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Abstract. We introduce categories with families as a new notion of
model for a basic framework of dependent types. This notion is close
to ordinary syntax and yet has a clean categorical description. We also
present categories with families as a generalized algebraic theory. Then
we define categories with families formally in Martin-Lof’s intensional
intuitionistic type theory. Finally, we discuss the coherence problem for
these internal categories with families.

1 Introduction

In a previous paper [8] I introduced a general notion of simultaneous inductive-
recursive definition in intuitionistic type theory. This notion subsumes various
reflection principles and seems to pave the way for a natural development of what
could be called “internal type theory”, that is, the construction of models of
(fragments of ) type theory in type theory, and more generally, the formalization
of the metatheory of type theory in type theory.

The present paper is a first investigation of such an internal type theory.
We introduce categories with families to model a basic framework of dependent
types and show how to formalize them in intensional intuitionistic type theory.

One goal is to represent Hofmann’s setoid model of type theory [11, 13] in type
theory. He also used a categorical notion of model of dependent types (Cartmell’s
categories with attributes) but worked in ordinary set-theoretic metalanguage.
The setoid model of type theory can be viewed as a formalization of the standard
“intuitive” model of type theory. It also justifies the rules of extensional type
theory [16] and certain rules for quotient formation.

Our categorical approach to internal type theory can be contrasted to the
syntactic approach by Pollack [19]. He formalized the syntax of dependent type
theory in type theory and proved syntactic properties such as Church-Rosser.

The plan of the paper is as follows. In section 2 we introduce categores with
families and their formalization as a generalized algebraic theory. In section 3
we show how to formalize some basic categorical notions in type theory, and
then use these to define categories with families in type theory. We first give an
abstract presentation and then show how to derive a system of inference rules.
In section 4 we state a coherence problem for internal categories with families
and propose how to solve it by constructing a model of normal forms.



2 Categories with Families

2.1 Basic Definitions

Categories with families (cwfs) are variants of Cartmell’s categories with at-
tributes [12, 18]. The point of the reformulation is to get a more direct link to
the syntax of dependent types. In particular we avoid reference to pullbacks,
which give rise to a conditional equation when formalized in a straightforward
way. Cwfs can therefore directly be formalized as a generalized algebraic theory
with clear similiarities to Martin-Lof’s substitution calculus for type theory [17].

Let Fam be the category of families of sets. An object is a family of sets
(B(z))zea and a morphism with source (B(z))sca and target (B’ (z'))z/ea’ is a
pair consisting of a function f: A — A’ and a family of functions g(z) : B(z) —
B'(f(z)) indexed by z € A.

The components of a cwf are named after the corresponding syntactic notions.
Definition1. A category with families consists of the following four parts:

— A base category C. Tts objects are called conterts and its morphisms are
called substitutions.

— A functor T : C°? — Fam. We write T(I') = (I' = A) aeType(r), where I' is
an object of C, and call it the family of terms indexed by types in context
I'. Moreover, if v is a morphism of C then the two components of T'(7)
interpret substitution in types and terms respectively. We write A[7] for the
application of the first component to a type A and a[y] for the application
of the second component to a term a.

— A terminal object [] of C called the empty context.

— A context comprehension operation which to an object I' of C' and a type
A € Type(T") associates an object I'; A of C; a morphismp: I'; A —» T of
C' (the first projection); and a term q € I'; A+ A[p] (the second projection).
The following universal property holds: for each object A in C'; morphism
v:A— T, and term a € A+ A[y], there is a unique morphism 6 = (v, a) :
A — T'; A, such that po =~ and ¢[6] = a.

Throughout the paper we shall freely use “polymorphic” notation for improv-
ing readability. Without this convention we should for example have included
indices for the projections and written pr 4 and qr 4 instead of just p and q.

A basic example of a cwf is obtained by letting C' be the category of sets,
Type(I') be the set of I'-indexed small sets, and
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Given a cwf we can recover the structure of a category with attributes. For
example, the diagram

A; Aly ’Yp;

A—em————> 7T

is a pullback, and terms @ € I' F A are in one-to-one correspondence with
sections (id,a) : I' = I'; A of first projections p: ['; A — T

Conversely, given a category with attributes we can recover the structure of
a cwf. The terms can be recovered from sections of projections and substitution
can be recovered from pullbacks.

Definition2. Let (C,T) denote a cwf with base category C' and functor T'. A
morphism of cwfs with source (C,T) and target (C’,T") is a pair (F, ¢), where
F :C — C"is afunctor and o : T'— T"F is a natural transformation, such that
terminal object and context comprehension are preserved on the nose.

Definition 3. A pair of morphisms of cwfs

F o
(€, 7) > (C,T')
(G,7)

form an equivalence of cwfs iff

F
—
CéG '

form an equivalence of categories with unit 1 and counit ¢, such that

T— 2 SsTF TG« T
Ty T'e!
TF o7
TGF T'FG

commute.

Remark. There are alternative notions of cwf and morphism of cwfs which
avoid reference to chosen structure and where preservation is up to isomorphism.



2.2 The Generalized Algebraic Theory of Categories with Families

The next step is to formalize cwfs as a generalized algebraic theory in the sense
of Cartmell [5]. Generalized algebraic theories generalize many-sorted algebraic
theories and are based on a framework of dependent types. They have four parts:

A list of sort symbols with dependent typings.

— A list of operator symbols with dependent typings.

A list of equations between well-formed sort ezpressions (not needed here).
A list of equations between well-formed terms.

Cwfs make precise what it means to be a model of a generalized algebraic
theory. Expressing the notion of a cwf as a generalized algebraic theory can hence
be seen as a syntactic reflection process and a step towards internal type theory.

We present sort and operator symbols by their typing rules. As before, we
use polymorphic notation and write ¢ oy instead of the proper § c@ a,r 7, etc.

Rules for the Category C

Sort symbols:
Context : Sort

A, T : Context
A— T :Sort
Operator symbols:

O, A, I': Context vy A>T d:0—> A
~yod:0 =T

I : Context
d: ' =T

Equations:

(yod)olb =~o(dob)

idoy =~
~void =7
Rules for the Functor T
Sort symbols:
I': Context

Type(I') : Sort

I': Context A Type(I)
I'cA:Sort




Operator symbols:

A, I : Context A Type(I) vy A>T
Aly] : Type(A)

AT :Context A:Type(I') a:I'FA v: A>T
aly]l : A+ Aly]

Equations:

A[’yo(ﬂ = A[’Y] [4]

Alidl = A
alyod] = aly][4]
alid] =a

Rules for the Terminal Object

Operator symbols:
[d : Context

I' : Context
<>:I'—=[]
Equations
S>oy =<
id [ = <>

Rules for Context Comprehension

Operator symbols:
I': Context A Type(T)
I'; A Context

A, T :Context A:Type(I') v:A—=T a:AF Aly]

<v,a>: A—=THA

I : Context A Type(T')
p:I';A—=T
I': Context A Type(I)

q: ;AR Alp]



Equations:

po<y,a>=v
ql<vy,a>] = a
<d,a>o0y =<do~,alyl>

Z'dp;A =<p,q>

This completes the description of the generalized algebraic theory of cwfs.
Note the correspondence between sort symbols and judgement forms and be-
tween operator symbols and inference rules of a substitution calculus for depen-
dent types. But note also that there are no sort symbols which correspond to
equality judgements and no operator symbols which correspond to general equal-
ity rules. Instead general equality reasoning is inherited from the metalanguage.

Reflecting the Rules for an Arbitrary Generalized Algebraic Theory

The generalized algebraic theory of cwfs is a categorical formulation of the ba-
sic framework of dependent types. It corresponds to those rules of a standard
presentation which deal with formation of contexts, with substitution, and with
assumption. These rules underly both generalized algebraic theories and intu-
itionistic type theory.

We can reflect the rules of an arbitrary generalized algebraic theory as an
extension of the generalized algebraic theory of cwfs. For example, the rules of
a generalized algebraic theory which introduces a sort of natural numbers and
the sort of proofs of equality of natural numbers

N : sort

m,n: N
I(m,n) : sort
are reflected by the rules
I' : Context
N : Type(I)

I' : Context m,n: '+ N
I(m,n) : Type(T)

We could even reflect the generalized algebraic theory of cwfs itself, and add
the following operator symbols:

I': Context
‘Context’(I') : Type(I)

I': Context ‘AT ‘Context’(T)
‘A = p T Type(I)




etc. Note the difference between the sort C'ontext of contexts and the operator
symbol ‘Context’ of reflected contexts.

Such a game of reflection is quite pointless, since ultimately we have to un-
derstand what it means to be a model of a generalized algebraic theory in terms
of, say, classical set theory anyway. The main point of the paper (see section 3)
is to show an alternative explanation in terms of intuitionistic type theory.

Rules for the Cartesian Product of a Family of Types

We can also extend our generalized algebraic theory with various operator sym-
bols and equations corresponding to the inference rules of intuitionistic type
theory. As an example we give the rules for I7:

Operator symbols:

I' : Context A Type(I) B : Type(I'; A)
II(A, B) : Type(I')

I':Context A:Type(I') B:Type(I';A) b:I;AF B
A(D) : '+ IT(A, B)

I': Context A :Type(I') B:Type(I';A) e¢:T'FIH(A,B) a:T'FA
app(c,a) : I' b Bl<id, a>]

Equations:
I1(A, B)[y] = I1(Aly], Bl<y o p,¢>])
A(b)[v1 = A(b[<y o p,¢>])
app(c,a)[v] = app(cl],aly])
app(A(t),a) = bL<id, a>]

Aapp(clpl,q)) = ¢

The three first of the five equations represent the laws for substitution under I7,
A, and app. The fourth and fifth represent 8 and n-conversion respectively.
It is straightforward to formalize the other rules of type theory too.

3 Internal Categories with Families

3.1 Formalizing some Basic Categorical Notions in Type Theory

The definition of a cwf refers in particular to the notions of category, functor,
and the category Fam. Therefore we shall first formalize these notions in intu-
itionistic type theory, and then use them to get a notion of cwf in intuitionistic
type theory — an internal cwf.

But before doing this we shall briefly discuss the simpler problem of how to
define ordinary algebraic notions, such as monoids, in type theory.

Remark. Throughout the rest of the paper we work in intuitionistic type
theory and standard mathematical terms, such as category, functor, etc., will
henceforth refer to a notion in type theory, unless stated otherwise.



Monmnoids in Type Theory. A monoid in the ordinary sense consists of a set M,
a binary composition function o on M and an element id, such that composition
is associative and ¢d is an identity with respect to composition. A naive way to
interpret this in type theory would be to say that M is a set in the sense of
type theory and o is a function in the sense of type theory, that is, an algorithm.
Furthermore, we could require that associativity and identity laws are valid as
intensional identities (I-sets).

But this yields a too restrictive notion. For example, one way to define a
free monoid is to quotient the set of binary trees (S-expressions). But since
quotienting is not an operation on sets in type theory this construction would
then not yield a monoid in type theory.

So instead we let the carrier of a monoid be a setoid M, that is, a set M
with an equivalence relation ~p7, and o be a (setoid-)map, that is, a function be-
tween the underlying sets which respects the equivalence relations. Furthermore
associativity and identity laws have to be valid with respect to ~p;.

Formally, a setoid is a quintuple A = (A, ~4, ref 4, transa, sym ). When we
use a calligraphic letter to stand for a setoid, the corresponding italic letter will
stand for its carrier, and ref, trans, sym (with an italic letter as a subscript)
stand for the proofs of reflexivity, transitivity, and symmetry, respectively.

Categories and Functors in Type Theory. We follow Aczel [1] and Huet
and Saibi [15] and define a category to have a set of objects, but hom-setoids.
We shall not need to refer to equality of objects. The object part of a functor is
a function between the object sets and the morphism part is a family of maps
between the hom-setoids, such that the functor laws are satisfied with respect
to the equivalence relation in the hom-setoid.

Setoids and maps under extensional equality ~.y+ form a category in type
theory which plays the role of the category of sets in ordinary category theory.

For the description of an implementation (in Coq) of category theory along
these lines we refer to Huet and Saibi [15].

Setoid-Indexed Families of Setoids in Type Theory.
Definition4. Let A be a setoid. An A-indezed family of setoids consists of

— a family B of setoids indexed by the set A;
— a reindezing map +(P) : B(z') — B(z) whenever P : 2z ~4 2’

This family is coherent provided
— 1(ref 4) ~ege td (the identity map);

— u(trans o (P, P')) ~egt t(P) o t(P’) (composition of maps);
— ¢(P) is an isomorphism with inverse ¢(sym 4(P)) in the category of setoids.

Definition5. Let B be an A-indexed family of setoids and let B’ be an A'-
indexed family with reindexings « and ./, respectively. A morphism between
these two families consists of



—amap f: A— A
— an A-indexed family of maps g(z) : B(z) — B'(f(z)) for z : A.

Such a morphism is coherent if the following diagram commutes in the category
of setoids:

I

3"y L5 Bpa)

B(x) HB' (f(=))

whenever P :xz ~4 x'.
Two morphisms (f,g) and (f', g') are equivalent iff P : f ~.z¢ f' and

Bz) 2 B(f(a))

commutes in the category of setoids.

It is useful to note that the type-theoretic notion of a setoid is related to
the category-theoretic notion of a groupoid. The underlying set of a setoid cor-
responds to the set of objects of the groupoid and the sets of equivalence proofs
correspond to the homsets of a groupoid. The explicit proofs of reflexivity, tran-
sitivity, and symmetry in a setoid correspond to identity, composition, and in-
verse in a groupoid. Moreover, a setoid-indexed family of setoids is similar to
a groupoid-indexed family of groupoids defined as a functor and the coherence
conditions correspond to functoriality. Similarly, for morphisms, where the co-
herence condition corresponds to naturality.

Internal Cwfs. We are now ready to reinterpret Definition 1 (section 2.1)
of cwfs using our type-theoretic definition of the categorical notions. For the
purpose of defining internal cwfs we require that objects of Fam are coher-
ent setoid-indexed families of setoids and that morphisms of Fam are coherent
morphisms up to equivalence of morphisms as defined in the previous section.

3.2 Formal Rules for Internal Categories with Families

We present the formal rules for internal cwfs in a similar style as the generalized
algebraic theory of cwfs in section 2.2. All formal rules are derived systematically
from the abstract presentation of internal cwfs as outlined in the previous section.



The fundamental novelty is that among these rules there are general rules for
equality reasoning, which have no counterpart among the sort and operator
symbols of the generalized algebraic theory of cwfs.
So in addition to the four set constructors corresponding to the four sort
symbols:
Context : Set

A, I Context
A= T : Set

I : Context
Type(I') : Set

I': Context A Type(I)
I'k A: Set
there are three set constructors corresponding to equality judgements:
A I Context "Wy A>T

A=y~ el : Set

I' : Context A A" Type(T)
't A~ A" : Set

I' : Context A Type(I) a,a’ :T"'H A
I'Fa~a € A:Set
There is no set constructor for context equality, since our base category has a
set and not a setoid of objects (contexts). We note the similarity to Martin-Lof’s
substitution calculus [17] which (unlike Ehrhard’s [10], Curien’s [7], and Ritter’s
[20]) lacks a judgement for context equality.
The element constructors in the definition can be divided into three kinds:

— Those which correspond to operator symbols of the generalized algebraic
theory of cwfs, such as the rules for composition, identity, and substitution.

— General rules for equality reasoning.

— Those which correspond to the equations of the generalized algebraic the-
ory of cwfs. These rules need to be modified to take into account explicit
reasoning about equality.

We do not have space to display all these rules and shall therefore limit our
discussion to the most interesting of the second and the third kind.

Among the general rules for equality there are the rules of reflexivity, transi-
tivity, and symmetry for the three forms of equality judgement. There are also
congruence rules for each operation. Of particular interest is the rule of type
equality, which in the traditional formulation of type theory is written

I':Context AA :Type(I') THFA=A T'lka:A
I'ta:A ’




If we apply our definition of setoid-indexed family of setoids to the family of
terms indexed by types, the reindexing function gives rise to the following rule:
I' : Context A/A :Type(I') P:THFA~A a:T'HA
W(Pa): THA

Note the similarity with the typing rule in Curien’s explicit syntaz [7].
We also have equality rules for + coming from the coherence conditions for

objects of Fam:

I : Context A Type(I) a:I'H A
wref : I'Eu(ref,a) ~a€ A

I': Context AJA", A" :Type(I') P: TTFA~A" P :THA ~A" a: T+ A"
wrans : I' F o(trans(P, P'),a) ~ (P, (P, a)) € A

and also equalities expressing that «(sym(P)) is the inverse of +(P).
Another rule comes from the coherence condition for morphisms of Fam and
states that substitution in terms commutes with applications of type equality:

A, I': Context A,A":Type(I') P:IT'FA~A a:THFA ~: A>T
wsub s AF1(Ply], aly]) ~ (P, a)[7] € A[Y]
The third kinds of rules correspond to the equations of the generalized alge-

braic theory of cwfs. But to show the well-typedness of some of these rules we
need to appeal to the type-equality law. For example, the two equations

Alidl = A
alid] =a
are replaced by
I' : Context A Type(I)
Subid : ' Alid] ~ A
I' : Context A Type(TI) a:T'F A

subid : I' b alid] ~ 1(Subid, a) € AlLid]
Note the explicit dependence on the proof Subid in the second rule.

3.3 Examples of Internal Categories with Families

The Internal Cwf of Setoids. Hofmann [13] showed that the category of
setoids has finite limits (and much more!). This result is unproblematic to rep-
resent in type theory. Therefore we can also construct an internal cwf of setoids
as follows. Let C' be an arbitrary category with finite limits. It gives rise to an
internal cwf, where the category of contexts is C' itself, where types in context I'
are objects of the slice category C/I", and where terms are sections. Substitution
in types and terms is interpreted using the pullback functor. Moreover, proofs
of type equality are interpreted as isomorphisms in the slice category. Reindex-
ing is interpreted by composition with this isomorphism so that the coherence
conditions follow from the laws of associativity and identity, etc.



The Internal Cwf D of Derivations. The simplest way to get a syntactic
cwf is to turn the definition of an internal cwf in the previous section into a
big mutual inductive definition of the seven families of sets corresponding to the
seven forms of judgements in a substitution calculus. (To get a non-trivial cwf
we should also include some basic type constructors.)

The elements of these sets are best thought of as derivations in a substitution
calculus. Alternatively, they can be viewed as terms in explicit syntax [7].

Note also that the definition of a cwf in section 2.1 (or its presentation as
a generalized algebraic theory in section 2.2) does not directly show how to
generate free such categories. In contrast the definition of an internal cwf yields
a straightforward construction of free internal cwfs.

An Internal Cwf from Ordinary Syntax of Dependent Types. One can
also define a free cwf from a standard formulation of a substitution calculus
based on raw ezxpressions. Objects of the base category are pairs of raw contexts
and derivations of “correct context” judgements, etc. The detailed proof that
this indeed yields an internal cwf is non-trivial.

An Internal Cwf N of Normal Derivations. The basic idea is that a
normal derivation of a term is one which is built up by the rules of thinning and
of assumption. If we think of derivations as terms in an explicit syntax, then we
note that such derivations correspond to de Bruijn numbers: zero comes from
assuming the last variable and successor corresponds to the rule of thinning.
Moreover, a normal substitution is a sequence of normal terms.

Explicitly, we have the following inductive clauses for generating normal
derivations:

[1 : Context

I': Context A Type(I)
I'; A: Context

I : Context
<>:I'—=[]

A, T Context A:Type(I') v: A>T a:AF Aly]
<v,a>: A—=>T5A

I': Context A Type(TI)
0: ;AR Alp]
I' : Context A, B : Type(TI) a:T"'+B

s(a) : I'; A+ BIp]

(To get a non-trivial cwf we should again include some basic type constructors.)



Note that the operations _[_] and p appear in the inductive clauses and hence
we have a simultaneous inductive-recursive definition [8] of the sets of normal
derivations and the cwf-operations on them.

We can prove that we get an internal cwf A by interpreting equality of types,
terms, and substitutions as I-equality. This result has been implemented in ALF,
a proof checker for intensional intuitionistic type theory [2].

4 The Coherence Problem for Internal Cwfs

Categorical interpretations of type theory can be divided into those which in-
terpret type equality as isomorphism, such as Seely’s lccc-interpretation [21],
and those which interpret it as true equality, such as Cartmell’s category with
attributes interpretation. In either case a coherence problem arises. In order to
interpret syntax in an lccc we have to make sure that two different derivations of
the same judgement have the same interpretation. A proof of this was given by
Curien [7]. On the other hand interpreting syntax in categories with attributes
is relatively straightforward [13]. But here a coherence problem arises when one
already has an lccc and wants to construct a category with attributes. For this
purpose Hofmann [12] adapted a method due to Bénabou [3] for constructing a
split fibration from an arbitrary fibration.

There is also a coherence problem for internal type theory. Proofs of type
equality appear in terms and it is sometimes essential to know that the term
does not depend on this particular proof. Formally:

Conjecture 1 Coherence: if P,P' . ' A'~ A and a: '+ A then
'k o(Pya) ~ (P’ a) € A’ in an internal cwf.

(Note that we do not want to refer to equality between equality proofs in an
internal cwf, so we cannot simply ask whether P and P’ are “equal”.)
This coherence proposition can be proved as a corollary to the following:

Conjecture 2 Normalization: there is an equivalence of internal cuwfs:
(N, v)
DP_—_— >N
(1,9)
The upper arrow is a normalizing cwf-morphism and the lower an inclusion of
normal forms.

The two crucial properties of normalization are (i) that two convertible terms
have identical normal forms and (ii) that a term is convertible to its normal form
[6]. Tn our case property (i) is a consequence of the fact that equality in A is the
basic T-equality in type theory. Property (ii) is a consequence of the equivalence
of D and N and can be expressed as follows. Let



be the normal forms of I', v, A, a, respectively, in D. Then there is an isomorphism
nr: I — r
which is natural
A= y~iploFonael
and for each A : Type(I"), there is a proof

Eas:THA~ Alyr]
and for each a : I' F A,
I'ta~uEs,a)lnprl € A

To prove that coherence follows from normalization we instantiate a to ¢(P, a)
and ¢(P’, a) respectively in the last equation. We get

N

I'to(Pya) ~ o(Ea,(P,a))[nr] € A’
't (P a) ~(Ea, L(}/D‘Td)) [nr]l € A

Since L(TD,\G) and L(]gtll) are T-equal the coherence proposition follows.

Unfortunately, we have only been able to give an informal sketch of the
normalization proof. This is not satisfactory, since this is a proof in intuitionistic
type theory which involves the manipulation of large terms in explicit syntax and
it 1s difficult to carry out these manipulationssafely by hand. As mentioned above
we did manage to completely formalize the internal cwfs D and A in the proof
assistant ALF, but we failed to prove their equivalence. In fact, the construction
of N was a major undertaking which took the present version of ALF to the limits
of its capability with very slow responses. We believe that the equivalence proof
should be feasible with an improved proof assistant. Alternatively, a different
construction of A" might make the proof more manageable.

5 Related Work

The present paper is a revised version of a paper that appears in the proceed-
ings of the Joint CLICS-TYPES Workshop on Categories and Type Theory,
Goteborg, January 1995 [9]. Much useful information on cwfs can also be found
in the lecture notes on “Syntax and Semantics of Dependent Types” by Martin
Hofmann [14]. He uses ordinary set-theoretic cwfs as the central semantic notion
and gives several examples. He also discusses the relationship with other cate-
gorical notions of model for dependent types and gives a detailed proof of the
equivalence of cwfs and categories with attributes.

Cwfs have also been used in recent unpublished work on “Tarski Semantics
for Type Theory” by Per Martin-Lof (lecture at the meeting Twenty-Five Years
of Constructive Type Theory”, Venice, October, 1995).

The reader is also referred to the paper by Beylin and Dybjer [4] which shows
how related phenomena appear in another proof of coherence in type theory.
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