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Abstract. We show how to write generic programs and proofs in Martin-
Lof type theory. To this end we consider several extensions of Martin-
Lof’s logical framework for dependent types. Each extension has a uni-
verse of codes (signatures) for inductively defined sets with generic for-
mation, introduction, elimination, and equality rules. These extensions
are modeled on Dybjer and Setzer’s finitely axiomatized theories of
inductive-recursive definitions, which also have universes of codes for sets,
and generic formation, introduction, elimination, and equality rules. Here
we consider several smaller universes of interest for generic programming
and universal algebra. We formalize one-sorted and many-sorted term
algebras, as well as iterated, generalized, parameterized, and indexed in-
ductive definitions. We also show how to extend the techniques of generic
programming to these universes. Furthermore, we give generic proofs of
reflexivity and substitutivity of a generic equality test. Most of the def-
initions in the paper have been implemented using the proof assistant
Alfa for dependent type theory.

Introduction

The basic idea of generic functional programming is to define generic functions
by induction on the definition of a data type. A simple example of a generic func-
tion is Boolean equality: indeed, a generic equality test is provided by languages
such as SML (where it is built-in) and Haskell (where it is a derivable class).
More powerful examples include generic map combinators, and generic iteration
and recursion over inductive datatypes. Generic definitions are highly reusable
(one definition can be used at many different instances) and adaptive (chang-
ing a datatype is as easy as changing a parameter), and they are therefore well
suited for building libraries of programs, theorems and proofs. This research area
has been explored under different names by Bohm & Berarducci [BB85] (uni-
versal algebra), by Backhouse et al. [BT91] (Squiggol), by Bird et al. [BAMH96]
(generic functional programming), by Jay [Jay95,Jay01] (shape polymorphism),
by Jansson & Jeuring [JJ97,Jan00] (polytypic programming), and by Hinze &
Jeuring [HJ03] (Generic Haskell).

A basic example of a dependent type is the type of vectors (lists) Vectn,
which depends on the length n of the vector. With dependent types we can also



capture more complex invariants of datastructures, for example, balanced trees,
binary search trees, AVL-trees, etc. Furthermore, using the Curry-Howard iden-
tification of propositions and sets, we can in fact express more or less arbitrary
properties of programs and data structures in dependent type theory.

Recently several authors [PR99,Ben01,AM02,Nor02] have noted that the
techniques of generic programming can profitably be expressed in dependently
typed languages such as Martin-Lof type theory, the Calculus of Constructions,
and the programming language Cayenne [Aug98]. Combining dependent types
with the idea of generic programming we can capture a class of datatypes as a
universe — a set of codes and an interpretation function — and generic functions
become functions over this universe (functions indexed by these codes).

In this paper we continue the programme initiated by Pfeifer and Ruefl [PR99]
of writing generic programs and proofs in dependent type theory. Like them we
work in a total dependent type theory and use the Curry-Howard identification
of propositions and types for representing logical notions. (Although they work
in the impredicative Calculus of Constructions and we in Martin-Lof type theory,
this difference is not essential in this context.)

The main contributions of the present paper are the following:

— We introduce several universes of codes for inductively defined sets. One of
these (parameterized term algebras) coincides with Pfeifer and Ruef’ uni-
verse, but we also have universes for indexed inductive definitions (inductive
families) and generalized (infinitary) inductive definitions, which have not
been considered before in the context of generic programming.

— We make a link with the work on extending Martin-Lof type theory with
general notions of inductive and inductive-recursive definitions. In particular
we build on the work by Dybjer and Setzer [DS99,DS01] who obtained finite
axiomatizations of inductive-recursive definitions by introducing a universe
of codes for such definitions. In this way we get generic elimination rules for
inductively defined sets which specialize to the standard elimination rules
for particular sets in Martin-Lof type theory. Our generic elimination rules
are different from the generic elimination rule used by Pfeifer and Ruef}, and
closer to the usual elimination rules for inductively defined sets.

— We give generic proofs of reflexivity and substitutivity of Boolean equality,
and thus continue the programme of demonstrating that it is possible in
practice to carry out generic proofs of properties of functions defined on
generic datatypes. (Pfeifer and Ruef already gave one example in their paper:
a generic proof that constructors are injective.)

— We give a new approach to formalizing universal algebra in dependent type
theory. We introduce universes for one- and many-sorted term algebras, pa-
rameterized term algebras, and term algebras with infinitary operations.

Plan of the paper. We introduce the logical framework in section 1. In sec-
tion 2 we introduce several different universes corresponding to various interest-
ing classes of inductive definitions. We begin in 2.1 by introducing a universe
of signatures for homogeneous term algebras, that is, initial one-sorted algebras
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Fig. 1. Sections, universes and representative example types.

over a signature. We also show some generic programs and proofs for one-sorted
term algebras. After this each section deals with one particular extension of the
simplest case. Fig. 1 shows the relations between the different universes (an ar-
row from A to B means that A can be embedded in B). Subsection 2.2 describes
iterated inductive definitions of algebraic datatypes — one algebraic datatype
can be used in the definition of another. Subsection 2.3 explores generalized (in-
finitary) inductive definitions (such as the Brouwer ordinals). Section 3 discusses
the codes for parameterized datatypes. Much generic programming is concerned
with parameterized datatypes and we give several examples. Section 4 discusses
several notions of indexed inductive definitions (inductive families). In 4.1 we
present our coding of heterogenous term algebras. In 4.2 we introduce a uni-
verse for finitary indexed inductive definitions. In 4.3 we introduce Dybjer and
Setzer’s theory IID of generalized (infinitary) indexed inductive definitions. We
conjecture that the universes in Sections 2.1-4.2 are subuniverses of the universe
of indexed inductive definitions. Finally, in Section 5 we summarize related work.

Almost all the Alfa-code defining generic functions and universes in this paper
is available from www.cs.chalmers.se/ patrikj/poly/gendt/.
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1 The logical framework for dependent types

Martin-Lo6f’s logical framework contains inference rules for deriving judgments
of the following four forms: A Type, A= A',a: A,a = a' : A. Among these rules
there are rules for dependent function types (z : A) — B, the type Set of sets,
and the types El A of elements for each A : Set.

Here we extend this framework with dependent product types (z : A) x B,
and the finite types 0, 1, and 2. As usual for logical frameworks, we assume 3
and n-equality for dependent function and dependent product. However, we only
have S-rules for the finite types.

The type Set contains sets in Martin-L6f’s sense, that is, inductive data types
defined by their constructors (introduction rules). We follow the usual convention
and just write A for E1 A (as in universes & la Russell [ML84]). Set is also closed
under dependent functions, dependent products, and contains (codes for) 0, 1
and 2. El commutes with all these constructions and we will therefore use the
same notation for them on the set level as on the type level.

For a complete description of (essentially) the same logical framework, we
refer to the appendix of Dybjer & Setzer [DS03al.

There are no rules for building sets (inductive datatypes) such as the set of
natural numbers, sets of lists, vectors, trees, etc included in the logical frame-
work. This is instead the purpose of the following sections: to give formal rules
for constructing several different classes of such sets.

Convenient notation. We drop the type in the fourth form of judgment and
abbreviate a = a' : A by a = a'. Lambda-abstraction is written Az.e as in
lambda calculus a la Curry. Application is mainly written fe but sometimes
arguments are put in index position f.. Pairing is written (d, e) with projections
fst and snd. The sum type Ag+A; is implemented as (¢ : 2) x A; but injections are
written Inl, Inr. We have a case analysis construct for which we don’t give explicit
syntax; instead we write definition by cases using pattern matching equations.

We write Finn for the finite type with n elements denoted by 0,...,n — 1.
Formally, Fin0 = 1 and Fin (m 4+ 1) = 1 4+ Finm. In informal code we use n-ary
sum types and we write In; for the i-th injection.

We use angle brackets for pairing of functions: (f, g) is the function which
returns the pair (f z,gz) given the argument x. We also use various common
notational conventions, including superscripts and and argument-hiding, to im-
prove readability.

Although natural numbers, lists and vectors are not part of the logical frame-
work, we already introduce some notational conventions for them which will be
used later. We use Nat for natural numbers. We write [A] for the list type, with
constructors [] and (::) for empty and non-empty lists, respectively. We write X"
for the type of vectors of length n implemented as X° = 1 and X"+ = X x X™.
The informal notation for an element in X is (z1,...,2,). As a special case the
unique element in 1 is denoted by ().



We can lift a function f : X — Y to operate on vectors:
f: X =YY"
20 =
[t (@, 28) = (fo, f 2s)

When motivating the axioms of the different theories in Sections 2—4 we will
draw several category-theoretic diagrams. These diagrams should be understood
informally; the formal axioms are expressed purely type-theoretically. To aid
the reader in seeing the correspondence between the informal diagrams and the
formal axioms, we will sometimes keep redundant parentheses in type expres-
sions, that is, we will sometimes write A — (B — () rather than the usual
A—-B-—>C.

2 Inductive definitions

2.1 One-sorted term algebras

The simplest class of inductive types is the class of (carriers of) term algebras Ty
for a one-sorted signature Y. This is by no means the first formalization of one-
sorted algebras in dependent type theory. But we include it here for pedagogical
reasons and in order to show some interesting generic proofs in a setting where
they are reasonably easy to grasp.

A one-sorted signature is nothing but a finite list of natural numbers, repre-
senting the arities of the operations of the signature. Examples are the empty
type with Yo = [], the natural numbers with YXnat = [0,1], the Booleans
with Ygoot = [0,0], and binary trees without information in the nodes with
XBin = [0,2]. Lists of Booleans has Xpistoor = [0, 1,1], since it is generated by
one constant for the empty list and one Cons for each Boolean:

NilBool : ListBool
ConsTrue : ListBool — ListBool
ConsFalse : ListBool — ListBool

Note however that we cannot code ListNat in this way, because we would then
need infinitely many constructors.

Formally we introduce our first universe as the type of signatures Sig =
[Arity] = [Nat], and the decoding function T : Sig — Set, which maps a signa-
ture to (the carrier of) its term algebra. In this first universe we also include
formation, introduction, (large) elimination, and equality rules for Nat and Sig.

Generic formation, introduction, elimination, and equality rules. These
rules are best understood by recalling initial algebra semantics of term algebras
Ty [GTWT78]. Categorically, if F' is an endofunctor (sometimes called the “pat-
tern functor”) on a category then an F'-algebra with carrier X is an arrow

f

FX X



Let Fx be the pattern functor associated with a signature X. Initial algebra
semantics of the term algebra Ty states that the F 5-algebra

Int
FETE niroy;

Ty
is initial among F y-algebras, that is, for any other Fy-algebra

FxC C

d

there is a (unique) arrow itery C d which makes the following diagram commute.

Int
FxTs =08 Ty,
Fx(iters Cd) iters C'd
FxC y] C

The pattern functor Fy is a functor on a category of types. It has two parts, an
object and an arrow part:

F% : Set — Set
Fi:(X,Y :Set) = (X =2 Y) = (FL X - FLY)

which are defined by induction on X' : Sig. We will often suppress the super-
scripts 0 and 1 and use F both for the object and the arrow part. We will also
often hide Set-arguments (in this case X and Y'). For example, the left verti-
cal arrow Fyx(itery C d) in the commuting diagram above is an abbreviation of
FL. Ty C (itery, C d).

Informally, we define

Flng,onm) X = X™M 4.4 X0

The formal definition of F} can be found in Fig. 2 and the formal definition of
F% is the following:

F': (5 :Sig) - (X,Y : Set) = (X = V) = (F% X — FLY)
Fl « XY f(Inlzs) = Inl (f™ zs)
FL XY F (lory) =T (FL XY /)

Note that the base case Fl; is vacuous, since FO] X = 0. In general, when we
define a function by pattern matching, if the domain is empty for a certain
combination of arguments, we don’t write out that case.

Now we get generic rules for the set Ty for each X : Sig, by giving for-
mal axioms expressing the existence of weakly initial F x-algebras. As usual in
Martin-Lof type theory, inductively defined sets only have weak (3-like) rules.
Full initiality would amount to having strong (7-like) rules as well.



The formation, introduction, and (simplified) elimination rule for Ty are
expressed as the following three typings of new constants which are added to the
logical framework from Section 1:

TE : Set
Introx : F4& Ty — Tx
itery : (C : Set) = (FL.C — C) = (Tx = C)

The generic equality rule is
itery; C'd (Introy; ) = d (F; (itery, C d) z)

We call the function argument d to the iterator the step function because it
takes care of one step of the calculation with iter tying the recursive knot.

Note that the simplified elimination rule iterx; captures iteration, rather than
primitive recursion, and that C' is a set rather than a family of sets, as in typical
type-theoretic rules. The full elimination rule recy is defined later in this sub-
section. Fig. 2 describes in detail the axioms and rules which together with the
logical framework describes the theory of homogeneous algebras. We can also
use large elimination, so that C' can be a large type, for example, the type Set
of sets, but we do not write this rule down formally.

Instances for natural numbers. Here we use the more compact notation Nat =
[0, 1] for the code for Nat and we note that Tnat = Nat.

Flas X =1+(Xx140)=1+X
Introngs : 1+ (Nat x 1+ 0) — Nat = 1 + Nat — Nat
iternat ¢ (C:Set) = (14 (C x140)— C) — (Nat = C)
= (C:Set) » (1+C — C) = (Nat —» O)
= (C:Set) = (Cx (C—C)) - (Nat - C)

As the type of the step function is isomorphic to C' x (C' — C) we are in effect
supplying the iterator with one value for the base case and one function to
iterate. The usual natural number constructors Zero and Succ can be expressed

as follows:
Zero = Intronas (Inl())

Succn = Introngs (Inr (Inl (n, ())))

If this theory would be used as a base for practical generic programming, then
the system would automatically extract the code for a datatype and recover the
usual constructors from the definition of the datatype.

Examples of generic functions. We define a generic size function and a
generic equality function. Formally, the generic definitions should be expressed
using the elimination rules for arities and signatures (see Fig. 3), but in this
presentation we use pattern matching and explicit recursion for readability.



Arity Type
Zero : Arity
Succ : Arity — Arity

Fa0 . Arity — Set — Set

Fioo X =1
Flutem X = X x F0 X

F*H : (n: Arity) — (X : Set) —
(X — Set) = Fa0 X 3 Set
Fiao XC() =1

FEH X C(z,2s) = Cx x FH X O g5

Farmap .

: (n: Arity) — (X : Set) —
(C: X — Set) —
((z:X)—>Cx)—

(zs: FEOX) » FoH X O g5

Frera’ X Cf() =0

Zero

F&meP X C f(z,28) = (f 2, F5™*P X C f zs)

Succm

T : Sig — Set

Sig Type
[1 :Sig
() : Arity — Sig — Sig

FO : Sig — Set — Set
F%, X=0
[]
Fr.o X=F"X+Fy X

F™ . (X :Sig) = (X : Set) =
(X — Set) = F% X — Set

Fllo X C (Inlzs) = FPH X C g5
FE_XC(Inry) =FH X Cy
FmeP . (X : Sig) — (X : Set) —

(C: X — Set) —

(z:X)—=>Cx)—
(y:FLX) > FHXCy
F® X C f(Inlzs) = Fa™* X C f xs
R X C f (Inry) = FE* X C fy

Intro : (X : Sig) = F$ Ty — Tx
rec : (X:Sig) = (C: Tx — Set) —
(y:FL Tx) = F¥ T Cy — C (Introx y)) —

(iI}:Tz)—>C.’Ii

recy Cd(Introx y) = dy (F5*® Ty C (recs Cd) y)

Fig. 2. Axioms for the theory of homogeneous term algebras (large elimination rules

can be added)



reCarity ¢ (C : Arity — Set) — C Zero —
((m : Arity) - Cm — C (Succm)) —
(n: Arity) - Cn

recarity C z s Zero =z

recarity C z s (Succm) = sm (recarity C 2 sm)

recsig : (C: Sig — Set) = C[] =
((m : Arity) — (ms : Sig) = Cms — C (m::ms)) —
(ns : Sig) — C ns

recsig Cnel] =n

recsig C nc(m::ms) = ¢ mms (recsig Cncms)

Fig. 3. Elimination rules for arities and signatures. (Again, large elimination rules can
be added.)

Generic size. This is obtained as a special case of the initial algebra diagram.
Let ¥ =[n1,...,nm).

Introy
™ +---+ Ty ———— Ty
size§! + - - - + sizey sizey;

Nat™ +--- + Nat™” Nat

sizestep

In our implementation, it becomes

sizes; = itery sizestepy
sizestep,,..x (Inlzs) =1 + sum,, s
sizestep,,..s» (Inry) = sizestepy, y

where
sum : (n : Nat) — Nat™ — Nat

is a function summing the elements of a vector of natural numbers.
For the special case of > = Nat the step function simplifies to

sizestepy, ¢ 1+ (Nat X 1+ 0) — Nat
sizestepy,,  (Inl()) =1
sizestepny,  (Inr (Inl (subsum, ()))) = 1+ subsum

Note that this means that sizen = n + 1 because the generic size counts the
total number of Intro constructors in n (in this case both Zero and Succ).



Generic equality. A function for testing equality between two values naturally
has two arguments, while the initial algebra diagram describes functions of one
argument. Fortunately, the result type can be instantiated freely, so by returning
a function we can easily simulate a two-argument function. It helps the reading of
the types below to think about equality as a one-argument function returning a
recognizer — a predicate which yields true only for values matching its internal
value. The step function then receives a value containing recognizers for the
substructures, and returns a recognizer for the top level. We obtain this diagram:

Intro
% +---+ Thm = Ty
eqyt + .- +eqym eqs
(Tyx — Bool)™ +--- 4+ (Tx — Bool)™™ (Tx — Bool)
eqgstepy

where informally (let X' = [nq,...,n,)]):
egstepy,  (Introy) = recog-ally, Ty xy

recog-ally, X : (X — Bool)™ + --- + (X — Bool)"™ —

X™ 4 ... 4+ X" — Bool
recog-ally (In; (p1, - .-, pn,)) (Ini (Y1, -, yn:))) =Prys A -+ A P, Yn;
recog_ally, (In; (p1,...,pn;)) (Inj (y1,...,yn;))) = False ifi#j

Formally;
eqy : Ty = (Tx — Bool)
eqy = itery eqstepy

eqstepy, : Fx (Tx — Bool) = (Tx — Bool)
eqstepy xt = recog-ally, T z (outx t)

where outy, : Ty, — FxTyx is defined later in this subsection.

recog-ally, : (X : Set) = Fx (X — Bool) = Fx X — Bool

recog-all,,..s» X (Inlfs) (Inlzs) = and_args, X fs zs
recog-all,..s, X (Inrz) (Inry) = recogally X zy
recog-all,..s, X (Inlfs) (Inry) = False

recog-all .5, X (Inrz) (Inlzs) = False

and-args,, : (X : Set) — (X — Bool)” — X™ — Bool
and_args, X () 0 = True
and_args,, ., X (p,ps) (x,zs) = px Aand.args,, X pszs

If we instead work in the theory of parameterized term algebras (defined in Sec-
tion 3), the whole definition of recog-all 5, could be replaced with eqBy 5, (Ap.Az.p ).

10



Generic induction schema. The elimination rule obtained directly from the
initial algebra diagram earlier in this subsection only captures definition by it-
eration.

We would like a more general Martin-Lof style generic elimination rule, which
captures proof by induction and definition by primitive (or structural) recursion.
To do this we consider the following instance of the initial algebra diagram.
Similar constructions can be found in Coquand & Paulin [CP90] and Dybjer &
Setzer [DS99,DS03b]. We believe they are essential in practice for doing generic
proofs.

Int
FETE ntroy; R TZ

Fx(id,recy C d) L (id,recy C d)

Fy((z:Ts)x Cz) = (y:FxTx) xFy T Cy — (x:Tg)xCx

where
e(y, z) = (Introx y,dy 2)
fy = (y,F5P Tx C (recy Cd)y)

In order to get the usual shape of the elimination rule, we have introduced the
auxiliary constructions

FE 2 (X : Set) = (X — Set) = (Fx X — Set)

Fimor ] X C (I (€1, . ,2n,)) = Cwy X --- X Cy,
and
F5* : (X :Set) = (C : X — Set) —
((z:X)—>C2x)—
(y : Fx X) > FX¥' X Cy)

| S ch(Inz(xlaanz)):(fxlaafan

[0, s72m]

as in Dybjer & Setzer. Their formal definitions can be found in Fig. 2.
Hence the elimination rule is

recy : (C': Ty — Set) —
(y:FxTx) » Fll Ty Cy — C (Intros y)) —
((.’E : TE) — C.’L’)
The equality rule is
recy Cd(Introx y) = dy (F™ Tx C (recs C d) y)

As before we may use a large version of this elimination too, where C' can be an
arbitrary family of types, not just a family of sets.

11



Iteration is a special case of recursion. The diagram above only commutes up to
extensional equality; we do not expect to derive the rules for recy from the rules
for itery; up to definitional equality, so we add the rules for recy as primitives.
Conversely, we can however define itery by instantiating recy with a constant
family Az.C and by ignoring the first argument to the step function. Thus the
full elimination rule simplifies to the rule for iteration:

iters; Cde =recy (A\z.C) (\y.d) e

From this we can derive the equality rule for itery up to definitional equality.

Instances for natural numbers. We first instantiate FT to the code for Nat:

Fii : (X :Set) = (X — Set) = (Fyag X — Set)
Fri, X C(Inl()) =1
F{\}iatX C (Inr (Inl(z,()))) =C=x

Then, by simplifying the type of the step function in recnas, we see that the step
function contains the familiar base case and induction step from induction on
natural numbers:

(y : 1+ Nat) - F¥ Nat Cy — C (Introyas y)
= By case analysis o
((u:1) = F Nat C (Inlu) = C (Introngg (Inlu))) x
((n : Nat) - FI Nat C (Inrn) — C (Introyg, (Inrn)))
= Use definition of F'H
(1 = 1 — C (Intronat (Inl()))) x
((n : Nat) = Cn — C (Intronat (Inrn)))
2 Simplify and use definitions of Zero and Succ

C Zero x ((n : Nat) - Cn — C (Succn))
Thus the type of recna is (isomorphic to) the following:

(

recna : (C : Nat — Set) — C Zero —
((n : Nat) - Cn — C (Sucen)) —
((z : Nat) = Cx)

Note that this is exactly the type of the elimination rule for arities in Fig. 3.
Generic destructor. As a simple example of using rec we can define the generic

destructor
outy; : TZ — FETE

outyz =recy (Az.FxTx) (Ayz.y)

In effect, the destructor gives us pattern matching on Introy as we can see by
specializing the equality rule for recy:

outy (Introx z) ==

12



Generic proof of reflexivity of equality To state the reflexivity we need to
convert Boolean truth values to propositional truth values. This can also be seen
as a universe construction — the Booleans are codes for (just) the two types 0
and 1:

| -] : Bool = Set
|False| =0
|True| =1

Boolean “and” can be lifted to the type level: (only this one case is inhabited)
liftAnd : (a,b : Bool) — |a| — |b] = |a A b
liftAnd True True () () = ()
When this lemma is used, the first two parameters will be omitted for brevity.
We first define two convenient abbreviations:
rel : Set — Set
rel X=X — X — Bool
Iref : (X : Set) - rel X — X — Set
Iref Xraz=|racz|
where the first argument to lref will be hidden for brevity. The proof structure

follows the same structure as the definition of equality. The top level proof is
defined using the recursor:

ref eqy, : (t:Tyx) = |eqx tt]
ref_eqy, = recy (Iref eqy;) (ref_consy T'x eqy)
The next step, ref_cons, discriminates between the constructors:
ref_consy : (X : Set) — (e : rel X) —
(z:Fx X) > (FE X (Iref €) z — |recog.ally, X (FL ex) z|)
ref_cons,..x X e (Inl zs) = ref_args,, X e xs
ref_cons,,..y» X e (Inry) = ref consy X ey

Finally, ref _args handles the arguments to the constructor:

ref_args, : (X : Set) = (e:rel X) —

(zs: X™) — (Iref €)™ zs — |and_args,, X (e™ zs) zs|
ref_argsy X e () () = ()
ref_args,, .| X e (z, xs) (ih,ihs) = liftAnd ih (ref_args,, X e zs ihs)
The substitutivity theorem for generic equality says that if two element are
tested equal then they are indistinguishable:
subst_eqy, : (a:Tx) = (b: Tx) = leqpabl = EQyp ab

where EQyzy = (P : X — Set) - Pz — Py. The proof of this theorem
follows exactly the same pattern as the proof of reflexivity and can be found on
this paper’s home page. Combining the generic definitions of equality, reflexivity
and substitutivity we obtain a generic datoid-definition.

13



2.2 Iterated induction

The one-sorted term algebras provide a quite limited class of inductive datatypes
for programming. A first generalization is to admit iterated induction, that is, in
an introduction rule (typing rule for a constructor) we can refer to a previously
defined datatype. For example, to define the set of lists of natural numbers
ListNat, we refer to the set of natural numbers:

NilNat : ListNat
ConsNat : Nat — ListNat — ListNat

To obtain this class of iterated inductive definitions, we redefine the type of

signatures
Sig = [Arity]

where an arity now is defined by the following inductive definition:

Nil : Arity

Rec : Arity — Arity

NonRec : Sig — Arity — Arity

(As always, we include elimination and equality rules for arities and signatures
here t00.)

Note that for one-sorted term algebras, an arity was just a natural number,
that is, essentially something generated by Nil and Rec. Here we have added a
new constructor NonRec for a non-recursive argument of a constructor. (A non-
recursive argument is often called a side-condition.) If NonRec is applied to a
signature X' it means that the non-recursive argument ranges over the previously

defined type Tyx.
For example, lists of natural numbers have a signature

YristNat = [Nil, NonRec Xnat (Rec Nil)]

where Y, = [Nil, Rec Nil].

The generic type-theoretic rules for iterated induction are the same as before,
except that we need to extend the definitions of the pattern functor to the case
of NonRec:

Flag,man] X =Fg, X +...+F5 X
%Iril X=1
reca X =X xFo X
FﬁronRecEa X=TgxFoX

As an example we instantiate the definition of F to obtain the expected pattern
functor for ListNat:

FListNatX:].-l-(TmX(XXl)-i—O)Zl-i—NatXX

We can now define generic size and equality functions for all sets defined by
the class of iterated inductive definitions given in this section — the Alfa-code
is available on the paper’s home page.
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Remark. Note that ListNat was the type of signatures for one-sorted algebras
in the previous section. So having extended the notion of signatures we can
define the family of term algebras T for X' : Sig as an internal family in the
extended theory. Even more, we can (using extensional equality) derive the rules
for one-sorted term algebras from the rules for iterated inductive definitions.

2.3 Infinitary induction

So far we have considered ordinary (or finitary) inductive definitions, that is,
we have only considered finite arities. We can consider a notion of one-sorted
algebras which allows infinitary operations, by changing the notion of a signa-
ture from a list of natural numbers to a list of sets. (Gratzer’s book “Universal
Algebra” [Gra79] is in fact about universal algebras with possibly infinitary op-
erations, although working in classical set theory, his arities are possibly infinite
ordinal numbers.)

We keep Sig = [Arity] as in the homogeneous case, but we change Arity to
be Set and modify the pattern functor:

F[Il,...,Im]X = (Il — X) +--- 4+ (Im — X)

For example the signatures for the empty type, the unit type, natural num-
bers, and the Brouwer ordinals O can be expressed as follows

Yo =[]
21 - [0]
INat = [0,1]

ZO = [07 17T2Nat]

The Brouwer ordinals are sometimes called the second number class. We can
define the third number class by having an operation with arity O, and so on
for the higher number classes.

We cannot define decidable equality over the class of generalized inductive
definitions. However, we have the following generic definition of a propositional
extensional equality:

eqy : Ty - Ty — Set
eqy = itery eqstepy
egstepy; : Fx(Tx — Set) —» Tx — Set
egstepy;  ps x = recog-ally, ps (outs x)
where
recog-ally, : Fx (Txy — Set) - Fx Ty — Set
recog-ally..y. (Inl f) (Inlz) = (i : I) — fi(x4)
recog-ally. 5. (Inr g) (Inr y) = recog_ally, gy
recog-all;..y. (Inl f) (Inry) = 0
recog-ally, s (Inrg) (Inlz) =0
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An interesting variation of this universe for infinitary inductive definition is
obtained if we restrict branching to range over sets of the form T'5. Then we get
the following notion of signature:

Sig = [Arity]
Arity = Sig

If we present this definition with constructors (using the isomorphism between
finitely branching trees and binary trees) we get

Nil : Sig
Rec : Sig — Sig — Sig

The pattern functor is:
F[E1,...,Em] X = (TZH - X) +-+ (sz - X)

In this setting we have

Note that neither of these two variants of universes for infinitary induction
can capture iterated induction in the sense of 2.2. The branching (the number
of arguments to one constructor) can be infinite here but the arity (the number
of constructors) is finite. But we could also add a constructor NonRec for side
conditions and thus combine infinitary and iterated induction into one universe.

3 Parameterized term algebras

So far we have only considered constant term algebras, that is, Ty is a con-
stant set. However, many interesting generic functions range over parameterized
types. We therefore extend our notion of signature to account for parameters.
The decoding function thus takes a signature and returns a parameterized term
algebra, that is, it is a function

T : Sig — (Set — Set)

For simplicity, we present a universe for one-sorted term algebras with parame-
ters — essentially the same as the one introduced by Pfeifer & Ruel [PR99]. If we
add iterated induction we obtain the case considered in Jansson & Jeuring [JJ97].
It is of course also possible to consider parameterized infinitary induction.
Parameterized term algebras are term algebras which depend on one or sev-
eral parameter types. We consider here the case of one parameter for simplicity.

16



Examples of parameterized term algebras are the type [A] of lists of parameter
type A with constructors

[]:(A4:Set) — [4]
():(A:Set) > A—[A] = [4]

and the set Maybe A with constructors

Nothing : (A4 : Set) — Maybe A
Just : (A : Set) > A — Maybe A

The universe construction. Compared with the homogeneous case we add a new
constructor, Par, for arities!

Nil : Arity
Rec : Arity — Arity
Par : Arity — Arity

The signature for parametric lists [A] and for Maybe A are then

2 = [Nil, Par (Rec Nil)]
Saybe = [Nil, Par Nil]

The initial algebra diagram for iteration now needs to take parameters into
account:

Introx A
Fy A(Ty A) — 0% Ts A
FEA(iterEACd) iterEACd
FL‘AC d > C

We extend the definition of the pattern functor to the case of parameters:

Far

Par o

AX = AxFTAX

The diagram for induction is modified accordingly.

! This gives us a notion of unary parameterized term algebra; it is straightforward to
generalize this to n-ary parameterized algebras by instead having

Par : Finn — Arity, — Arity,,
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Generic programs for parameterized types. As already mentioned, parameterized
term algebras are almost as powerful as the universe used in PolyP [JJ97]. In
fact, it is sufficiently close to PolyP that the majority of the polytypic library
functions [JJ98] carry over immediately.

When we consider a universe with parameterized types, many natural generic
definitions share a common pattern: they lift a function from the parameter level
to the parameterized type level. To show this pattern we introduce a few type
synonyms and use these in the type signatures for (generic) size, equality, map
and zip. (Here A, B,C : Set.)

Size A = A — Nat

Eq A =A — A — Bool
MapAB =A-—B

Zip ABC=A— B — Maybe(C

sizeBy s : (A : Set) — Size A — Size (Tx A)
eqBy 5 : (A : Set) —Eq A —Eq (TsA)
mapy : (A,B:Set) —>MapAB — Map (TxA)(TxB)

zipWithy : (4,B,C :Set) - Zip ABC —Zip (TxA) (TxB) (TxC)

All these functions are straightforward to implement over this universe, see the
code on the paper’s home page.

The application zipWith s, op z y succeeds iff  and y have the same structure
and op succeeds for all pairs of corresponding elements. The result has the same
structure as z and y and contains the results from the successful applications
of the operator op. The general type of function zipWithy, is best explained
through its instances. With C' = A x B we obtain the familiar zip function from
generic functional programming:

zipy; : (A, B : Set) — Zip AB (A x B)
zipy; A B = zipWithy A B (A x B) (Azy. Just (z,y))

With C' = 1 we note that Maybe 1 = Bool and thus, the parameterized equality
test eqBy; can also be seen as a special case of zipWith:

EqA=A—+ A—Bool=A —+ A— Maybel =ZipAA1l
eqByy A ~ zipWithy, A A1

4 Indexed inductive definitions

4.1 Many-sorted term algebras

First we shall consider the special case of many-sorted term algebras, giving rise
to a simple class of mutually inductive definitions. See also Capretta [Cap99]
for some other approaches to defining many-sorted term algebras in dependent
type theory. This is the main class of term algebras considered in algebraic
specification theory, following the work by the ADJ-group [GTW7S].
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For simplicity we first consider many-sorted algebras with finitely many sorts,
and no parameters (it is easy to add them). Note that the iterated inductive
definitions in section 2.2 are subsumed by the mutual inductive definitions here.

The type of signatures for n-sorted algebras is now

Finn — Sig, where Sig,, = [Arity, ] and Arity,, = [Finn]

That is, a signature consists of n lists of arities, one for each sort. An arity is a
list of numbers < n, denoting the sorts of the arguments of an operation.

As a simple example, consider the following mutual definition of the even
and odd numbers:

SuccEven : Even — Odd
Zero : Even
SuccOdd : Odd — Even

The many-sorted signature is

Zo=[1]]

Z1={[L[0]]
Another example is the mutual inductive definition of trees and forests. More
generally, abstract syntax trees for context-free grammars are many-sorted alge-

bras.
The diagram for initial n-sorted algebras is

Intro,, x4

Fn,Z‘ Tn,Ei Tn,zi
Fp 5 (iter, 5 d) i iter,, x di
FpzCi — - Ci

where ¢ : Finn.

We neither display the diagram for the full elimination (induction) rule which
is similar to the one for the non-indexed case 2.1, nor give the definition of generic
size and equality. Instead we move on the the more general case of inductive
families.

4.2 Finitary indexed induction

In this section we consider a bigger class of finitary indexed inductive definitions.
For simplicity, we choose to present the class of restricted indexed inductive
definitions, rather than the class of gemeral indexed inductive definitions, in
the sense of Dybjer & Setzer [DS01]. To explain the difference we consider the
Nat-indexed inductive definition of vectors (with elements of some fixed set A
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for simplicity). This is most naturally presented as a general indexed inductive
definition:

NilV : Vect 0
ConsV : (n: Nat) — (z : A) — Vectn — Vect (Succn)

We can reformulate this as a restricted indexed inductive definition, by employ-
ing an equality test for natural numbers:

NilV : (m : Nat) — (m = 0) — Vectm
ConsV : (m : Nat) — (n : Nat) — (m = Succn) = (z : A) — Vectn — Vectm

Restricted indexed inductive definitions require that the index in the result type
is a variable.

Restricted indexed inductive definitions have some theoretical and practical
advantages, but the drawback is that they give rise to longer and less natural
formulation of the rules. The reader is referred to Dybjer & Setzer [DSO01] for
more discussion.

The universe construction. We define the universe I — Sig; for restricted I-
indexed inductive definitions:

NonRec : (A : Set) — (A — Sig;) — Sig;
Rec: I — Sig; — Sig;

Here Nil represents the base case — an inductive definition with no premise;
NonRec represents the non-recursive case — adding a side condition a : 4; and
Rec represents the recursive case — adding a recursive premise.

Note that arities and signatures have been fused into one code type: Sig;.
The added power in the NonRec case can be used to build up what corresponds
to the list of arities in simpler universes. A choice between n constructors can
be coded by NonRec (Finn) constrs where constrs : Finn — Sig; gives the arity
for each constructor.

An inductive family is a simultaneous definition of an indexed family of
datatypes. In the special case when the set is finite the family can be coded as
a group of mutually recursive datatypes, that is, as a many-sorted term algebra
(Section 4.1). We get n-sorted algebras if I = Finn, if arities are only built up
by Nil and Rec, and where NonRec is used at the top level for building up lists
of arities.

To define the object part of the pattern functor

Frsx: (I = Set) = (I — Set)

for X : I — Sig; on the category of I-indexed families of sets, we introduce an
auxiliary operator

Gr,y : (I — Set) — Set
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for «y : Sig;. Then
FreXi=Gr5s: X
and G, is defined by induction on + : Sig;:

G X =1
GI,NonReCA¢X = (1' : A) X G17¢zX
GrReciz X =XixGr X

The initial algebra diagram looks the same as in the many-sorted case. The
type-theoretic rules are (with X' : I — Sig;):

Trx: I — Set
Intror,s: (1:I) > FrxTrxi—Trxi
iteryx : (C:I—Set) > ((i:I) > FrxCi—»Ci)—= ((i:I) > Trxi— Ci)
recyx : (C:(i:I) > Ty 5i— Set)
= ((i:1) > (y:FreTrsi) » Fy T s Ciy — Ci(Introy 5 iy))
=(@:I) > (x:Trxi) > Cix)

There are also equality rules that we do not display here.

A code for binary search trees. An example of an inductive family is the family
of binary search trees, indexed by pairs of natural numbers (the lower and upper
bound):

BST : Nat x Nat — Set

The introduction rules are
Leafy : (Ib,ub : Nat) — (Ib < ub) — BST (Ib, ub)
Node; : (Ib,ub : Nat) — (root : Nat) — (Ib < root) — (root < ub) —
— BST (Ib,root) — BST (root, ub) — BST (b, ub)

Written as “arities” they become

arityBST (Ib, ub) 0 = NonRec (Ib < ub) (Ap.Nil)
arityBST (Ib, ub) 1 = NonRec Nat (Aroot.
NonRec (Ib < root) (Ap;.
NonRec (root < ub) (Aps.
Rec (Ib, root) (Rec (root, ub) Nil))))

Thus the signature for the family BST becomes the family of codes Yggt:
st @ Nat x Nat = SignaixNat

YpsT = Abounds. NonRec 2 (arityBST bounds)
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Indexed generic functions. We can now write a generic size function (or rather,
an indexed family of size functions) over this universe

sizeI,g : (l : I) — TI,Zi — Nat
However, to define equality
eqy,x * (z : I) — T[,Zi — TI,Z'Z' — Bool

we need to restrict NonRec by allowing it to range only over sets with decidable
equality (so called datoids):

NonRec : (D : Datoid) — (|D| — Sigy) — Sigr

where |D| is the carrier of the datoid D.

We have also added parameters to our universe for finitary indexed inductive
definitions and been able to extend the definition of zipWith; y; from section 3.
We refer to the Alfa-implementation on the home page for details.

4.3 Infinitary indexed inductive definitions

In each of sections 2.1-4.2 we have presented a universe consisting of a set
(family) of signatures and for each signature a term algebra. Each section defines
a theory (a version of Martin-Lof type theory with a particular collection of
inductive definitions) by adding some constants (with their types) and equations
to the logical framework from section 1. The theory for one-sorted term algebras
is given in Figure 2, and each of the other theories can be obtained by changing
the axioms as described in the respective (sub)sections. In each of these theories
we can write generic programs and proofs by induction on the signature. The
idea is to choose a universe of signatures which is appropriate for a particular
application.

However, each time we change universe we also change theory. This is of
course unsatisfactory - we would like to be able to do generic programming
over different universes in one theory. So we would like to have a large theory
which can swallow all the previous theories. For this purpose we could use the
the theory of indexed inductive-recursive definitions IIR®** (with extensional
equality) given by Dybjer and Setzer [DS01]. In this theory we conjecture that
all of our universes can be defined. To actually work out these embeddings in
detail is however a task outside the scope of this paper.

In fact, since induction-recursion does not play a role in this paper, it suffices
with the theory of indexed inductive definitions IID®** (with extensionality).
IID is a natural upper bound of the theories presented in sections 2.1-4.2.

IID is just like the theory of finitary indexed inductive definitions in the
previous subsection, except that we now have infinitary inductive definitions.
Formally, this means that we generalize the case of a recursive premise. It be-
comes

Rec: (A4 : Set) —» (A — I) — Sig; — Sig;
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where the definition of G for the recursive case becomes
GRecain X =((z: A) > X (iz)) x Gy X

As an example of an infinitary indexed inductive definition we consider the
accessible (or well-founded) part of a relation < on a set I. The formation and
introduction rules are

Acc: T — Set
AccIntro: (i: I) = ((j: I) = (j < i) > Accj) = Acci

The signature for Acc is

Sace @ I — Sig;
Yace = Mi.NonRec ((5: I) x (§ <)) fst Nil

We refer to [DS01,DS03a] for a full explanation of the theory ITR (and thus
implicitly of its subtheory IID).

IID is a suitable general framework for generic programming, since we con-
jecture that the theories in Sections 2.1-4.2 are definable in IID in the following
senses. (We have however not yet given a a rigorous proof of this conjecture.)
Firstly, the set of signatures for one-sorted algebras (possibly with iterated in-
duction) has a code in Sig,; in IID®*t. Moreover, each signature for one-sorted
algebras can be mapped to a signature in Sig, , and the decoding function can be
obtained by composing the decoding function for Sig; with this map. Further-
more the set of signatures for parameterized term algebras also has a code in
Sig,. Here a code in can be mapped to a function Set — Sig,, and the decoding
can again be obtained by composing the decoding function for Sig; with this
map. We conjecture that similar embeddings can be done also for the theory of
many-sorted term algebras and for the theory of finite indexed inductive defi-
nitions. The situation with infinitary induction in section 4.2 is similar to the
situation with one-sorted algebras, except that as it stands the type of signatures
is here a “large” inductive definition, since it has a constructor which refers to
Set. This size problem can be solved if we replace the current large inductive
definitions with an analogous small one.

5 Related work

PolyP and Generic Haskell. PolyP [JJ97] as in “polytypic” (= generic) program-
ming, is an extension of Haskell. Polytypic functions are defined by induction
on a universe of codes for “regular datastructures” (roughly the universe of our
section 3).

In Generic Haskell [HJ03] (the successor of PolyP) the universe is generalized
to include mutually recursive and nested datatypes, as well as datatypes with
parameters of higher kinds. This allows the full class of Haskell datatypes to be
expressed but also restricts the set of definable generic functions. (The function
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subterms : Ty, — [Tx] is an example of a function which Generic Haskell cannot
define simply because the concept of subterm is not meaningful for this general
class of datatypes.)

Many datatypes with invariants can be simulated in Haskell using nested and
datatypes with parameters of higher kinds, but these types can be more directly
expressed using dependent types.

Combining dependent types and generic programming. The research on this topic
comes from two different directions. On the one hand Altenkirch and McBride
[AMO2] and Norell [Nor02] show how to encode Generic Haskell-style program-
ming using dependent types. Here the setting is that of general recursive func-
tional programming where the class of recursive datatypes includes for example
nested datatypes.

On the other hand the work of Pfeifer and Ruefl [PR99] and Benke [Ben01] are
about extending the technique of generic programming to “total” type theories
such as the Calculus of Construction and the Alfa proof assistant respectively.
The idea here is to stay within a logical system based on the Curry-Howard
isomorphism. Therefore the type system ensures that all programs terminate by
only allowing restricted forms of recursion. In this setting we can both write
generic programs and write generic proofs of properties of those programs. In
fact, experiments of one of the authors [Ben02] show that generic proofs of
equality properties, such as equivalence, decidability and substitutivity can be
actually simpler than the corresponding non-generic proofs.

The present paper continues the programme set out by Pfeifer and Ruef.
Firstly, we introduce several universes of codes for inductive datatypes of in-
terest for generic programming and universal algebra. One of them is Pfeifer
and Ruef}’ universe of parameterized term algebras. Others include universes
for infinitary inductive types and inductively defined families, neither of which
have been considered for generic programming before. Furthermore, Pfeifer and
RueBl only had one generic proof about a datatype: a proof that constructors
are injective. We have worked out some more examples: proofs of reflexivity
and substitutivity of generic equality. As the reader has seen, these proofs are
non-trivial! To facilitate generic proofs we provide an elimination constant which
captures primitive recursion rather than iteration.

Inductive definitions in dependent type theory We also connect work on induc-
tive definitions in type theory with work on generic programming. Although the
papers by Dybjer and Setzer [DS99,DS03b,DS03a] contain related ideas, and in
particular give generic formation, introduction, elimination, and equality rules
for inductive-recursive definitions, they do not discuss the connection with prac-
tical generic programming — the generic programs and proofs in their papers
have meta-theoretic rather than practical interest. Furthermore, for the purpose
of practical generic programming the universe of inductive-recursive definitions
is too large. (Not even Boolean equality can be defined over that universe.) This
is the reason why we introduce several smaller subuniverses of inductive types.
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Universal algebra in dependent type theory. Bayley [Bay98] and Ruys [Ruy99]
formalized one-sorted term algebras in dependent type theory. Capretta [Cap99]
proposed several ways to formalizing many-sorted term algebras, including using
Petersson-Synek trees [PS89] and extending dependent type theory with so called
recursive families of inductive types.
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