

inf-var
∆ ` x δ ⇓ ∆(xδ)

inf-fun-e
∆ ` u δ ⇓ FunXF ∆ ` v δ ⇑ X

∆ ` (u v) δ ⇓ F · vδ

The type of a variable x under renaming δ is just looked up in the context. When
computing the type of an application u v from the type FunXF of the function
part we need to apply F to the evaluated argument part vδ (dependent function
application). At this point, it is crucial that we have type-checked v already,
otherwise the application F · vδ could diverge.

Type checking ∆ ` v δ ⇑ X. (Inputs: ∆, v, δ,X. Output: succeed or fail.)

chk-fun-i
∆, x∆ :X ` v (δ, x=x∆) ⇑ F · x∆

∆ ` (λxv) δ ⇑ FunXF

chk-set
∆ ` V δ ⇑ Set i

∆ ` V δ ⇑ Setj
i ≤ j

chk-inf
∆ ` u δ ⇓ X ∆ ` X = X ′ ⇑ Set i

∆ ` u δ ⇑ X ′

When checking an abstraction λxv against a dependent function type value
FunXF , we rename x to the next free de Bruijn level x∆ and check the abstrac-
tion body v against F · x∆ in the extended context which binds the abstracted
variable to the domain X. To check a neutral term u against X ′, we infer the
type X of u and compare X and X ′. The implementation and verification of this
comparison will occupy our attention for the remainder of this article.

Type well-formedness ∆ ` V δ ⇑ Set i. (Inputs: ∆,V, δ. Output: universe
level i of V or fail.)

chk-inf-f
∆ ` V δ ⇓ Seti

∆ ` V δ ⇑ Set i
chk-set-f

∆ ` Seti δ ⇑ Set i+ 1

chk-fun-f
∆ ` V δ ⇑ Set i ∆, x∆ :V δ `W (δ, y=x∆) ⇑ Set j

∆ ` (FunV λyW) δ ⇑ Set max(i, j)

This judgement checks that V is a well-formed type and additionally infers the
lowest universe level i this type lives in. The type Seti is well-formed and lives
in level i + 1. A neutral type is well-formed if its type is computed as Seti for
some i. A function type is well-formed if both domain and codomain are, and it
lives in any level both components live in.

Comparison to [Coq96]. The second author has presented a similar type checking
algorithm before [Coq96] for unstratified universes Set : Set. The main difference
is that in rule chk-inf he uses an untyped β-conversion check X ∼ X ′ instead
of typed βη-conversion ∆ ` X = X ′ ⇑ Set i which we will describe in the
following section. A minor difference is that in ∆ ` v δ ⇑ X he uses ∆ to assign
types to the free variables of term v whereas we use ∆ ◦ δ. Consequently, the
free variables of X would live in context ∆ ◦ δ−1 in his case, however, this is
problematic in principle since δ may not be invertible, e. g., in case of shadowing.
Since he uses untyped conversion, this is irrelevant, because he never needs to
look at the types of free variables in X. In our case, it is crucial.

2.4 Checking Equality

Checking the type of a neutral expression against X ′ while its type has been
inferred as X requires testing the types X and X ′ for equality. Since types
depend on objects, we will also have to compare objects. The principal method
to check η-equality is a type-directed algorithm. In the following we present such
a type-directed algorithm for comparing values.

Analogously to type checking, we define three inductive judgements. Herein,
d, d′, e, e′, X,X ′ ∈ D, ∆ ∈ SemCxt, and i ∈ N.

∆ ` e = e′ ⇓ X neutral e and e′ are equal, inferring type X
∆ ` d = d′ ⇑ X d and d′ are equal, checked at type X
∆ ` X = X ′ ⇑ Set i X and X ′ are equal types, inferring universe level i

Inference mode ∆ ` e = e′ ⇓ X (inputs: ∆,e,e′, output: X or fail). In inference
mode, neutral values e, e′ are checked for equality, and their type is inferred.

aq-var
∆ ` x = x ⇓ ∆(x)

aq-fun
∆ ` e = e′ ⇓ FunXF ∆ ` d = d′ ⇑ X

∆ ` e d = e′ d′ ⇓ F · d

A variable is only equal to itself; its type is read from the context. A neutral
application e d is only equal to another neutral application e′ d′ and the function
parts must be equal, as well as the argument parts. The type of e must be a
function type FunXF , whose domain X is used to check d and d′ for equality.

The type of the application e d is computed as F ·d. We could equally well have
chosen to return F · d′. That both choices amount to the same follows from the
correctness of the equality check; yet we cannot rely on it before we have estab-
lished correctness. This will be an issue in the correctness proof (Sec. 5); Harper
and Pfenning [HP05] have avoided these complications by using simply-typed
skeletons to direct the equality algorithm. Their method relies on dependency
erasure which works for LF but not for type theories with large eliminations.

Checking mode ∆ ` d = d′ ⇑ X (inputs: ∆, d, d′, X, output: succeed or fail).

aq-ne-f
∆ ` e = e′ ⇓ E1 ∆ ` E1 = E2 ⇓ Seti

∆ ` e = e′ ⇑ E2

aq-ext
∆, x∆ :X ` f · x∆ = f ′ · x∆ ⇑ F · x∆

∆ ` f = f ′ ⇑ FunXF

aq-ty
∆ ` X = X ′ ⇑ Set i

∆ ` X = X ′ ⇑ Setj
i ≤ j

Neutral values e, e′ can only be of neutral type Ei, they are passed to inference
mode. The check ∆ ` E1 = E2 ⇓ Seti should actually not be necessary, because
we already now that e and e′ are well-typed, and types are only present to
guide the equality algorithm. However, currently we do not know how to show
soundness without it. Such redundant checks are present in other works as well
[HP05, p. 77].

Two values f, f ′ of functional type are equal if applying them to a fresh
variable x∆ makes them equal. This is extensional equality, provided we can
substitute arbitrary values for the variable. Had we formulated the algorithm on
terms instead of values, this would be a standard substitution theorem. However,
in our case it is more difficult. We deal with this issue in Sec. 8.

Values X,X ′ of type Setj must be types, we check their equality in the type
mode. The inferred universe i must be at most j, otherwise X,X ′ are not well-
typed.

Type mode ∆ ` X = X ′ ⇑ Set i (inputs: ∆,X,X ′, output: i or fail).

aq-ty-ne
∆ ` E = E′ ⇓ Seti

∆ ` E = E′ ⇑ Set i

aq-ty-set
∆ ` Seti = Seti ⇑ Set i+ 1

aq-ty-fun
∆ ` X = X ′ ⇑ Set i ∆, x∆ :X ` F · x∆ = F ′ · x∆ ⇑ Set j

∆ ` FunXF = FunX ′F ′ ⇑ Set max(i, j)

A neutral type E can only be equal to another neutral type E′, we delegate
the test to the inference mode. A universe Seti is only equal to itself. Function
types FunXF and FunX ′F ′ are equal if their domains and codomains coincide.
For checking the codomains we introduce the fresh variable x∆ of type X into
the context. Again arbitrarily; we could have chosen X ′ instead. This is another
source of asymmetry which complicates the correctness proof; for LF, it can be
avoided by considering simply-typed contexts [HP05].

This algorithm is called semantic since it compares values. It is part of the
core of Agda and Epigram 2. Since it is of practical relevance, it is a worth-while
effort to verify it. Correctness of type checking is then a consequence of the
correctness of algorithmic equality.

3 Specification: Typing with Explicit Substitutions

We want to prove that our algorithmic equality is correct, so we should say in
which sense and provide a specification. There are different ways to present type
theory. We choose a formulation with explicit substitutions [ML92] because the
typing and equality rules can then be validated directed in any (Kripke) PER
model over any syntactical applicative structure (see Thm. 1). Altenkirch and
Chapman [AC08] exploit this fact for their closure-based definition of values. A
formulation with non-explicit (deep) substitution directly validates the inference
rules only for PER models over syntactical applicative structures with extra
properties, e. g., λ-algebras [AC07], or combinatory algebras [ACD07].

We extend the expression syntax by explicit substitutions and introduce syn-
tactical typing contexts:

Exp 3 r, s, t ::= · · · | tσ expressions
Subst 3 σ, τ ::= (σ, x= t) | σid | σ ◦ τ substitutions
Cxt 3 Γ ::= � | Γ, x :A typing contexts

We identify expressions up to α-conversion and adopt the convention that in
contexts Γ all variables must be distinct. Hence, we can view Γ as a map from
variables to types with finite domain dom(Γ) and let Γ (x) = A iff (x :A) ∈ Γ .
In context extensions Γ, x : A we assume x 6∈ dom(Γ). As usual FV(t) is the
set of free variables of t. We let FV(t1, . . . , tn) = FV(t1) ∪ · · · ∪ FV(tn) and
FV(Γ) =

⋃
x∈dom(Γ) FV(Γ (x)).

We have extended the language by explicit substitutions so we need to ex-
tend the notion of syntactical applicative structure, to ensure substitutions are
evaluated reasonably:

eval-subst-id σidρ = ρ
eval-subst-comp (σ ◦ σ′)ρ = σ(σ′ρ)
eval-subst-ext (σ, x=s)ρ = (σρ, x=sρ)
eval-esubst (tσ)ρ = t(σρ)

Herein, σρ is defined by x(σρ) = (xσ)ρ.

Judgements. Our type theory with explicit substitutions has the following forms
of judgement:

Γ ` Γ is a well-formed context
Γ ` A A is a well-formed type in Γ
Γ ` t : A t has type A in Γ
Γ ` σ : Γ ′ σ is a well-formed substitution in Γ
Γ ` A = A′ A and A′ are equal types in Γ
Γ ` t = t′ : A t and t′ are equal terms of type A in Γ
Γ ` σ = σ′ : Γ ′ σ and σ′ are equal substitutions in Γ

For an arbitrary judgement, we write Γ ` J , where J is a collection of
syntactic entities (terms, contexts, substitutions) to the right of ` in a judge-
ment. FV(J) is the union of the free variable sets of all entities in J . Ex-
ceptions are FV(σ : ∆), which is defined as

⋃
x∈dom(∆) FV(∆(x), σ(x)), and

FV(σ = σ′ : ∆) =
⋃
x∈dom(∆) FV(∆(x), σ(x), σ′(x)).

The judgements on types can be defined in terms of the judgement on terms.

Γ ` A ⇐⇒ Γ ` A : Seti for some i
Γ ` A = A′ ⇐⇒ Γ ` A = A′ : Seti for some i

The inference rules for the other judgements are given in figures 1, 2, 3, and
4. They are inspired by categorical presentations of type theory, in particular,
categories with families [Dyb96], which have been inspired by Martin-Löf’s sub-
stitution calculus [ML92]. Rule const relies on an auxiliary judgement Σ ` c : A
meaning constant c can be assigned type A. Its only rule is:

set-f
Σ ` Seti : Seti+1

In extensions of the core theory, the signature Σ provides the types of construc-
tors of inductive types like the natural numbers.

The judgements enjoy some standard properties, like weakening, inversion of
typing, and well-formedness of contexts, types and terms (syntactic validity).

Well-formed contexts Γ `.

cxt-empty � ` cxt-ext
Γ ` A
Γ, x :A `

Well-typed terms Γ ` t : A.

const
Γ ` Σ ` c : A

Γ ` c : A
hyp

Γ ` (x :A) ∈ Γ
Γ ` x : A

conv
Γ ` t : A Γ ` A = A′

Γ ` t : A′ sub
Γ ` A : Seti

Γ ` A : Setj
i ≤ j

fun-f
Γ ` A : Seti Γ, x :A ` B : Seti

Γ ` FunAλxB : Seti

fun-i
Γ, x :A ` t : B

Γ ` λxt : FunAλxB
fun-e

Γ ` r : FunAλxB Γ ` s : A

Γ ` r s : B(σid, x=s)

esubst-f
Γ ` σ : Γ ′ Γ ′ ` t : A

Γ ` tσ : Aσ

Well-formed substitutions Γ ` σ : Γ ′.

subst-ext
Γ ` σ : Γ ′ Γ ′ ` A Γ ` s : Aσ

Γ ` (σ, x=s) : (Γ ′, x :A)

subst-id
Γ `

Γ ` σid : Γ
subst-comp

Γ2 ` σ : Γ3 Γ1 ` τ : Γ2

Γ1 ` σ ◦ τ : Γ3

subst-weak
Γ ` σ : Γ ′, x :A,Γ ′′

Γ ` σ : Γ ′, Γ ′′

Fig. 1. Rules for contexts, types, and terms.

Equality Γ ` t = t′ : A. Equivalence, hypotheses, conversion.

eq-refl
Γ ` t : A

Γ ` t = t : A
eq-sym

Γ ` t = t′ : A

Γ ` t′ = t : A

eq-trans
Γ ` t = t′ : A Γ ` t′ = t′′ : A

Γ ` t = t′′ : A

eq-const
Γ ` Σ ` c : A

Γ ` c = c : A
eq-hyp

Γ ` (x :A) ∈ Γ
Γ ` x = x : A

eq-conv
Γ ` t = t′ : A Γ ` A = A′

Γ ` t = t′ : A′ eq-sub
Γ ` A = A′ : Seti

Γ ` A = A′ : Setj
i ≤ j

Dependent functions.

eq-fun-f
Γ ` A = A′ : Seti Γ, x :A ` B = B′ : Seti

Γ ` FunAλxB = FunA′ λxB′ : Seti

eq-fun-i
Γ, x :A ` t = t′ : B

Γ ` λxt = λxt′ : FunAλxB

eq-fun-e
Γ ` r = r′ : FunAλxB Γ ` s = s′ : A

Γ ` r s = r′ s′ : B(σid, x=s)

eq-fun-β
Γ, x :A ` t : B Γ ` s : A

Γ ` (λxt) s = t(σid, x=s) : B(σid, x=s)

eq-fun-η
Γ ` t : FunAλxB

Γ ` (λx. t x) = t : FunAλxB
x 6∈ dom(Γ)

Fig. 2. Equality rules.

Equivalence rules and weakening.

eq-subst-refl
Γ ` σ : Γ ′

Γ ` σ = σ : Γ ′ eq-subst-sym
Γ ` σ = σ′ : Γ ′

Γ ` σ′ = σ : Γ ′

eq-subst-trans
Γ1 ` σ = σ′ : Γ2 Γ2 ` σ′ = σ′′ : Γ3

Γ1 ` σ = σ′′ : Γ3

eq-subst-weak
Γ ` σ = σ′ : Γ ′, x :A,Γ ′′

Γ ` σ = σ′ : Γ ′, Γ ′′

Rules of the category of contexts and substitutions.

eq-subst-id-l
Γ ` σ : Γ ′

Γ ` σid ◦ σ = σ : Γ ′ eq-subst-id-r
Γ ` σ : Γ ′

Γ ` σ ◦ σid = σ : Γ ′

eq-subst-assoc
Γ3 ` σ : Γ4 Γ2 ` σ′ : Γ3 Γ1 ` σ′′ : Γ2

Γ1 ` (σ ◦ σ′) ◦ σ′′ = σ ◦ (σ′ ◦ σ′′) : Γ4

Rules for the empty substitution and substitution extension.

eq-subst-empty-η
Γ ` σ : � Γ ` σ′ : �

Γ ` σ = σ′ : �

eq-subst-ext-β
Γ2 ` σ : Γ3 Γ3 ` A Γ2 ` s : Aσ Γ1 ` τ : Γ2

Γ1 ` (σ, x=s) ◦ τ = (σ ◦ τ, x=sτ) : Γ3, x :A

eq-subst-ext-η
Γ, x :A `

Γ, x :A ` (σid, x=x) = σid : Γ, x :A

eq-subst-ext-weak
Γ ` σ : Γ ′ Γ ′, x :A ` Γ ` t : Aσ

Γ ` (σ, x= t) = σ : Γ ′

Congruence rules.

eq-subst-ext
Γ ` σ = σ′ : Γ ′ Γ ′ ` A Γ ` s = s′ : Aσ

Γ ` (σ, x=s) = (σ′, x=s′) : (Γ ′, x :A)

eq-subst-comp
Γ2 ` σ = σ′ : Γ3 Γ1 ` τ = τ ′ : Γ2

Γ1 ` σ ◦ τ = σ′ ◦ τ ′ : Γ3

Fig. 3. Equality rules for substitutions Γ ` σ = σ′ : ∆.

eq-esubst-f
Γ ` σ = σ′ : ∆ ∆ ` t = t′ : A

Γ ` tσ = t′σ′ : Aσ

eq-esubst-id
Γ ` t : A

Γ ` tσid = t : A

eq-esubst-comp
Γ ` τ : Γ ′ Γ ′ ` σ : Γ ′′ Γ ′′ ` t : A

Γ ` t(σ ◦ τ) = (tσ)τ : A(σ ◦ τ)

eq-esubst-c
Γ ` σ : Γ ′ Σ ` c : A

Γ ` cσ = c : A

eq-esubst-var
Γ ` σ : Γ ′ Γ ′, x :A ` Γ ` t : Aσ

Γ ` x(σ, x= t) = t : Aσ

eq-esubst-fun-f
Γ ` σ : Γ ′ Γ ′ ` A : Seti Γ ′, x :A ` B : Seti

Γ ` (FunAλxB)σ = Fun (Aσ) (λxB)σ : Seti
x 6∈ dom(Γ)

eq-esubst-fun-i
Γ ` σ : Γ ′ Γ ′, x :A ` t : B

Γ ` (λxt)σ = λx. t(σ, x=x) : (FunAλxB)σ
x 6∈ dom(Γ)

eq-esubst-fun-e
Γ ` σ : Γ ′ Γ ′ ` r : FunAλxB Γ ′ ` s : A

Γ ` (r s)σ = rσ sσ : B(σ, x=sσ)

Fig. 4. Equality rules for explicit substitutions.

4 Verification Plan and Contextual Reification

A standard method to show completeness of the algorithmic equality would be
the following [HP05].

1. Define a Kripke logical relation ∆ ` d = d′ : X on a semantic context ∆
and values d, d′ by induction on the type X. We will call this relation Kripke
model. For base types X, let the relation coincide with algorithmic equality
∆ ` d = d′ ⇑ X, for function types do the usual functional construction:
∆ ` f = f ′ : FunXF iff ∆′ ` d = d′ : X implies ∆′ ` f · d = f ′ · d′ : F · d
for all d, d′ and all extensions ∆′ of ∆.

2. Show that if two values are related in the model, then the algorithm relates
them as well. Following Schürmann and Sarnat [SS08] we call this the escape
lemma, since it allows to “get out of the logical relation”.

3. Finally show validity of the inference rules w. r. t. the model, i.e., if two terms
t, t′ are equal of type A, then for each well-formed environment ρ, we have
tρ = t′ρ : Aρ in the model, which implies that the algorithm accepts t, t′ as
equal.

In particular, the relation ∆ ` = : X needs to be a partial equivalence, in
order to validate symmetry and transitivity rules. But due to the asymmetric
nature of algorithmic equality (rules aq-fun and aq-ty-fun), this can only be
shown if we have soundness, which at this point we cannot obtain.

Normalization-by-evaluation (NbE) [ML75,BS91,Coq94,Dan99] to the res-
cue! There already are equality algorithms for dependent types with large elim-
inations which are based on semantics [AAD07,ACD07]. Two semantic values
are considered equal if they reify to the same expression. Reification at a type
X converts a value to a term, η-expanding it on the fly according to type X. It
turns out that we can verify the algorithmic equality by relating it to NbE.

We will verify algorithmic equality according to this plan:

1. Define normalization-by-evaluation for our setting. This amounts to defining
contextual reification ∆ ` d ↘ v ⇑ X which converts value d of type X in
context ∆ to normal form v.

2. Show completeness of NbE (Sec. 5), meaning that if one takes two judgmen-
tally equal terms t, t′, evaluates and reifies them, one arrives at the same
normal form v (Cor. 1). To this end, we construct a Kripke model based on
reification, meaning that two values are equal at base type if they reify to
the same normal form.

3. Show soundness of NbE (Sec. 6), meaning that if we take a term t, evaluate
and reify it, we arrive at a normal form v judgmentally equal to t (Cor. 2).
The main tool is a Kripke logical relation between well-typed terms t and
semantic objects d, which for base types states that d reifies to a normal
form v which is judgmentally equal to t.

4. Show completeness of the algorithmic equality (Sec. 7). This is a corollary
of completeness of NbE, since we will see that if two values reify to the same
normal form, then the algorithm will accept them as equal (Lemma 7).

5. Show soundness of the algorithm (Sec. 8). The direct approach, showing
that two algorithmically equal values reify to the same normal form, fails
due to the asymmetry of the algorithm. We introduce the concept of strong
semantic typing and equality (a super Kripke model, so to say) and prove
that the algorithm is sound for strong semantic equality. By establishing
that the inference rules are valid in the super Kripke model (Cor. 4), and
that equality in the super Kripke model entails equality in the Kripke model,
we finally show that well-typed terms whose values are algorithmically equal
reify to the same normal form, thus, are judgmentally equal (Thm. 3).

What remains open is termination of algorithmic equality.

4.1 Contextual Reification

Reification [BS91] converts a semantic value to a syntactic term, η-expanding it
on the fly. It is defined by recursion on the type of the value. In previous NbE
approaches [BS91,ACD07] the semantics of base types has been defined as a set
of η-long neutral terms, thus, reification at base type is simply the identity. In
our approach, the semantics of base types is a set of neutral values, which are not
η-expanded and need to be reified recursively. This can only happen if reification
has access to the types of the free variables of a neutral value. For example, to
reify x d d′ at base type we need to retrieve the type FunX F of x, recursively
reify d at type X, compute F ·d = FunX ′ F ′ and recursively reify d′ at type X ′.
For this task, we introduce a new form of reification which is parameterized by
a semantic typing context ∆, hence the name contextual reification.

We simultaneously define three inductive judgements by the rules to follow.
Herein, ∆ ∈ SemCxt, d, e,X ∈ D, u ∈ Ne, v, V ∈ Nf and i ∈ N.

∆ ` e↘ u ⇓ X neutral value e reifies to u, inferring its type X
∆ ` d↘ v ⇑ X value d reifies to normal form v at type X
∆ ` X ↘ V ⇑ Set i type value X reifies to V , inferring its level i.

Inference mode ∆ ` e↘ u ⇓ X (inputs: ∆, e, outputs: u,X or fail).

reify-var
∆ ` x↘ x ⇓ ∆(x)

reify-fun-e
∆ ` e↘ u ⇓ FunXF ∆ ` d↘ v ⇑ X

∆ ` e d↘ u v ⇓ F · d

Variables reify to themselves and neutral applications to neutral applications.
The type information flows out of the context ∆ and is used in reify-fun-e to
reify d of type X in checking mode.

Checking mode ∆ ` d↘ v ⇑ X (inputs: ∆, d,X, output: v or fail).

reify-ne
∆ ` e↘ u ⇓ E1 ∆ ` E1 ↘ u′ ⇓ Seti ∆ ` E2 ↘ u′ ⇓ Seti

∆ ` e↘ u ⇑ E2

reify-ext
∆,x :X ` f · x↘ v ⇑ F · x
∆ ` f ↘ λxv ⇑ FunXF

reify-ty
∆ ` X ↘ V ⇑ Set i

∆ ` X ↘ V ⇑ Setj
i ≤ j

Any value f of functional type is reified by applying it to a fresh variable x. Note
that this can trigger further evaluation, e. g., in the λ-model where functional
values are just weak head normal forms or closures. The result of reifying a
functional value is always a λ-abstraction, which means that reification returns
η-long forms.

At neutral type E2, objects e need to be neutral and are reified in inference
mode. The inferred type E1 needs to be equal to E2—this is checked by reifying
both types, expecting the same normal form.

Type mode ∆ ` X ↘ V ⇑ Set i (inputs: ∆,X, outputs: V, i or fail).

reify-ty-ne
∆ ` e↘ u ⇓ Seti

∆ ` e↘ u ⇑ Set i

reify-ty-set
∆ ` Seti ↘ Seti ⇑ Set i+ 1

reify-ty-fun
∆ ` X ↘ V ⇑ Set i ∆, x :X ` F · x↘W ⇑ Set j

∆ ` FunXF ↘ FunV λxW ⇑ Set max(i, j)

Function type values reify to function type expressions in long normal form,
universes to universes and neutral type values to neutral type expressions.

We write ∆ ` e, e′ ↘ u ⇓ X for ∆ ` e ↘ u ⇓ X and ∆ ` e′ ↘ u ⇓ X.
This gives a basic equality on neutral objects (which is used in rule reify-ne,
for instance).

We say ∆′ extends ∆, written ∆′ ≤ ∆, if ∆′(x) = ∆(x) for all x ∈ dom(∆).
(The direction of ≤ is as in subtyping.) Reification is closed under weakening of
contexts, i.e., reifying in an extended context produces an α-equivalent normal
form. Reification provides us with a normalization function: given a closed term
t : A, the normal form v is obtained by � ` tρid ↘ v ⇑ Aρid.

5 Kripke Model and Completeness of NbE

Dependent types complicate the definition of a logical relation, because one
cannot use structural induction on the type expression. Instead one needs to

simultaneously define the “good” type values X by induction and their denota-
tion, a relation on objects, by recursion [Dyb00]. We spell out this construction
for our Kripke model in sections 5.1–5.3. In Section 5.4 we prove that it models
our inference rules.

5.1 An induction measure

If X ⊆ D and F(d) ⊆ D for each d ∈ X , then the dependent function space

Π X F = {f | ∀d ∈ X . f · d ∈ F(d)}

is another subset of D. For i = 0, 1, . . . we define the sets Ti ⊆ D × P(D)
inductively as follows:

(E,D) ∈ Ti (Setj , |Tj |) ∈ Ti
j < i

(X,X) ∈ Ti ∀d ∈ X . (F · d,F(d)) ∈ Ti
(FunXF, Π X F) ∈ Ti

Herein, |Ti| = {X | ∃X . (X,X) ∈ Ti}. We define the relation : ⊆ D× D by

d : X ⇐⇒ ∃X , i. (X,X) ∈ Ti and d ∈ X

As a special case, X : Seti ⇐⇒ X ∈ |Ti|. We will use the derivation of
membership in Ti as induction measure, quoted as “induction on X : Seti”.

5.2 Construction of the Kripke model

It is tempting to define ∆ ` d = d′ : X for base types directly as “∆ ` d ↘
v ⇑ X and ∆ ` d′ ↘ v ⇑ X for some v”. However, then the proof of the escape
lemma will fail, because during reification of function types, their domains flow
into the context. Reifying two function types will soon take place in different
contexts. We need to be more general and relate semantic objects at a priori
different types in a priori different contexts. Thus, in the following we define a
relation ∆ ` d : X s ∆′ ` d′ : X ′ for the purpose of proving the escape lemma,
and we obtain ∆ ` d = d′ : X as a special case in Sec. 5.3.

By lexicographic induction on i and X ′ : Seti we define the relations:

` : s ` X ′ : Seti
` : s ` : X ′

– Case E′ : Seti.

∆ ` X : Z s ∆′ ` E′ : Seti
⇐⇒ X = E neutral and Z = Seti and

∆ ` E ↘ U ⇓ Setj and ∆′ ` E′ ↘ U ⇓ Setj′ for some U and j, j′ ≤ i

∆ ` d : X s ∆′ ` d′ : E′

⇐⇒ X = E neutral and ∆ ` d↘ u ⇓ Ê and ∆′ ` d′ ↘ u ⇓ Ê′ and
∆ ` E, Ê ↘ U ⇓ Setj and ∆′ ` E′, Ê′ ↘ U ⇓ Setj′

for some E, Ê, Ê′, u, U, and j, j′ ≤ i

– Case Setj : Seti for j < i.

∆ ` X : Z s ∆′ ` Setj : Seti ⇐⇒ X = Setj and Z = Seti
∆ ` d : X s ∆′ ` d′ : Setj has already been defined

– Case FunX ′ F ′ : Seti where X ′ : Seti and F ′ · d : Seti for all d : X ′.

∆ ` Y : Z s ∆′ ` FunX ′F ′ : Seti
⇐⇒ Y = FunXF for some X,F and Z = Seti and

∆ ` X : Seti s ∆′ ` X ′ : Seti and
for all ∆̂ ≤ ∆, ∆̂′ ≤ ∆′, d, d′, ∆̂ ` d : X s ∆̂′ ` d′ : X ′

implies ∆̂ ` F · d : Seti s ∆̂′ ` F ′ · d′ : Seti

∆ ` f : Y s ∆′ ` f : FunX ′F ′

⇐⇒ Y = FunXF for some X,F and
for all ∆̂ ≤ ∆, ∆̂′ ≤ ∆′, d, d′, ∆̂ ` d : X s ∆̂′ ` d′ : X ′

implies ∆̂ ` f · d : F · d s ∆̂′ ` f ′ · d′ : F ′ · d′

Lemma 1. s is symmetric and transitive.

Lemma 2 (Type conversion). Let X ′ : Seti. If ∆ ` d : X s ∆′ ` d′ : X ′

and ∆′ ` X ′ : Seti s ∆′ ` X ′′ : Seti then ∆ ` d : X s ∆′ ` d′ : X ′′.

Proof. By induction on X ′ : Seti.

Lemma 3 (Into and out of the model / escape lemma). Let X ′ : Seti.
Then

1. (In:) If ∆ ` e ↘ u ⇓ X and ∆′ ` e′ ↘ u ⇓ X ′ then ∆ ` e : X s ∆′ ` e′ :
X ′.

2. (Out:) If ∆ ` d : X s ∆′ ` d′ : X ′ then ∆ ` d ↘ v ⇑ X and ∆′ ` d′ ↘
v ⇑ X ′ for some v.

3. (Out-Type:) If ∆ ` X : Seti s ∆′ ` X ′ : Seti ∆ ` X ↘ V ⇑ Set j and
∆′ ` X ′ ↘ V ⇑ Set j′ for some V and j, j′ ≤ i.

Proof. Simultaneously by induction on X ′ : Seti.

5.3 The Kripke model

We now define

∆ ` d = d′ : X ⇐⇒ ∆ ` d : X s ∆ ` d′ : X.

We can view the relation ∆ ` d = d′ : X as inductively generated by the
following rules:

∆ ` Seti = Seti : Setj
i < j

∆ ` E ↘ u ⇓ Seti ∆ ` E′ ↘ u ⇓ Seti
∆ ` E = E′ : Setj

i ≤ j

∆ ` e↘ u ⇓ E1 ∆ ` e′ ↘ u ⇓ E2 ∆ ` E0, E1, E2 ↘ u′ ⇓ Seti
∆ ` e = e′ : E0

∆ ` X = X ′ : Seti
∆′ ` F · d = F ′ · d′ : Seti for all ∆′ ≤ ∆ and ∆′ ` d = d′ : X

∆ ` FunXF = FunX ′F ′ : Seti

∆′ ` f · d = f ′ · d′ : F · d for all ∆′ ≤ ∆ and ∆′ ` d = d′ : X
∆ ` f = f ′ : FunXF

We let ∆ ` X = X ′ iff there exists an i such that ∆ ` X = X ′ : Seti. We write
∆ ` d : X for ∆ ` d = d : X.

5.4 Validity of Syntactic Typing

Now we can show that all the rules for our typing and equality judgements are
valid in the model. As a byproduct, we get completeness of NbE.

Let

∆ ` ρ = ρ′ : Γ ⇐⇒ ∀x ∈ dom(Γ). ∆ ` ρ(x) = ρ′(x) : Γ (x)ρ

Define Γ J , meaning that Γ ` J is valid in the Kripke model, as follows:

� :⇐⇒ true
Γ, x :A :⇐⇒ Γ A

Γ A :⇐⇒ either A = Seti and Γ or Γ A : Seti for some i

Γ t : A :⇐⇒ Γ t = t : A
Γ t = t′ : A :⇐⇒ Γ A and ∀∆ ` ρ = ρ′ : Γ. ∆ ` tρ = t′ρ′ : Aρ

Γ σ : Γ ′ :⇐⇒ Γ σ = σ : Γ ′

Γ σ = σ′ : Γ ′ :⇐⇒ Γ and Γ ′ and ∀∆ ` ρ = ρ′ : Γ. ∆ ` σρ = σ′ρ′ : Γ ′

Theorem 1 (Soundness of the inference rules). If Γ ` J then Γ J .

Proof. By induction on Γ ` J . (Tedious, but easy.)

Lemma 4. Γρid ` ρid = ρid : Γ .

Proof. For each x ∈ dom(Γ), we have Γρid ` xρid = xρid : Γ (x)ρid.

Corollary 1 (Completeness of NbE). If Γ ` t = t′ : A then Γρid ` tρid ↘
v ⇑ Aρid and Γρid ` t′ρid ↘ v ⇑ Aρid for some v.

6 Kripke Logical Relation and Soundness of NbE

In the previous section we have defined a logical relation ∆ ` d : X s ∆′ `
d′ : X ′ between two semantic objects in their typing environments. Now we will
define a logical relation between a well-typed expression Γ ` t : A and a value
d in its typing environment ∆ ` X. The relation shall imply that d at type
X reifies in ∆ to a normal form v which is judgmentally equal to t at type A
in context Γ (Lemma 5). The construction is similar to [ACD07] but has ∆ as
additional parameter.

We write Γ ′ ≤ Γ if Γ ′ is a well-formed extension of Γ . By induction on
X : Seti we define the relation

Γ ` t : C R© ∆ ` d : X

between well-typed terms Γ ` t : C and semantic objects ∆ ` d : X.

Γ ` r : C R© ∆ ` f : FunXF ⇐⇒
Γ ` C = FunAλxB : Seti for some A,B and
Γ ` A : Seti R© ∆ ` X : Seti and
Γ ′ ` r s : B(σid, x=s) R© ∆′ ` f d : F d for all Γ ′ ≤ Γ,∆′ ≤ ∆

and Γ ′ ` s : A R© ∆′ ` d : X

Γ ` r : C R© ∆ ` FunXF : Seti ⇐⇒
Γ ` C = Seti : Seti+1

Γ ` r = FunAλxB : Seti for some A,B and
Γ ` A : Seti R© ∆ ` X : Seti and
Γ ′ ` B(σid, x=s) : Seti R© ∆′ ` F d : Seti for all Γ ′ ≤ Γ,∆′ ≤ ∆

and Γ ` s : A R© ∆ ` d : X

Γ ` r : C R© ∆ ` d : X ⇐⇒ ∆ ` d↘ v ⇑ X and Γ ` r = v : C
for X neutral or X = Seti and d 6= FunY F

The logical relation is closed under weakening of contexts (both the syntactic,
Γ , and the semantic one, ∆) and under judgmental and Kripke model equality,
meaning one can always trade expressions and values for equals without violating
the relation.

Lemma 5 (Into and out of the logical relation / escape lemma). Let
Γ ` C : Seti R© ∆ ` X : Seti.

1. (In:) If Γ ` u : C and ∆ ` e↘ u ⇓ X then Γ ` u : C R© ∆ ` e : X.
2. (Out:) If Γ ` r : C R© ∆ ` d : X then ∆ ` d ↘ v ⇑ X for some v with

Γ ` r = v : C.
3. (Out-type:) ∆ ` X ↘ V ⇑ Set j for j ≤ i and Γ ` C = V : Seti.

Proof. By induction on X : Seti.

Fundamental theorem. We relate substitutions Γ ′ ` σ : Γ to environments
∆ ` ρ : Γ by the following definition:

Γ ′ ` σ R© ∆ ` ρ :: Γ ⇐⇒ for all x ∈ dom(Γ),
Γ ′ ` xσ : Γ (x)σ R© ∆ ` ρ(x) : Γ (x)ρ

By induction on the length of Γ , we define the propositions Γ � J as follows:

� ⇐⇒ true
Γ, x :A � ⇐⇒ Γ � A

Γ � A ⇐⇒ either A = Seti and Γ � or Γ � A : Seti for some i

Γ � t : A ⇐⇒ Γ � t = t : A
Γ � t = t′ : A ⇐⇒ Γ � and

Γ ′ ` tσ : Aσ R© ∆ ` t′ρ : Aρ for all Γ ′ ` σ R© ∆ ` ρ :: Γ.

Γ � τ : Γ0 ⇐⇒ Γ � τ = τ : Γ0

Γ � τ = τ ′ : Γ0 ⇐⇒ Γ � and Γ0 � and
Γ ′ ` τ ◦ σ R© ∆ ` τ ′ρ :: Γ0 for all Γ ′ ` σ R© ∆ ` ρ :: Γ.

Theorem 2 (Fundamental theorem of logical relations). If Γ ` J then
Γ � J .

Proof. By induction on Γ ` J .

Lemma 6. Γ ` σid R© (Γρid) ` ρid :: Γ .

Proof. We have to show Γ ` x : Γ (x) R© Γρid ` x : Γ (x)ρid for all x ∈ dom(Γ).
This holds by Lemma 5 since Γρid ` x↘ x ⇓ (Γρid)(x).

Corollary 2 (Soundness of NbE). If Γ ` t : A then there is some v such
that Γρid ` tρid ↘ v ⇑ Aρid and Γ ` t = v : A.

7 Completeness of Algorithmic Equality

In this section, we conclude the completeness of the equality algorithm from the
completeness of NbE. In particular, if two values reify to the same normal form,
they are algorithmically equal. Some care has to be paid to the case of functional
values. It could be that f reifies to λxv since f · x reifies to v and f ′ reifies to
λx′v′ =α λxv since f ′ · x′ reifies to v′. Now we want to conclude that f and f ′

are algorithmically equal, which requires f ·x∆ equal to f ′ ·x∆. But the induction
hypothesis is not applicable since x, x′, x∆ might be different variables, hence,
f ·x and f ·x∆ are different objects. If our values are actually normal expressions,
we could use plain old α-conversion and rename the variables. However, we are
dealing with values in an arbitrary syntactical applicative structure D!

We restrict the class of possible models to those that admit renaming of free
variables. This is a sensible restriction since values should be parametric in the
names of their free variables—case distinction on the name of a identifier is not
a desirable program behavior.

Renamings. Let π be a bijective map from variables to variables. We assume a
renaming operations dπ on values d ∈ D with the following properties:

ren-c cπ = c
ren-var xπ = π(x)
ren-app (f · d)π = fπ · dπ
ren-eval (tρ)π = t(ρπ)

Renaming can be defined for many syntactical applicative structures D: term
models, explicit substitutions, closures, even Scott models which evaluate an
abstraction (λxt)ρ to an actual function h : D → D with h(d) = t(ρ, x = d).
Setting (hπ)(d) = (h(dπ−1))π we have (h(d))π = (hπ)(dπ) [Pit06].

We define renaming of contexts π(∆) by

ren-cxt-empty π(�) = �
ren-cxt-ext π(∆,x :X) = π(∆), π(x) :Xπ

Remark 1. This is not to be confused with the operation ∆π which is com-
position defined by (∆π)(x) = ∆(x)π. We have π(∆)(xπ) = ∆(x)π. Thus,
π(∆) = π−1∆π is a conjugation.

Lemma 7 (Completeness of algorithmic equality w. r. t. reification).
Let ∆ = x1 :X1, . . . xn :Xn be a semantic context and π a permutation of names
assigning the ith de Bruijn level to variable xi (π(xi) = xi for i = 1..n).

1. If ∆ ` e↘ u ⇓ X and ∆′ ` e′ ↘ u ⇓ X ′ then π(∆) ` eπ = e′π ⇓ Xπ.
2. If ∆ ` d↘ v ⇑ X and ∆′ ` d′ ↘ v ⇑ X ′ then π(∆) ` dπ = d′π ⇑ Xπ.
3. If ∆ ` X ↘ V ⇑ Set i and ∆′ ` X ′ ↘ V ⇑ Set i′ then π(∆) ` Xπ =

X ′π ⇑ Set max(i, i′).

Proof. Simultaneously by induction on the first derivation.

A name permutation π can be viewed as an environment, taking a variable
x to π(x). This explains the notation tπ, and π(Γ) which satisfies π(Γ)(xπ) =
Γ (x)π. Let π(x1:A1,...xn:An)(xi) = xi for i = 1..n.

Corollary 3 (Completeness of algorithmic equality). If Γ ` t = t′ : A
then πΓ (Γ) ` tπΓ = t′πΓ ⇑ AπΓ .

Proof. We have Γρid ` tρid, t
′ρid ↘ ⇑ Aρid by Cor. 1, thus, the corollary follows

from Lemma 7 with ρidπΓ = πΓ .

8 Strong Semantic Typing and Soundness of Algorithmic
Equality

In this section, we tackle the second problem: soundness of the equality algo-
rithm. We show that if two values are algorithmically equal, then they reify to
the same normal form. Rule aq-fun gives us a hard time:

aq-fun
∆ ` e = e′ ⇓ FunXF ∆ ` d = d′ ⇑ X

∆ ` e d = e′ d′ ⇓ F · d

Using the induction hypothesis, we can show ∆ ` e′ d′ ↘ u v ⇓ F · d′ but we
need F · d! The fact that d and d′ reify to the same normal form does not help
us here, we need a stronger induction hypothesis.

Again, soundness of an algorithmic equality on syntax is usually trivial: one
simply shows that each algorithmic rule is an instance of an inference rule. When
trying to apply this intuition to our semantic typing and equality, the Kripke
model, one realizes that it lacks a substitution principle: Judgements remain
valid when substituting a term of the right type for a variable. In the following
we will equip our semantics with a substitution principle by brute force! We
define strong semantic judgements (a super Kripke model) to hold if the weak
semantic judgements (Kripke model) hold for all well-typed valuations of free
variables (cf. hypothetical judgements [CPT05]). As precondition, we need a
model in which we can reevaluate values in a new environment.

Reevaluation. For the following, impose more conditions on the model D. It
must be equipped with a reevaluation function dθ of value d in environment θ,
satisfying the following laws:

reeval-id d ρid = d
reeval-c cθ = c
reeval-var xθ = θ(x)
reeval-fun-e (f · d)θ = fθ · dθ
reeval-esubst (tρ)θ = t(ρθ)

Reevaluation is easy to define on the syntactical applicative structure of closures;
simply add ([λxt]ρ)θ = [λxt](ρθ) and (e d)θ = eθ · dθ to the above laws.

For Scott models, it is a bit more problematic. If f ∈ D → D, we can set
(fθ)(d) = (f(x))((θ, x=d) for a fresh variable x. Freshness can be defined if we
construct D as a nominal set [Shi05]. However, not all continuous functions f
will fulfill reeval-fun-e: for (f(d))θ = (f(x))(θ, x= dθ) to hold f must treat
variables parametrically. For example, the function f(d) = d if d not a variable
and f(x) = Set0 for x a variable is not parametric and, thus, not compatible
with reevaluation. The formulation of suitable parametricity conditions and the
proof of parametricity for all values in the Kripke model remains open.

8.1 Super Kripke model

Let Θ range over semantic contexts and let

∆ ` ρ = ρ′ : Θ ⇐⇒ ∀x ∈ dom(Θ). ∆ ` xρ = xρ′ : Θ(x)ρ

We write ∆ ` ρ : Θ iff ∆ ` ρ = ρ : Θ. We define strong semantic equality by

Θ |= d = d′ : X ⇐⇒ ∀∆ ` ρ = ρ′ : Θ. ∆ ` dρ = d′ρ′ : Xρ

Let Θ |= X = X ′ iff Θ |= X = X ′ : Seti for some i. We write Θ |= X for
Θ |= X = X and Θ |= d : X for Θ |= d = d : X, and say d is semantically
strongly typed of type X in context Θ.

Since ∆ ` ρid = ρid : ∆, strong semantic equality ∆ |= d = d′ : X implies
weak semantic equality ∆ ` d = d′ : X.

Lemma 8 (Admissible rules). The following implications, written as rules,
hold for strong semantic equality.

Θ |= x = x : Θ(x)
x ∈ dom(Θ)

Θ |= f = f ′ : FunXF Θ |= d = d′ : X
Θ |= f · d = f ′ · d′ : F · d

Θ |= FunXF Θ |= f : FunXF Θ |= f ′ : FunXF
Θ, x :X |= f · x = f ′ · x : F · x

Θ |= f = f ′ : FunXF

Θ |= FunXF, FunX ′F ′ : Seti
Θ |= X = X ′ : Seti Θ, x :X |= F · x = F ′ · x : Seti

Θ |= FunXF = FunX ′F ′ : Seti

Θ |= d = d′ : X Θ |= X = X ′

Θ |= d = d′ : X ′

Proof. The soundness of the application rule relies on distributivity of valuation
over application, (f · d)ρ = fρ · dρ.

Semantic context equality |= Θ = Θ′ is given inductively by

|= � = �
|= Θ = Θ′ Θ |= X = X ′ : Seti

|= Θ, x :X = Θ′, x :X ′
x 6∈ dom(Θ)

We write |= Θ for |= Θ = Θ.

Lemma 9 (Soundness of algorithmic equality). Let |= ∆.

1. If ∆ ` e = e′ ⇓ X then ∆ |= X and ∆ |= e = e′ : X.
2. If ∆ ` d = d′ ⇑ X and ∆ |= X and ∆ |= d, d′ : X then ∆ |= d = d′ : X.
3. If ∆ ` X = X ′ ⇑ Set i and ∆ |= X,X ′ : Seti then ∆ ` X = X ′ : Seti.

Proof. Simultaneously by induction on the derivation of algorithmic equality
using the admissible rules.

8.2 Strong Validity of Syntactic Typing

In the following, we establish that our inference rules are also valid in the super
Kripke model. However, no new inductive proof is needed. We have already
shown that the rules are valid in the weak semantics (Kripke model) under all
weakly typed environments. This is actually equivalent to being valid in the
strong semantics (super Kripke model) under all strongly typed environments.

We define strongly typed environments by

∆ |= ρ = ρ′ : Γ ⇐⇒ ∀x ∈ dom(Γ). ∆ |= ρ(x) = ρ′(x) : Γ (x)ρ.

Lemma 10 (Composing strongly and weakly typed environments). If
Θ |= ρ = ρ′ : Γ and ∆ ` θ = θ′ : Θ then ∆ ` ρθ = ρ′θ′ : Γ .

Define Γ ||= J , meaning that Γ ` J is valid in the super Kripke model, as
follows:

� ||= :⇐⇒ true
Γ, x :A ||= :⇐⇒ Γ ||= A

Γ ||= A :⇐⇒ either A = Seti and Γ ||= or Γ ||= A : Seti for some i

Γ ||= t : A :⇐⇒ Γ ||= t = t : A
Γ ||= t = t′ : A :⇐⇒ Γ ||= A and ∀∆ |= ρ = ρ′ : Γ. ∆ |= tρ = t′ρ′ : Aρ

Γ ||= σ : Γ0 :⇐⇒ Γ ||= σ = σ : Γ0

Γ ||= σ = σ′ : Γ0 :⇐⇒ Γ ||= and Γ0 ||= and
∀∆ |= ρ = ρ′ : Γ. ∆ |= σρ = σ′ρ′ : Γ0

Lemma 11 (Validity: weak implies strong). If Γ J then Γ ||= J .

Proof. The hypothesis is ∀∆ ` ρ = ρ′ : Γ. ∆ ` tρ = t′ρ′ : Aρ. Assume Θ |=
ρ = ρ′ : Γ and ∆ ` θ = θ′ : Θ and show ∆ ` tρθ = t′ρ′θ′ : Aρθ. By Lemma 10
∆ ` ρθ = ρ′θ′ : Γ , hence our goal follows by assumption.

Corollary 4. If Γ ` J then Γ ||= J .

Lemma 12. Γρid |= ρid = ρid : Γ .

Corollary 5. If Γ ` t : A then Γρid |= tρid : Aρid.

Putting things together:

Theorem 3 (Soundness of algorithmic equality). If Γ ` t, t′ : A and
Γρid ` tρid = t′ρid ⇑ Aρid then Γ ` t = t′ : A.

Proof. We have Γ ` t : A R© Γρid ` tρid : Aρid and Γ ` t′ : A R© Γρid ` t′ρid :
Aρid. Also |= Γρid, Γρid |= Aρid, Γρid |= tρid : Aρid, and Γρid |= t′ρid : Aρid. By
semantic soundness of the algorithm, Γρid |= tρid = t′ρid : Aρid which implies
Γρid ` tρid = t′ρid : Aρid, hence Γ ` t : A R© Γρid ` t′ρid : Aρid. This entails
Γ ` t = t′ : A.

9 On Termination

What remains to show is termination of the algorithmic equality: Given two
terms of the same type, the algorithm terminates on their values. We have al-
ready seen that the values of well-typed terms are reifiable, hence the NbE-
algorithm, which compares the results of reification, is terminating. We would
like to extend this result to algorithmic equality, which performs reification in-
crementally. One would expect a statement similar to Lemma 7:

If ∆ ` d↘ ⇑ X and ∆ ` d′ ↘ ⇑ X then the query ∆ ` d = d′ ⇑ X
terminates.

Generalizing this statement to the mutually defined notions of reification and
algorithmic equality (⇓ and ⇑ Set), we see that the proof fails since during
reification of d′, context and type diverge from ∆ and X. (Similar considerations
lead us to the definition of s in Section 5.2.)

The skeleton of the algorithmic derivation is already determined by the
derivation of ∆ ` d ↘ ⇑ X. Yet we have to show that the application f ′ · x∆
is terminating in aq-ext. Somehow we have to exploit that d′ originates from
a well-typed term, thus, ∆ ` d′ : X and even ∆ |= d : X both hold. But it is
unclear how to make use of these facts in a termination proof.

10 Conclusion and Related Work

We have presented a bidirectional incremental βη-equality algorithm for a depen-
dent type theory with predicative universes and verified it using NbE-techniques.
The algorithm is formulated with respect to an abstract representation of values
which supports several implementations. In Sec. 8 we had to exclude the repre-
sentation via higher order abstract syntax, which was used in an early version
of Agdalight, a predecessor of Agda 2. In the future we want to explore how to
generalize our proof so that we also cover this implementation technique. Fur-
thermore, we want to close the gap and prove termination of the algorithm as
well as soundness and completeness of type checking.

Some complications in the verification vanish if we restrict to a concrete,
term-like implementation of values, for instance, closures [Coq96,AC08]. Clo-
sures are a special case of explicit substitutions, hence, soundness of algorithmic
equality is trivial: each algorithmic rule can be replaced by a sequence of declar-
ative rules. Termination also becomes apparent: algorithmic equality works only
on well-typed terms, which are normalizing.

Related work. The current proof uses similar techniques to those in our previous
work on NbE [ACD07]. However, there are several differences, in order to deal
with contextual reification we here need a Kripke model instead of a plain PER
model.

Goguen [Gog94] proves decidability of UTT using typed operational seman-
tics. He treats η, universes, and even inductive types and a impredicative universe
of propositions. Showing soundness and completeness of his syntactic Kripke
model he establishes subject reduction, confluence, and strong normalization,
which imply decidability. However, he is not concerned about particular algo-
rithms. Since his approach is based on η-reduction instead of η-expansion, it is
not clear whether it scales to a unit type with extensional equality.

Harper and Pfenning [HP05] present an incremental bidirectional βη-equality
algorithm for LF using erasure of dependencies; this does not extend to large
eliminations. Chapman, Altenkirch, and McBride [CAM07] share their algorithm
with us. They describe an implementation, but no verification.

Grégoire and Leroy [GL02] have implemented an incremental β-conversion
test for the Calculus of Inductive Constructions based on “normalization by ex-
ecution”. Values are computed by compiling (open!) expression to Caml byte
code. The result of executing the code is then read back to a β-normal expres-
sion. The soundness of this efficient form of evaluation has been formally verified
in Coq. We expect that our and their work can be combined to obtain an ef-
ficient βη-conversion test. To this end, one needs to instantiate the syntactical
applicative structure D to machine code and define contextual reification of code,
similar to Grégoire and Leroy’s read back function.

Acknowledgments. Thanks to the anonymous referees who gave insightful com-
ments and pointed to the problem of termination.

References

[AAD07] Andreas Abel, Klaus Aehlig, and Peter Dybjer. Normalization by evaluation
for Martin-Löf type theory with one universe. In Marcelo Fiore, editor, Proc.
of the 23rd Conf. on the Mathematical Foundations of Programming Seman-
tics (MFPS XXIII), volume 173 of Electr. Notes in Theor. Comp. Sci., pages
17–39. Elsevier, 2007.

[AC07] Andreas Abel and Thierry Coquand. Untyped algorithmic equality for
Martin-Löf’s logical framework with surjective pairs. Fundam. Inform.,
77(4):345–395, 2007. TLCA’05 special issue.

[AC08] Thorsten Altenkirch and James Chapman. Big step normalisation. Draft,
available on the authors’ homepages., 2008.

[ACD07] Andreas Abel, Thierry Coquand, and Peter Dybjer. Normalization by evalu-
ation for Martin-Löf Type Theory with typed equality judgements. In Proc.
of the 22nd IEEE Symp. on Logic in Computer Science (LICS 2007), pages
3–12. IEEE Computer Soc. Press, 2007.

[ACD08] Andreas Abel, Thierry Coquand, and Peter Dybjer. A seman-
tic βη-equality algorithm for Martin-Löf Type Theory (extended ver-
sion). Technical report, Ludwig-Maximilians-University Munich, 2008.
http://www.tcs.ifi.lmu.de/˜abel/semEqTR.pdf.

[Bar84] Henk Barendregt. The Lambda Calculus: Its Syntax and Semantics. North
Holland, Amsterdam, 1984.

[BL84] Kim B. Bruce and Giuseppe Longo. On combinatory algebras and their
expansions. Theor. Comput. Sci., 31:31–40, 1984.

[BS91] Ulrich Berger and Helmut Schwichtenberg. An inverse to the evaluation
functional for typed λ-calculus. In Proceedings of the 6th Annual IEEE Sym-
posium on Logic in Computer Science, Amsterdam, pages 203–211, July 1991.

[CAM07] James Chapman, Thorsten Altenkirch, and Conor McBride. Epigram
reloaded: a standalone typechecker for ETT. In Marko C. J. D. van Eekelen,
editor, Revised Selected Papers from the 6th Symp. on Trends in Functional
Programming, TFP 2005, volume 6 of Trends in Functional Programming,
pages 79–94. Intellect, 2007.

[Coq94] Catarina Coquand. From semantics to rules: A machine assisted analysis.
In Egon Börger, Yuri Gurevich, and Karl Meinke, editors, Proc. of the 7th
Wksh. on Computer Science Logic, CSL ’93, volume 832 of Lect. Notes in
Comput. Sci., pages 91–105. Springer-Verlag, 1994.

[Coq96] Thierry Coquand. An algorithm for type-checking dependent types. In Math-
ematics of Program Construction. Selected Papers from the Third Interna-
tional Conference on the Mathematics of Program Construction (July 17–21,
1995, Kloster Irsee, Germany), volume 26 of Science of Computer Program-
ming, pages 167–177. Elsevier Science, May 1996.

[CPT05] Thierry Coquand, Randy Pollack, and Makoto Takeyama. A logical frame-
work with dependently typed records. Fundam. Inform., 65(1-2):113–134,
2005.

[Dan99] Olivier Danvy. Type-directed partial evaluation. In John Hatcliff, Torben Æ.
Mogensen, and Peter Thiemann, editors, Partial Evaluation – Practice and
Theory, DIKU 1998 International Summer School, Copenhagen, Denmark,
June 29 - July 10, 1998, volume 1706 of Lect. Notes in Comput. Sci., pages
367–411. Springer-Verlag, 1999.

[Dyb96] Peter Dybjer. Internal type theory. In Stefano Berardi and Mario Coppo,
editors, Types for Proofs and Programs (TYPES’95), Torino, Italy, number
1158 in Lect. Notes in Comput. Sci., pages 120–134. Springer-Verlag, 1996.

[Dyb00] Peter Dybjer. A general formulation of simultaneous inductive-recursive def-
initions in type theory. The Journal of Symbolic Logic, 65(2):525–549, 2000.

[GL02] Benjamin Grégoire and Xavier Leroy. A compiled implementation of strong
reduction. In Proc. of the 7th ACM SIGPLAN Int. Conf. on Functional
Programming (ICFP ’02), volume 37 of SIGPLAN Notices, pages 235–246.
ACM Press, September 2002.

[Gog94] Healfdene Goguen. A Typed Operational Semantics for Type Theory. PhD
thesis, University of Edinburgh, August 1994. Available as LFCS Report
ECS-LFCS-94-304.

[HP05] Robert Harper and Frank Pfenning. On equivalence and canonical forms in
the LF type theory. ACM Transactions on Computational Logic, 6(1):61–101,
2005.

[INR07] INRIA. The Coq Proof Assistant, Version 8.1. INRIA, 2007.
http://coq.inria.fr/.

[Ler06] Xavier Leroy. Formal certification of a compiler back-end or: programming a
compiler with a proof assistant. In J. Gregory Morrisett and Simon L. Peyton
Jones, editors, Proc. of the 33rd ACM Symp. on Principles of Programming
Languages, POPL 2006, pages 42–54. ACM Press, 2006.

[ML75] Per Martin-Löf. About models for intuitionistic type theories and the notion
of definitional equality. In S. Kanger, editor, Proceedings of the 3rd Scandi-
navian Logic Symposium, pages 81–109, 1975.

[ML92] Per Martin-Löf. Substitution calculus. Unpublished notes from a lecture in
Göteborg, November 1992.

[Nor07] Ulf Norell. Towards a practical programming language based on dependent
type theory. PhD thesis, Department of Computer Science and Engineering,
Chalmers University of Technology, SE-41296 Göteborg, Sweden, September
2007.

[Pit06] A. M. Pitts. Alpha-structural recursion and induction. Journal of the ACM,
53:459–506, 2006.

[Pol94] Robert Pollack. Closure under alpha-conversion. In Henk Barendregt and
Tobias Nipkow, editors, Types for Proofs and Programs: International Work-
shop, Nijmegen, May 1993, Selected Papers, number 806 in LNCS, pages
313–332. Springer-Verlag, 1994.

[PS99] Frank Pfenning and Carsten Schürmann. System description: Twelf - a meta-
logical framework for deductive systems. In H. Ganzinger, editor, Proceedings
of the 16th International Conference on Automated Deduction (CADE-16),
volume 1632 of Lect. Notes in Art. Intell., pages 202–206, Trento, Italy, July
1999. Springer-Verlag.

[PT98] Benjamin C. Pierce and David N. Turner. Local type inference. In POPL
98: The 25TH ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, San Diego, California, 1998.

[Shi05] Mark Shinwell. The Fresh Approach: Functional Programming with Names
and Binders. PhD thesis, University of Cambridge, 2005.

[SS08] Carsten Schürmann and Jeffrey Sarnat. Structural logical relations. In Frank
Pfenning, editor, Proc. of the 23nd IEEE Symp. on Logic in Computer Science
(LICS 2008), 2008.

