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Abstract. This paper studies the problem of coherence in category the-
ory from a type-theoretic viewpoint. We first show how a Curry-Howard
interpretation of a formal proof of normalization for monoids almost di-
rectly yields a coherence proof for monoidal categories. Then we formalize
this coherence proof in intensional intuitionistic type theory and show
how it relies on explicit reasoning about proof objects for intensional
equality. This formalization has been checked in the proof assistant ALF.

1 Introduction

Mac Lane [18, pp.161-165] proved a coherence theorem for monoidal categories.
A basic ingredient in his proof is the normalization of object expressions. But it
is only one ingredient and several others are needed too.

Here we show that almost a whole proof of this coherence theorem is hidden
in a Curry-Howard interpretation of a proof of normalization for monoids.

The second point of the paper is to contribute to the development of construc-
tive category theory in the sense of Huet and Saibi [16], who implemented part
of elementary category theory in the proof assistant Coq. Here we extend the
scope of constructive category theory to the area of coherence theorems (cf. also
[9]). We have formalized our proof in Martin-Lof type theory and implemented
it in the proof assistant ALF. An interesting aspect of this formalization is that
the problem of reasoning about explicit proofs of equality in the object language
(arrows in a free monoidal category) reduces to reasoning about explicit proofs
of equality in the metalanguage (proof objects for intensional equality I).

The paper is organized in the following way. In Section 2 we prove a normal-
ization theorem for monoids. In Section 3 we introduce the notion of a monoidal
category and prove coherence for it. In Section 4 we show how the proof can be
formalized in intuitionistic type theory. Section 5 contains a few remarks about
the implementation in ALF. Section 6 is about related work.

The ALF-implementation can be found on the web [11]. More discussion and
a comparison with an implementation of the same proof in HOL can be found
in Agerholm, Beylin, and Dybjer [2].



2 Normalization for Monoids

Let M be the set of binary words with variables in the set X, that is, the least
set such that

eeM
r €M for any z € X
a®b e M for any a,b € M

Write @ ~ b if @ and b are congruent with respect to associativity (a®(b®c) ~
(a®b)®c) and unit laws (e®a ~ a and a®e ~ a). Hence M/ ~ is a free monoid
generated by X.

Moreover, the subset N of normal binary words is the least set such that
e € N and ifn € N and z € X then n®z € N.

We shall analyze the proof of the following “obvious” normalization theorem

(see Hedberg [13]):

Theorem 1. There is a function (algorithm) Nf : M — N, such that a ~ b iff
Nf(a) = Nf(b).

A simple way to construct such a function is by using that NV together
with function composition and the identity function forms a monoid. So let

Nf(a) = [a](e), where []: M — N is defined by

[l (n)
[+](n)
[a@b](n)

nQe
[e1([a](n))

The theorem now follows from the following two lemmas:

Lemma 2. Ifa ~ b then [a] = [b] and Nf(a) = Nf(b).

Proof. By induction on the proof of a ~ b.

Lemma 3. a ~ Nf(a).

Proof. a ~ e®a ~ [a](e) = Nf(a) using the following auxiliary lemma:
Lemma4. n®a ~ [a](n).

Proof. By induction on a.
In the next section we shall see how a kind of Curry-Howard interpretation
of this proof yields a proof of coherence for monoidal categories.



3 Coherence for Monoidal Categories

3.1 Monoidal Categories

Definition5. A monoidal category consists of a category C; a bifunctor ® :
C x C — C; an object ¢; and three natural isomorphisms

Qg be - a@(b®c) — (G@b)@c
Ayt e®a — a
Pa 1 aQe —> a

such that the following diagrams (called the coherence conditions) commute:

a®(b@(c@d)) — (a0b)@(cod) — ((a@b)@c)od a®(e®@b) —> (a®e)®b
1d Qo a®id ?\3& ,/é§
a®((bec)®d) - > (a®(b®c))@d a®b

Mac Lane’s [18, pp 158-159] definition contained a third coherence condition
Ae = pe which was later proved to be redundant by Kelly. Our proof of coherence
does not use this condition.

Definition 6. The category M has elements (binary words) of M as objects.
Its Hom-sets are equivalence classes of arrow expressions. The arrow expressions
are inductively generated as follows:

gofia—c ifg:b—cand f:a—b
d:a—a if @ is an object

®g : a®@b — a’' QY if fra—a and g :b— ¥
feg f g

a:a®(b®c) — (a®b)®@c  if a,b, ¢ are objects
a1 (a®b)®c — a®(b®c) if a,b, c are objects

Aie®a —a if @ 1s an object
A lia— e®a if @ is an object
palQe — a if a is an object
p~lia — a®e if a is an object

Equivalence of arrow expression is the congruence relation inductively generated
by associativity and identity laws (making M a category with composition o
and identity id); the interchange laws (making ® a bifunctor); laws making a, A
and p natural isomorphisms with inverses a=!, A=1, and p~! respectively; and
finally the two coherence conditions. (See also the ALF implementation of M in
section 4.)

We will use arrow expressions to denote arrows in M.

Proposition7. (i) M is a free monoidal category generated by X. (ii) M is
a groupoid, that is, all its arrows are isomorphisms. (iti) There is an arrow

fra—bimMiffa~bin M.



Proof. (1) M is a free monoidal category by construction.
(ii) follows directly by induction on arrows of M.
(iii) By induction on f and, in the other direction, on the proof that a ~ b.

3.2 The Coherence Theorem
Theorem 8. If f, f' : a — b are arrows in M then f = f'.

Before we prove the theorem we note that it implies the coherence theorem
as formulated by Mac Lane. He defines a category W which has the same objects
as M (when X = {O}). Moreover, there is a unique arrow between two binary
words in W iff the two words have the same length. So W is a preorder with
every arrow invertible. Mac Lane’s coherence theorem ([18, p 162, theorem 1])
states that W is a free monoidal category. But our theorem entails that M is
isomorphic to W so Mac Lane’s theorem is a corollary.

Proof of Theorem 8. Let N be the set N considered as a discrete category.
The coherence theorem follows immediately from the categorical counterparts of
Lemmas 2 and 3: that Nf can be extended to a functor Nf : M — N (Lemma 9)
and that there is a natural isomorphism v, : ¢ = Nf(a) (Lemma 10). Indeed, if
ff a— b, then f = Vb_l oidov, = [’ because of naturality of v:

/

a - s
va| (nat) {ub
Nf(a) — Nf(b)

Lemma9. The functions Nf : M — N and [ ] : M — NV can be extended to
functors Nf : M — N and []: M — NV.

Proof. Follows immediately from Lemma 2.

Lemma 10. There is a natural isomorphism v, : a = Nf(a).

Proof. Let

-1 e

Vg :a — eQa e, [a]e

where ¢ is an auxiliary natural isomorphism constructed in Lemma 11.(For ty-
pographical reasons we write its components as £} rather than ¢, ,.) Then nat-



urality of v follows from the naturality of &:

a > b

w4

Ve e®a —» e@b vy

nat \
Y

N (b)

4

Nf(

2

~—
€,
\Y

Lemma11l. There is a natural isomorphism £ : n®a = [a](n).

Proof. £ is defined by recursion on a:

"o [aln
mob i n2(a®b) — e (n2a)@b 2% [a)(n)ob S [B]([al(n) = [a2b]n

& n@e —L» ¢

n id
& n®Rr — nQx

There is a dual definition of (5{;)‘1

We prove that &7 is natural in @ by induction on arrow expressions in M.
(Naturality in n is trivial, since A is a discrete category.) We justify each case
of the induction by a commuting diagram. In these we indicate explicitly when
we have used an induction hypothesis (ind), a coherence equation (coh), func-
toriality (fun) of ®, or naturality (nat). When there is no explicit indication we
have simply unfolded the definition of & or used a basic category law.

Casego f .
id®(g o f)

n@a

n@ec




Case id .

id®ed

n@a n@a
&a (fun) &a

[al(n) —+ La](n)

Case f®g .
n®(a®b) id8(f&9) > n@(a' @b
X (nat) /
(n®a)®b M‘? (n®a')®b'
G| CZoid  (ind) eid |y
T
y\@“ (ind) %
[4)([adm) - - 11 1m))
Case a .
n®(a®(b®c)) Sa n®((a®b)@c)
& (coh) @
(n@a)(bec) > (n@a)ob)ec 22 (no(aob))ee
E:@(b@c) §a®id (nat) (Eg®id)®id Eg®b®id E(”a@b)@c
[a](n)@(b®ec) — ([a](n)@b)@c ——— [B]([a](n))®c
a &-I[Ea]](")®l'd
fggbﬂc(") Ebﬂ(ﬁa]("))
[l (161 (Tal(r))) [ (18] (Tal(n)))




Cases X and p .

n®(e@a) —22 . nga Ncoh) /
o (coh% (n®a)®e

3 (n®e)®a & 3 ¢roid

[a] (n) —a [a](n) \9\\“\ X\

[al() ———— [al(n)

In the last diagram the top triangle is the derived coherence equation (9) in Mac

Lane [18, p 159].

4 Formalizing the Proof in Intuitionistic Type Theory

We have formalized the coherence proof in Martin-Lof intuitionistic type theory
using the proof assistant ALF developed in Goteborg by Coquand, Magnusson,
Nordlander, and Nordstrém [3].

When we formalize the free monoid in type theory we introduce explicit
proofs that two elements a and b of a monoid are equal. These proofs correspond
to arrow expressions in the free monoidal category M. To get the full definition of
M from M we just need to add the definition of equivalence of arrow expressions.
Moreover, v, and £ will appear as proof objects of a ~ Nf(a) and n®a ~ [a](n).
To show coherence it essentially only remains to show naturality.

Below we explain the essential features of the formalization, but we do not
recapitulate the whole proof in type-theoretic notation. In fact the description
below is a rational reconstruction of the actual implementation [11].

We begin by reviewing the treatment of equality in intensional type theory.
Then we show how to formalize monoids and monoidal categories. Finally, we
show how to refine the informal proof into a formal proof in type theory. Remark.
Throughout this section standard mathematical terms, such as category, functor,
etc., refer to their formalization in type theory unless stated otherwise.

4.1 Equality in Intensional Type Theory

We need to consider three kinds of equality in intensional type theory.
Firstly, we have definitional equality expressed by the equality judgement
a=1b: A. Two expressions are definitionally equal iff they have the same normal



form. Definitionally equal objects can be substituted for each other everywhere:
a=b:A Ja]
Jb] ’
where J[z] is an arbitrary judgement depending on z.

Secondly, we have basic intensional equality expressed by the equality propo-
sition I(A, a,b). This relation is inductively generated by the reflexivity axiom:

a:A
r:I1(A a,a)

(We often simplify notation by omitting some arguments. For example, the
proper form of r is r(A,a).) We have the following rule of substitutivity of
intensional equality:
c:I(A a,b) d: P(a)
I-elim(c,d) : P(b)
Note that the conclusion depends on the proof ¢ of equality. There is a defini-
tional equation for I-elim:

I-elim(r,d) = d
I is an intensional equality, since we cannot prove

(Ve : A) I(B, f(z),9(z)) = I(A— B, f,9).

It is often necessary to introduce a special equivalence relation which will
play the role of equality on a certain set (a book equality in AUTOMATH ter-
minology). Extensional equality of functions in a set A — B is one example.
We shall follow Hofmann [14] and call such pairs of sets and equivalence rela-
tions setoids. It is necessary to work with setoids, since one cannot form a new
set by taking the quotient of a set with respect to the equivalence relation. In
intuitionistic type theory the term set is reserved for something which is induc-
tively generated by “constructors” in much the same way as a “datatype” in a
functional programming language.

Furthermore, given two setoids (A, ~4) and (B, ~g), we will be interested in
pairs of functions from A to B and proofs that the function preserves equivalence.
We call such pairs setoid-maps (or just maps).

4.2 Monoids

A monoidin type theory can now be defined as a setoid (M, ~ ) with an element
e and a binary map o, such that the laws expressing that e is a unit and o is
associative are satisfied up to ~y;.

We call a monoid strict if ~p; is intensional equality 7. The terminology is
intended to suggest that the distinction between strict and non-strict monoids
in type theory is reminiscent of the distinction between strict and non-strict
categorical notions, such as strict and relaxed monoidal categories in category
theory, where a strict monoidal category 1s one where the monoidal laws hold
up to equality and not only up to isomorphism [18].



4.3 The Normalization Proof for Monoids

There is no difficulty in principle in formalizing the normalization proof for
monoids. See also Hedberg [13]. A minor point is that we define N as the set
of lists with elements in X and introduce an explicit injection J : N — M.
(There are no “true” subsets in type theory.) Hence the normalization function
is defined as follows:

Nf(a) = J([al(e)).

4.4 Monoidal Categories

We follow Aczel [1], Huet and Saibi [16], and Dybjer and Gaspes [10] and for-
malize a notion of category in intuitionistic type which does not have equality of
objects as part of the structure. A category thus consists of a set of objects, but
setoids of arrows indexed by pairs of objects. There is a family of 1dentity arrows
indexed by objects (that is, a function that to each object assigns a arrow), and
a family of composition maps indexed by three objects.

Hence the object part of a functoris a function between object sets, whereas
the arrow part is a map between Hom-setoids in the appropriate way.

A natural transformation is defined as a family of arrows together with a
proof of commutativity of the naturality diagram. Two natural transformations
are equal iff their arrow components are extensionally equal. We can prove that
functors and natural transformations under this equality form a category.

We have thus gone through all notions that the definition of a monoidal
category refers to. Hence 1t is also clear how to define this notion inside type
theory. In Figure 1 we show the implementation of M and of the coherence
proposition in ALF.

One can show that our formalization of monoidal categories is adequate with
respect to the standard set-theoretic definition in the following sense. The es-
sential idea is to use the naive interpretation in classical set theory of Martin-
Lof type theory [8]. But we need to interpret the Hom-setoids as Hom-sets of
equivalence classes rather than as set-theoretic setoids, and similarly for the
interpretation of maps.

4.5 The Coherence Proof

Since there are no subsets in type theory, there are no subcategories either. So
analogously to the monoid case we have to construct M and A independently
and then define an injection functor J : N — M. The objects of A are elements
of N and the arrows are proofs of intensional equality:

N(m,n) = I(N,m,n) [m,n: N]
We define J on arrows by equality elimination:

J(h) = I-elim(h, id 3m) : M(Jm, Jn) [m,n: N; h:N(m,n),



Definition of M

Statement of Coherence theorem

Fig. 1. Excerpts of the ALF code

the object part

the arrow part

equivalence
relation on the
arrows

o-laws

®-laws

naturality
conditions

tsomorphism

coherence
condilions



which implies that J(h) must be an identity arrow. However, the equality J(h) = id s,
is ill-typed unless h has already type N'(n,n).

Moreover, when we define the arrow part of the functor [ ] : M — ./\/N, we
cannot simply put

[f]n = idiayn) = idppyin) [a,b: M; f: M(a,b)]

as in the informal account, since we do not have the definitional equality [a](n) =
[6](n). The point is that even though [f], = id for any fixed f and n, we cannot
write the general statement.

Instead we use proof objects which witness the propositional equality in N:
[f1n : N([a](n), [B](n)) la,b: M; n:N; f: M(a,b)]

We also have to verify that this family of arrows is natural in n.

This phenomenon forces a slight modification in the formalization of the proof
of naturality of &. All base cases go through exactly as in the informal account,
but the induction steps need to be modified.

Consider first the left diagram for the case of composition in the informal
proof above:

n®a id®(go f)

J([p1(n))

- \ )
/ X y(o) %,

> L) Tlal (M) —5 gy /™)

informal version type-theoretic version

Note the difference between the two lower triangles. Previously commutativity
followed directly from the identity law. But in the type-theoretic formalization
we have to appeal to the functoriality of J and [ ].



We next consider the case for multiplication:

id@(f®g)

n®(a®b) n®@(a'®b’)
¢ (nat) °
(n®a)®b ({d8/)®g (n@a’) @b’
agy|  Ca®id (ind) ¢ id 3
[a](n)©b — 7 [al(n) &V
| §*§@ (ind) sg\//,,,k |
[81([al(n)) o [51(Ia'l(n))
informal version
Jn@(a®b) d3(/@9) - Jn@(a'ob)
\ (nat) /
(Tn@a)eb — 18N8I rnsayal
agp (a@id (ind) {a@id A

Jled(n)&b Fraar /([ (m))eV

[1.)®g
{
\@ (*) %
»‘E/ ‘ /(’2/ Y

I (L} (m))) e - TN ))

type-theoretic version

The difference is in the lower trapezium (*). To prove that it commutes we



analyze the type-theoretic version into

J([f1+)@g

J([a](n))@b > J(['](n))®b

(fun)

J([al(n)) @b’
Ega]](") (ind) {Eg’a]](") (nat) 657’]](")

W)
) 3
g (®) [/][f]n))

JBYa () T I ()

The right trapezium (nat) commutes because of naturality of £ in n.

It may seem as though the type-theoretic proof is significantly more com-
plex, but this is not quite true. Any formal proof would need to perform some
reasoning about substitutivity of equality, which is not explicitly represented in
the diagram from the informal proof.

5 Experience of the ALF-Implementation

The basic message of this paper is that a proof of coherence for monoidal cate-
gories is implicit in a proof of normalization for monoids. The additional work
Just involves checking the naturality of v. This work is fairly “mechanical” for a
human — no ingenuity is required. The reader should not be misled by the size
of the diagrams here, they analyze each case in great detail.

What did we learn from mechanizing the proof in ALF? Firstly, we had
to understand how to reason with explicit proofs of I-equality during diagram
chasing, we so as to speak had to think of questions of “meta-coherence”.

There were also several practical problems, which made the task of mechaniz-
ing the proof quite tedious. For example, an essential part of our proof consists
in chasing a few non-trivial diagrams. When doing this each equality inference
had to be given explicitly to the machine including informally trivial steps using
transitivity, congruence, associativity of composition, etc. which are hidden in
the diagrammatic notation.

ALF stores proof terms in their full “monomorphic” form, even if some subex-
pressions can be deduced from others. For instance, the full form of the oE-rule
(congruence of == with respect to composition) is

A, B,C :0bj g,9" : Hom(B,C) £, f' : Hom(A, B)
p: =(BCgyg) q: =(AB/J][)
==(A’C’O(A) BJCJng)’O(AJBJCJgIJf/))




Only the last two parameters (p and ¢) matter here, the others are not controlled
by the user and usually hidden (cf. the compact definition on Figure 1). In
our application the superfluous parts of terms tended to dominate (the internal
representation of a term was sometimes 20 times bigger than the “polymorphic”
term displayed on the screen).

6 Related Work

Discussions with Martin Hyland and John Power revealed that the extracted
proof is essentially a logical version of the proof of coherence for bicategories (in
the special case of monoidal categories) given in the recent paper by Gordon,
Power, and Street [12]. Their proof relies on Street’s bicategorical Yoneda lemma.
In our case a proof with similar structure was instead discovered by using the
Curry-Howard interpretation which makes explicit the connection between the
formal proof of normalization and the proof of coherence.

The present work can be seen as an application of a certain approach to
normalization in logical calculi: so-called “reduction-free” normalization [5, 7, 6,
4]. The idea is to construct an appropriate model of the calculus and a function
which inverts the interpretation function. Here the appropriate model 1s the
category NV and inversion is application to unit. Another proof of coherence in
this style is Lafont’s for cces [17].

We would also like to mention the proof of coherence for monoidal categories
by Huet [15]. In contrast to ours his approach is reduction-based and uses the
method of Knuth-Bendix completion from rewriting theory.
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