Random Generators for Dependent Types

Peter Dybjer!, Qiao Haiyan' and Makoto Takeyama?

! Department of Computing Science,
Chalmers University of Technology,
412 96 Goteborg, Sweden
{peterd,qiao}@cs.chalmers.se
2 Research Centre for Verification and Semantics
National Institute of Advanced Industrial Science and Technology
Nakoji 3-11-46, Amagasaki Hyogo, 661-097 Japan
makoto.takeyamaQaist.go. jp

Abstract. We show how to write surjective random generators for sev-
eral different classes of inductively defined types in dependent type the-
ory. We discuss both non-indexed (simple) types and indexed families
of types. In particular we show how to use the relationship between in-
dexed inductive definitions and logic programs: the indexed inductive
definition of a type family corresponds to a logic program, and gener-
ating an object of a type in the family corresponds to solving a query
for the logic program. As an example, we show how to write a surjective
random generator for theorems in propositional logic by randomising the
Prolog search algorithm.

1 Introduction

Random testing is a quick way to find bugs both in programs and their spec-
ifications [4]. It also facilitates proof development in type theory [8,9]. When
doing random testing in type theory, we need to write random generators for
types. A random generator for a type D is a function that has random seeds as
inputs and objects of D as outputs. When D is a simple datatype, the type of
the generator is Rand — D [8], where Rand is the type of random seeds. In the
case of a dependent type (an indexed family of types) P i for 4 :: I (we write
i = I to indicate that 4 is an object of type I), we wish to generate a pair (i, p)
of indices ¢ :: I and objects p :: P i. That is, the type of the generators for
the dependent type P is Rand — sig {i::I, p:: P i}, where sig {i::I, p:: P i}
denotes a dependent record type: the first field has type I and the second field
has a type P i that depends on the value i of the first field. However, since
P i can be empty, we need to decide how to generate an index 7 so that this is
not the case. In this paper, we discuss some difficulties that arise when writing
generators for dependent types and present some solutions for several classes of
inductive definitions (see Section 4-7). In particular, we get a very general class
of generators by using the fact that generating objects of inductively defined
indexed families is similar to solving queries in logic programs. This is because

an ordinary inductive definition of an indexed family of types (a predicate un-
der the Curry-Howard correspondence) can be seen as a logic program and vice
versa [10]. We also discuss how to use logic programming techniques for writing
generators.

Examples are implemented in Agda/Alfa [5,11], an interactive proof editor
based on Martin-Lof type theory. We slightly modify its concrete syntax to make
it easier to follow the examples. The formal proofs which are omitted in the paper
can be found at http://www.cs.chalmers.se/“qiao/papers/.

Acknowledgement. This research is partly supported by the Cover project funded
by SSF (the Swedish Foundation for Strategic Research). The aim of the Cover
project is to build tools where random testing and proving (automatic and in-
teractive) can be combined, see http://coverproject.org/. In particular we
develop tools based on dependent type theory, and we therefore need to develop
random generators for dependent types.

2 Inductive Families

In this section, we briefly describe the scheme for introducing new set formers
in Martin-Lo6f’s dependent type theory given by Dybjer [6]. We follow the usual
terminology where a “set” is a small type. Sets are either inductively defined
or formed from previously defined sets by dependent function set formation and
dependent record set formation. In this article we restrict ourself to ordinary (or
finitary) inductive definitions. See [6] for a discussion about ordinary vs. gener-
alised (or infinitary) inductive definitions. See also [7] for a discussion of further
generalising the notion of an inductive definition in dependent type theory.

We will only show the formation rule and the introduction rules, and omit
the elimination rules and equality rules. The reader is referred to [6] for details.

The dependent type theory here is based on the logical framework for Martin-
Lof type theory [12] and has four forms of judgements: o :: Type, p : 0,0 =T
and p=gq:o.

The rules of type formation are the following:

— Set :: Type,
— if @ :: Set, then « :: Type,
— if o :: Type and 7[A] :: Type under the assumption A :: o, then
(A :: 0)— 7[A4] :: Type (dependent function type) and
sig {A::0; B::7[A]} :: Type (dependent record type, also called signature).

Notation:
— We mostly use letters o,7,--- for types; a,f,--- for sets (observe that sets
are special types); p,q,--- for elements of a set; A, B,--- for variables of a

type; and a, b, u - - - for variables of a set.

— We write 7[A] when we emphasise that 7 may depend on variable A (that
is, A may occur free in 7). This however is optional: T may depend on any
variable in scope regardless of the notation. The result of substituting the
object s for A in 7 is written 7[s/A].

— The general form of a signature is sig {A; ::01; --+; Ay ::on}. It has as ob-
jects records (also called structures) struct{A4; =s1; ---; Ax =sn} where
8; oi[s1/A1, -+, Si—1/Ai—1]. A structure is a labelled tuple of objects of ap-
propriate types. The dot operation (—).A; selects its A; component; writing
r for the structure above, we have that r.A4; = s;.

— A nondependent function type, written o — 7, is the special case of
(A :: 0)— 7[A] where A does not occur in 7.

2.1 Formation Rule
For each set former P, there is one formation rule that has the form

P:(A01) > = (Ayion) =
(a1 2 a1) = - = (ap tapy) = (P-Formation)
Set

where o; are types and «; are sets. We call A; parameters and a; indices.
For readability, we omit the parameters and write P a; ... ap instead of
PA1 ANa1 ... Qpr-

2.2 Introduction Rules

There are finitely many introduction rules for each set former. Each introduction
rule for the set former P above has the form

intro:: (A; ::01) > -+ = (An 1oN) =
(by:: p1) = - = (bk = Bk) —
(’U,l o P q1 --- q1M) — (P—Intromtw)

(UL o qu qLM) —

Ppi ... pu

where f3; are sets, p; :: aj[pi/a1,---,pj—1/aj—1] (1 < j < M), and similarly

for g;; for each i. We call b; non-recursive and u; recursive arguments of the
constructor intro.

2.3 Examples

We show some instances of the general schema [6] and how they are written in
Agda/Alfa [5,11].

Ezample 1 (Natural numbers). The set Nat of natural numbers has no parame-
ters and indices. The rules are
— formation ~ Nat :: Set (N = M =0; in Nat-Formation)
— introduction zero :: Nat (K = L =0; in Nat-Introzero)
succ :: Nat — Nat (K =0, L =1; in Nat-Introgycc)

The concrete syntax in Agda/Alfa is

Nat :: Set = data zero :: Nat
| succ (n :: Nat) :: Nat

Ezample 2 (Finite sets). The indexed family Finn (n :: Nat) of sets with just n
elements has the following rules:

— formation Fin:: Nat — Set N=0,M=1)
— introduction Cg :: (n :: Nat) — Fin(succn) (K=1,L=0)
C; :(n:Nat) = Finn — Fin(sucen) (K =1, L=1)

The Agda/Alfa syntax is

Fin :: Nat -> Set
= data CO (n :: Nat) :: Fin (succ n)
| C1 (n :: Nat) (i :: Fin n) :: Fin (succ n)

Ezample 8 (Untyped A-terms). The set Termn (n :: Nat) of A-terms whose free
variables are among {varg,---,var,_1} (using de Bruijn indices), is a member
of the Nat-indexed family Term defined as follows.

Term :: Nat -> Set

= data var (n :: Nat) (i :: Fin (succ n)) :: Term (succ n)
| abs (n :: Nat) (t :: Term (succ n)) :: Term n
| app (n :: Nat) (t1, t2 :: Term n) :: Term n

Ezample 4 (Vectors of specified length). An example with one parameter A;
(o1 = Set) is the Nat-indexed family Vec where elements of Vecn are length-n
vectors.

Vec (A :: Set) :: Nat -> Set
= data nil’ :: Vec A zero
| cons’ (n :: Nat) (a :: A) (as :: Vec A n)
:: Vec A (succ n)

In Agda/Alfa, constructors are polymorphic with respect to the parameters and
need not be explicitly applied to them.

3 Generators

For the rest of the paper, we restrict o; in the schema in Section 2 to be the
type Set.

3.1 Definition of Generators
A generator for the family P in Section 2.1 is a function
genP :: (A; ::Set) = -+ = (An : Set) —
(g1 :: Rand = A;) = -+ = (gn :: Rand = Ay) —

Rand — sig {a1:za1; -+-; apan; pPay ... ap}

where A; are parameters and g; are parameter generators.
We have chosen to implement a seed in Rand as a binary tree of natural
numbers [8]. The definition in Agda/Alfa is

Rand :: Set = data Leaf (k :: Nat) :: Rand
| Node (k :: Nat) (1, r :: Rand) :: Rand

Example 5. The following function is a generator for Vec.

genVec :: (A :: Set) -> (Rand -> A) —->
Rand -> sig { ind::Nat; obj::Vec A ind }

struct ind = zero; obj = nil’
let { as = genVec A g r } in
struct ind = succ as.ind
obj = cons’ as.ind (g 1) as.obj

genVec A g (Leaf _)
genVec A g (Node _ 1 1)

The idea behind this generator is to map the parameter generator g to the given
tree seen as a (right-spine) list of (left) subtrees. (We omitted some braces and
semicolons using the so called layout rule of the Agda/Alfa syntax.)

3.2 Surjective Generators

A generator (with instantiation of parameters and parameter generators) is sur-
jective if it can generate, given a suitable seed, any element of any member set of
the target family. A reason for writing generators in Agda/Alfa is that it becomes
possible to formally prove this fundamental correctness property of generators.
For example, we can prove by induction that genVec A g is surjective when-
ever the parameter generator g is surjective. In Agda/Alfa we formally define

Surj :: (A :: Set) -> (Rand -> A) -> Set
Surj A g = (x :: A) -> sig rand::Rand; prf::Id A (g rand) x
-- (In predicate logic, it reads Vx::A. 3rand ::Rand. g rand = x.)

surj_genVec:: (A :: Set) -> (g :: Rand -> A) -> Surj A g —>
Surj sig{ind :: Nat; obj :: Vec A ind} (genVec A g)
surj_genVec A g p = (--- the proof omitted ---)

4 Generators for Simple Sets

A simple set, possibly parameterised, is an inductive family with the following
restriction (using the notation from Section 2):

— Its formation rule has only parameters and no indices (M = 0).

— For each introduction rule, the type 3; of each non-recursive argument is
either a parameter A; or a previously defined simple set.

— Tt is inhabited (non-empty); that is, at least one introduction rule has no
recursive arguments.

A generator for simple P is easy to write: it randomly chooses a constructor
and generates its arguments by parameter generators, by the generators for
previously defined simple sets, or by recursive calls, all using sub-seeds of the
given seed. When the seed is not large enough, it terminates by choosing a non-
recursive constructor. As each seed is finite, the problem of non-termination
discussed in [4] does not arise here.

Ezample 6 (Lists). The set List A of lists with elements in the set A is parame-
terised in A. A generator for it can be defined as follows:

List(A::Set) :: Set = data nil :: List A
| cons (a::A) (as::List A) :: List A

genList :: (A :: Set) -> (Rand -> A) -> Rand -> List A
genlList A g (Leaf _) = nil
genList A g (Node _ 1 r) = cons (g 1) (genlList A g 1)

This is indeed a simplified version of genVec and easily seen to preserve surjec-
tivity of the parameter generator g.

5 Generators for Inhabited Indexed Sets

An inhabited indezed set is an inductively defined indexed family with the fol-
lowing restrictions:

— Its formation rule P :: I — Set has no parameters, and the single index set
I is a simple set with a surjective generator genl :: Rand — I.
— For all 7 :: I, the set P ¢ is inhabited.

The extension to families with parameters and several indices is straightforward.

For such a family P, a surjective generator genP :: Rand — genPsig, where
genPsig = sig {ind:: I; obj :: Pind}, can be defined from a surjective generator
genP' i for each Pi. It first generates an index using genl, then an element of
P i using genP' 1.

genP’ :: (i :: I) -> Rand -> P i -- assumed given.

genP :: Rand -> genPsig
genP (Node _ 1 r) = struct ind = genl 1; obj = genP’ ind r
genP s genl s; obj genP’ ind s

struct ind

In fact, one can formally prove that
surj_genP :: Surj I genI -> ((i :: I)-> Surj (P i) (genP’ i))->
Surj genPsig genP
surj_genP p q = ---

Examples of defining genP’ for various P follow.

Ezample 7. Fin(succn) is inhabited for all n :: Nat. A surjective generator for
the family An::Nat. Fin(succn) can be defined as follows:

genFin’ :: (n :: Nat) -> Rand -> Fin (succ n)
genFin’ =zero _ = CO0 zero
genFin’ (succ m) (Leaf _) = CO (succ m)

genFin’ (succ m) (Node _ 1 r) = C1 (succ m) (genFin’ m 1)

Example 8. A binary tree is balanced if, at each node, the height difference
between its left and right subtrees is at most 1. One formulation of the set Bal n
of balanced binary trees of height n, and its surjective generator genBal' n are

Bal :: (n :: Nat) -> Set = data
Empty :: Bal zero
| CO0 (t1, t2 :: Bal n) :: Bal (succ n)
| CO1 (t1 :: Bal n) (t2 :: Bal (succ n)) :: Bal (succ (succ n))
| C10 (t1 :: Bal (succ n)) (t2 :: Bal n) :: Bal (succ (succ n))

=

genBal’ :: (n :: Nat) -> Rand -> Bal
genBal’ zero
genBal’ (succ zero) _
genBal’ (succ (succ n)) (Leaf k) =
let t = genBal’ (succ n) (Leaf k) in CO0 t t
genBal’ (succ (succ n)) (Node k 1 r) =
let bl = genBal’ (succ n) 1
b2 = genBal’ (succ n) r
b3 = genBal’ n r
in choice3 k (C00 bl b2) (CO01 b3 bl) (C10 bl b3)

Empty
CO0 Empty Empty

where choice3 k ag a1 a2 = a(rmod3)- Note that no part of a (non-leaf) seed
contributes to the result twice; this is necessary for surjectivity, and keeps disjoint
parts of the result independent of each other.

Example 9. The set Termn is nonempty for any n :: Nat, and a surjective gen-
erator can be given as follows:

genTerm’ :: (n :: Nat) -> Rand -> Term n

genTerm’ zero (Leaf _) = abs zero (var zero (CO zero))
genTerm’ zero (Node k 1 r) =
let t1 :: Term (succ zero) = genTerm’ (succ zero) 1
t2 :: Term zero = genTerm’ zero 1
t3 :: Term zero = genTerm’ zZero r
in choice2 k (abs zero tl1) (app zero t2 t3)
genTerm’ (succ m) (Leaf k) = var m (genFin’ m (Leaf k))
genTerm’ (succ m) (Node k 1 r) =
let t1 :: Term (succ (succ m)) = genTerm’ (succ (succ m)) 1
t2 :: Term (succ m) = genTerm’ (succ m) 1
t3 :: Term (succ m) = genTerm’ (succ m) r

in choice3 k (var m (genFin’ m 1))
(abs (succ m) t1)
(app (succ m) t2 t3)

6 Generators for Simple Inductive Families

We now consider a family whose member sets are not necessarily inhabited.

First, we adopt the method in Section 4 for simple sets to a restricted class of

families; for these, surjective generators can be defined without backtracking.
An inductive family is simple if the following conditions hold:

— Its formation rule P :: I — Set has no parameter, and the single index set
I is simple.
— Each introduction rule has the form
intro: (xy = I) = -+ = (zx = 1) =
(up : Pxy) = -+ (ug = Pzg) —
Pp

— P is not empty; there must be a constructor without arguments.

The type of a generator for P is the same as in Section 5: genP :: Rand —
genPsig. However, the choice of constructor controls the generation process, as
in Section 4. First, gen P randomly chooses a constructor. Then it generates the
constructor arguments 41,---, ig, 01,---, 0Og for &y, -+, Tk, Uy, -+, ug. Note
that each of the pairs (i1,01), -, (ix,0K) can be chosen as an arbitrary object
of the type genPsig, and thus K recursive calls suffices for that. The result is
the pair

(plir/z1,- -, ik /K, 01 /U1 -+ -, OK Juk], introiy ...ik o1...0K) :: genPsig

As in Section 4 the process terminates since the sizes of seeds decrease.
It is easy to see that this method gives a surjective generator as long as we
use independent random seeds in different recursive calls.

Ezample 10. A surjective generator for the family Evenn (n :: Nat) (of sets of
proofs that n is even) can be defined as follows.

Even :: Nat -> Set
= data CO :: Even zero
| C1 (n :: Nat) (p :: Even n) :: Even (succ (succ n))

genEven :: Rand -> sig { ind :: Nat; obj :: Even ind }
genEven (Leaf k) = struct ind = zero; obj = CO
genEven (Node k 1 r) = let gl = genEven 1
in struct ind = succ (succ gl.ind)
obj C1 gl.ind gl.obj

The method can be extended to include parameters, several indices, non-
recursive arguments of simple types, etc, under suitable restrictions.

7 Inductive Definitions and Logic Programs

The motivation for considering various restrictions on inductive families is to
have as few constraints as possible between indices and elements, in order to fa-
cilitate random generation. However, representing intricate constraints is often
the very purpose of defining an indexed family. To cover some of those cases, we
introduce unification and backtracking in a generation algorithm in the next sec-
tion. This section explains its basis, the relationship between indexed inductive
definitions and logic programs [10].
A Horn inductive family is one satisfying the conditions:

— The index sets in its formation rule, and the types (sets) of non-recursive
arguments in its introduction rules, all belong to previously defined Horn
inductive families.

— In each introduction rule, indices appearing in types of recursive arguments
and in the target type (g;;, p;) are all of constructor expressions; that is,
built up from variables in scope by constructors only.

This covers a large part of ordinary inductive families, including all classes we
have considered so far.

Our main example here is the family of sets of derivations in propositional
calculus, indexed by their conclusions (theorems). It has no parameters and
only one index. We do not explain our method for Horn families in general, but
generalising the discussion from our specific example should be routine.

Let us take Lukasiewicz’s system for propositional calculus. The set Formula
of formulas is a simple set with constructors

var :: Nat — Formula
~(=) : Formula — Formula
(=)=>(-) : Formula — Formula — Formula

where Nat is used to name propositional variables. The axiom schemata are:
Axipgr = (p=>q)=>((¢g=>r)=>(p=>r))

Ax2p = (-p=>p)=>p
Ax3pqg = p=>(~p=>q)

The only inference rule is Modus Ponens. Thus the family Thmp (p :: Formula)
below defines the set of derivations of a theorem p.

Thm :: Formula -> Set = data
axl (p, q, r :: Formula) :: Thm (Ax1 p q 1)

| ax2 (p :: Formula) :: Thm (Ax2 p)

| ax3 (p, q :: Formula) :: Thm (Ax3 p q)

| mp (p, q :: Formula) (x :: Thm p) (y :: Thm (p => q))
:: Thm q

This family does not fit in the simple schema of Section 6 because of mp
(y’s type is indexed by the non-variable p => q). Suppose we try to generate
arguments for mp, first generating a derivation dy :: Thm¢;, for arguments x and p.
While any ¢, will do here, we then must find, for y and q, a derivation dy :: Thm#g
where tq matches the specific pattern (¢, => _). Although we can find such a
derivation in this particular case, for other definitions there may not be such a
tq. If so, we need to backtrack, generate another pair (dy,t;), and try again.

This is similar to searching for a solution of a query in logic programming. In
Prolog, we can define a predicate thm so that thm p holds if ® and only if there
exists a derivation d :: Thm p.

thm((P => Q) => ((Q => R) => (P => R))).
thm((~P => P) => P).

thm(P => (~P => Q)).

thm(Q) :- thm(P), thm(P => Q).

Running the query thm(X) on a Prolog implementation, we can obtain theorems
as solutions for X; for example

X = (((_CA=>_B) => (_LC => _B)) => _D) => ((_C => A) => _D)

More precisely, this is a theorem pattern (schema) with variables _A, ---, D. We
can generate a theorem by instantiating them with any elements in Formula.

In general, there is a correspondence between Horn inductive definitions in
dependent type theory and Prolog programs under the propositions-as-sets cor-
respondence:

Type theory Logic programming
Family of sets P :: D — Set|Predicate P

an introduction rule a Horn clause

inductive definition of P logic program defining P

For example, a clause in Prolog
P(t) :- P (t1), -, Px(tk)
becomes an introduction rule in type theory:
intro:: (z1,...,ey D) > P t; > -+ > Pgtg - Pt

3 qIf’ direction needs some tampering with the default search order.

where D is the set inductively generated by the function symbols of the logic
program (the term algebra or the Herbrand universe), and t;, t are sequences
of terms in D with variables z1,...,zN.

The above correspondence does not account for derivations (proof objects)
d :: Thm p, nor for typing of objects in general. We now extend the correspon-
dence for these.

The idea is to regard sets in type theory as unary predicates (on untyped
terms) characterising their elements. For Nat and Formula, the corresponding
predicates are defined by

nat (zero) .

nat(succ(X)) :- nat(X).
formula(var(P)) :- nat(P).
formula(~P) :— formula(P).

formula(P => Q) :- formula(P), formula(Q).

A family with M indices becomes (M + 1)-place predicates relating indices with
elements of the member set at the indices. Corresponding to Thm, the predicate
thm1 relates a theorem with its derivation.

thm1((P => Q) => ((Q => R) => (P => R)), ax1(P,Q,R))

:— formula(P), formula(Q), formula(R).
thm1 ((~P => P) => P, ax2(P)) :— formula(P).
thm1(P => (~P => Q), ax3(P,Q)) :- formula(P), formula(Q).
thm1(Q, mp(P,Q,X,Y)) :- thmi(P, X), thmi(P => Q, Y).

We can obtain a theorem and its derivation as solutions for X and Y in the query
thml (X, Y): for example,

X = (var(zero) => var(zero)) =>
((var(zero) => var(zero)) => (var(zero) => var(zero)))
Y = ax1(var(zero), var(zero), var(zero))

So the problem of generating a pair (X :: Formula, Y :: Thm X) in de-
pendent type theory corresponds to the task of solving a query thm1 (X, Y). In
this way, we can directly use a Prolog interpreter to generate some elements of
dependent types. If we randomise the Prolog interpreter, then we get a random
generator for dependent types.

In general, a typing b :: P a can be represented by a predicate P’ (a,b) in
Prolog. For example, the following introduction rule for an inductive family P

intro:: (xy = Dy) > -+ = (zy 2 Dy) > Pit; > ---Pgtg — Pt
becomes a clause of the following form:

Pl(t,’intT'O(Xl,...,XN,Ul,...,UK)) Ha
Dll(Xl)a"'7D§V(X17"'7XN—17XN)7 Pll(tlaUl)f"aPIl((tKaUK)'

where D)} is the predicate corresponding to the set D;[z1,- -, %i—1].

The idea is applied to test data generation as follows. A testing form [8]
below requires that Q[d/x] to be true (inhabited) for any d = (dy,- - -,dn) that
satisfies the preconditions P;[d/z].

(1 ::D1) = -+- = (zn = Dn[z1,- -+, 2N-1]) =
Pl[l'l,"',.Z’N]—) _)PK[xla"'r'EN]_)
Q[xla"'axN]

Test data d for this can be generated by searching for solutions to the query

e DII(XI):"'aDﬁv(Xlu"-;XN—laXN)a
Pll(Xla'"JXNa—)a"':PII((Xla"':XNa—)'

In the next section, we show a generator example for theorems by randomising
the Prolog search algorithm: instead of always choosing the first clause unifiable
with a goal, we choose one according to random seeds.

8 A Generator for Theorems

In this section, we describe a generator for the family Thm in Section 7. It is
based on another, more general generator ThmPat for theorem patterns, that is,
formula patterns whose ground instantiations are all theorems.

The type of formula patterns, Pat, is a simple set with the same* construc-
tors as Formula together with a new one X :: Nat — Pat for pattern variables
(logical variables) Xg, X1, - - -, which stand for indeterminate formulas. Examples
are Xo => X; and (varg => var;) => X;. We choose to distinguish propositional-
and pattern- variables, so that the method applies to indexing types without a
var like constructor (for example, that of formulas on a fixed finite set of atomic
propositions).

A theorem pattern is a t :: Pat that becomes a theorem when each of
its pattern variables is instantiated by any formula; for example Ax2Xg, since
ax2 p : Thm((Ax2 Xo)[p/Xo]) with any p :: Formula. They are precisely those
t :: Pat with some derivation d :: ThmPat ¢, where ThmPat :: Pat — Set is defined
just the same as Thm, but with Pat replacing Formula everywhere.

In what follows, letters X, Y, - - - range over pattern variables. Our Agda code
uses a standard technique to have access to ‘totally fresh’ pattern variables at
any point, though we omit details. Substitutions ¢ = [t1/X1,---,tn/XnN] are
represented by lists of pairs, and Subst is their type. The composite o1 > o2 of
two substitutions are defined so that t[o1 > o2] = (t[o1])[o2].

A pattern t matches an introduction rule axi of ThmPat if it can be unified
with Axi X, where X is appropriate number of fresh pattern variables. When
this is the case, writing ¢ for the most general unifier of ¢ and Axi X, we call
the pair (o, axi X[o]) the match. For example, a match of Xg =>X; with ax2 is
([-X => X /%o, X/%1], ax2X) with a fresh X.

We now describe a theorem pattern generator genTP, whose purpose is to
generate not an arbitrary theorem pattern but one that fits into a given ¢ :: Pat.

4

4 Constructors are polymorphic in the language of Agda/Alfa.

genTP :: Rand -> (t :: Pat) -> Maybe (o :: Subst, ThmPat t[o])

With a seed s, genTP st either succeeds and returns some Just (o,d), or fails
and returns Nothing. In case of success, we have a theorem pattern t[o] with
derivation d :: ThmPat t[o].

The procedure applied to pattern t is as follows: it randomly chooses an
introduction rule that matches the pattern ¢. If the axioms are chosen, then
the result is either a success with a match, or failure if there is none. If the
rule mp is chosen, then we first apply genTP to a fresh variable X to obtain
(01,d; :: ThmPat X[o;]) Then we apply genTP to the pattern (X =>t)[o;] and
obtain (o, d, :: ThmPat (X =>t)[oy][0,]). The final result is the composite o; >0,
together with the derivations d;[o,] and d, combined by mp.

Recursive calls are made with sub-seeds of the random seed given as argu-
ment, hence genTP always terminates. A failed recursive call is dealt with by
back tracking (retry loops), so long as random seeds are not exhausted.

The pseudo-code for genTP is given below. In the description, toList s turns
a tree (seed) s into the list of left-subtrees (cf. Example 5).

genTP (Leaf k)t = do
if (t matches some of ax1,ax2,ax3) // mp excluded.
choose a match (o,d) according to k, and return Just (o,d);
else return Nothing;

genTP (Nodeklr)t = do
choose one of ax1,ax2,ax3,mp, according to k;

case the choice is axi :
if (t matches axi with match (o,d)) return Just (o,d);
else return Nothing;

case the choice is mp :
for s; in (toListl) {
if (genTP s; X (X fresh) has the form Just (o;,d;)) {
for s, in (toListr) {
if (genTP s, ((X =>t)[oy]) has the form Just (o,,d;)) {
// generation succeeded.
o =0y > oy
return Just (o, mp X|o] t[o] di[o,] dr);
}
}
}
}
return Nothing; // seed exhausted.

We can prove that this is a surjective generator: for any theorem pattern ¢,
there exists a seed s and fresh X such that genTP s X is Just (o, d) with X[o] = ¢
and d :: ThmPat¢. The Agda/Alfa code and the surjectivity proof for a slightly
different version can be found in Qiao [14].

We now use genTP to define a generator genThm for Thm.

genThm :: Rand -> sig { ind :: Formula; obj :: Thm ind }

genThms = do

if (genTP s X (X fresh) has the form Just (o,d)) {

T := substitution of all pattern variables
by arbitrary elements of Formula;

return (X[o][7],d[7]);

} else {
choose an axi, and generate arbitrary formulas p for its arguments;
return (Axip, axip);

}

This generator can be used to test, for example, properties in [9] (where
BoolExpr is used for the type of formulas).

9 Discussions and Future Work

We have identified several restricted classes of indexed families of sets for which
writing surjective generators is simple. For a class of ordinary inductive defini-
tions, generating elements of the family of sets is equivalent to solving a query in
a corresponding logic program. Therefore, proof search techniques in logic pro-
gramming can be used for writing generators. As an example, we implemented
a surjective generator for theorems by randomising the proof search algorithm
that is used in Prolog implementations. However, it is of course inconvenient to
ask the user to implement the search algorithm for each new family of sets. One
solution is to embed the search algorithm in the proof assistant externally or in-
ternally. Such a system would be a bit like a randomised version of Twelf [13], a
logical framework where a given type family is interpreted as a logical program.

In Section 6, we described a simple schema for inductive definitions for which
we can write surjective generators. It is interesting to extend the schema for
which we can still write surjective generators without much difficulty. For exam-
ple, we may add side conditions or allow general terms (and not only variables) as
indices in the induction hypotheses. Consider, for example, the set of reachable
states of a transition system. This can be defined in the following way:

R :: S -> Set = data
init (s :: S)(p :: Ps) :: Rs
| step (s, s :: S)(q :: Tran s s’)(p :: Rs) :: R s’

where there are side conditions in the introduction rules: P characterise the
initial states and Tran is the transition relation. One sufficient condition to
have a surjective generator is: there is a surjective generator for P, and for any
s0 :: S, we have a surjective generator for the family Tran s0, because we can
then generate all possible next states for a given reachable state.

Recent work on generic programming [1-3] allows us to write a generic func-
tion for a class of data types. It will be interesting to see if we can use generic
programming to generate surjective generators for a class of data types.

Another interesting topic is writing surjective generators for function types.

Claessen and Hughes [4] show some examples of such generators. For some simple
cases, we have proved that the generators are surjective (see part I in Qiao [14]).

References

10.

11.

12.

13.

14.

. Roland Backhouse, Patrik Jansson, Johan Jeuring, and Lambert Meertens. Generic

programming — an introduction. In LNCS, volume 1608, pages 28-115. Springer-
Verlag, 1999. Revised version of lecture notes for AFP’98.

Marcin Benke. Towards generic programming in type theory. Presentation at An-
nual ESPRIT BRA TYPES Meeting, Berg en Dal. Submitted for publication, avail-
able from http://wuw.cs.chalmers.se/ marcin/Papers/Notes/nijmegen.ps.gz,
April 2002.

Marcin Benke, Peter Dybjer, and Patrik Jansson. Universes for generic programs
and proofs in dependent type theory. Nordic Journal of Computing, 10:265 — 289,
2003.

Koen Claessen and John Hughes. QuickCheck: a lightweight tool for random testing
of Haskell programs. In Proceedings of the ACM SIGPLAN International Confer-
ence on Functional Programming (ICFP-00), volume 35.9 of ACM Sigplan Notices,
pages 268-279. ACM Press, New York, September 2000.

Catarina Coquand. The Agda homepage. http://www.cs.chalmers.se/
“catarina/agda.

Peter Dybjer. Inductive families. Formal Aspects of Computing, 6(4):440-465,
1994.

Peter Dybjer. A general formulation of simultaneous inductive-recursive definitions
in type theory. Journal of Symbolic Logic, 65, June 2000.

Peter Dybjer, Qiao Haiyan, and Makoto Takeyama. Combining testing and proving
in dependent type theory. In David Basin and Burkhart Wolff, editors, Proceed-
ings of Theorem Proving in Higher Order Logics, volume 2758 of Lecture Notes in
Computer Science, pages 188—-203. Springer-Verlag, 2003.

Peter Dybjer, Qiao Haiyan, and Makoto Takeyama. Verifying Haskell programs by
combining testing and proving. In Proceedings of Third International Conference
on Quality Software, pages 272-279. IEEE Press, 2003.

Masami Hagiya and Takafumi Sakurai. Foundation of logic programming based
on inductive definition. New Generation Comput. (JAPAN) ISSN: 0288-3635,
2(1):59-77, 1984. QA 76 N 48.

Thomas Hallgren. The Alfa homepage. http://www.cs.chalmers.se/ hallgren/
Alfa.

Bengt Nordstrom, Kent Petersson, and Jan M. Smith. Programming in Martin-Lof
type theory: an introduction. Oxford University Press, 1990.

Frank Pfenning and Carsten Schiirmann. The Twelf homepage. http://www-2.
cs.cmu.edu/"twelf/.

Qiao Haiyan. Testing and Proving in Dependent Type Theory. PhD thesis,
Chalmers University of Technology, 2003.

