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Abstract. In these lecture notes we give an introduction to functional
programming with dependent types. We use the dependently typed pro-
gramming language Agda which is an extension of Martin-Löf type the-
ory. First we show how to do simply typed functional programming in
the style of Haskell and ML. Some differences between Agda’s type sys-
tem and the Hindley-Milner type system of Haskell and ML are also
discussed. Then we show how to use dependent types for programming
and we explain the basic ideas behind type-checking dependent types.
We go on to explain the Curry-Howard identification of propositions and
types. This is what makes Agda a programming logic and not only a pro-
gramming language. According to Curry-Howard, we identify programs
and proofs, something which is possible only by requiring that all pro-
gram terminate. However, at the end of these notes we present a method
for encoding partial and general recursive functions as total functions
using dependent types.

1 What are Dependent Types?

Dependent types are types that depend on elements of other types. An example is
the type An of vectors of length n with components of type A. Another example
is the type Am×n of m × n-matrices. We say that the type An depends on the
number n, or that An is a family of types indexed by the number n. Yet another
example is the type of trees of a certain height. With dependent types we can also
define the type of height-balanced trees of a certain height, that is, trees where
the height of subtrees differ by at most one. As we will see, more complicated
invariants can also be expressed with dependent type. We can have a type of
sorted lists and a type of sorted binary trees (binary search trees). In fact, we
shall use the strong system of dependent types of the Agda language [3,26] which
is an extension of Martin-Löf type theory [20,21,22,25]. In this language we can
express more or less any conceivable property. We have to say “more or less”
because Gödel’s incompleteness theorem sets a limit for the expressiveness of
logical languages.

Parametrised types, such as the type [A] of lists of elements of type A, are
usually not called dependent types. These are families of types indexed by other
types, not families of types indexed by elements of another type. However, in
dependent type theories there is a type of small types (a universe), so that we
have a type [A] of lists of elements of a given small type A.



Already FORTRAN allowed you to define arrays of a given dimension, and
in this sense, dependent types are as old as high-level programming languages.
However, the simply typed lambda calculus and the Hindley-Milner type system,
on which typed functional programming languages such as ML [24] and Haskell
[27] are based, do not include dependent types, only parametrised types. Simi-
larly, the polymorphic lambda calculus System F [15] has types like ∀X.A where
X ranges over all types, but no quantification over elements of other types.

The type systems of typed functional programming languages have gradually
been extended with new features. One example is the module system of SML;
others are the arrays and the newly introduced generalised algebraic data types
of Haskell [28]. Moreover, a number of experimental functional languages with
limited forms of dependent types have been introduced recently. Examples in-
clude meta-ML (for meta-programming) [32], PolyP [18] and Generic Haskell
[17] (for generic programming), and dependent ML [29] (for programming with
“indexed” types). It turns out that many of these features can be modelled by
the dependent types in the strong type system we consider in these notes.

The modern development of dependently typed programming languages has
its origins in the Curry-Howard isomorphism between propositions and types.
Already in the 1930’s Curry noticed the similarity between the axioms of impli-
cational logic

P ⊃ Q ⊃ P (P ⊃ Q ⊃ R) ⊃ (P ⊃ Q) ⊃ P ⊃ R

and types of the combinators K and S

A→ B → A (A→ B → C)→ (A→ B)→ A→ C.

In fact, K can be viewed as a witness (also proof object) of the truth of P ⊃ Q ⊃ P
and S of the truth of (P ⊃ Q ⊃ R) ⊃ (P ⊃ Q) ⊃ P ⊃ R. The typing rule for
application, if f has type A → B and a has type A, then f a has type B,
corresponds to the inference rule modus ponens: from P ⊃ Q and P conclude
Q. Thus, there is a one-to-one correspondence between combinatory terms and
proofs in implicational logic.

In a similar way product types correspond to conjunctions, and sum types
(disjoint unions) to disjunctions. To extend this correspondence to predicate
logic, Howard and de Bruijn introduced dependent types A(x) corresponding to
predicates P (x). They formed indexed products

∏
x : D.A(x) and indexed sums∑

x : D.A(x) corresponding, respectively, to universal quantifications
∀x : D.P (x) and existential quantifications ∃x : D.P (x). What we obtain here
is a Curry-Howard interpretation of intuitionistic predicate logic. There is a
one-to-one correspondence between propositions and types in a type system with
dependent types. There is also a one-to-one correspondence between proofs of a
certain proposition in constructive predicate logic and terms of the correspond-
ing type. Furthermore, to accommodate equality in predicate logic, we introduce
the type a == b of proofs that a and b are equal. In this way, we get a Curry-
Howard interpretation of predicate logic with equality. We can go even further
and add the type of natural numbers with addition and multiplication, and get



a Curry-Howard version of Heyting (intuitionistic) arithmetic. More about the
correspondence between propositions and types can be found in Section 4.

The Curry-Howard interpretation was the basis for Martin-Löf’s intuition-
istic type theory [20,21,22]. In this theory propositions and types are actually
identified. Although Martin-Löf’s theory was primarily intended to be a foun-
dational system for constructive mathematics, it can also be used as a program-
ming language [21]. From the early 1980’s and onwards, a number of computer
systems implementing variants of Martin-Löf type theory were built. The most
well-known are the NuPRL [6] system from Cornell implementing an extensional
version of the theory, and the Coq [33] system from INRIA in France imple-
menting an intensional impredicative version. The Agda system implements an
intensional predicative extension of Martin-Löf type theory. It is the latest in a
sequence of systems developed in Göteborg.

Systems implementing dependent type theories are often referred to as ei-
ther proof assistants or dependently typed programming languages, depending
on whether the emphasis is on proving or on programming. Agda is primarily
designed to be a programming language, although it can be used as a proof assis-
tant as well. It extends Martin.Löf type theory with a number of features, such
as flexible mechanisms for defining new inductive data types and for defining
functions by pattern matching, to make programming convenient.

About these Notes

The aim of these notes is to give a gentle introduction to dependently typed
programming for a reader who is familiar with ordinary functional programming,
and who has basic knowledge of logic and type systems. Although we use the
Agda language, similar techniques can be used in related dependently typed
programming languages such as Epigram [23] and Coq [33]. The presentation is
by example: the reader is guided through a number of successively more advanced
examples of what can be done with dependent types. It is useful to have a
working version of Agda running while reading these notes. Instructions for how
to download Agda can be found on the Agda wiki [3].

We would also like to say a few words about what we will not do.
We will not give a full definition of the Agda language with syntax and

inference rules.
In order to program effectively in Agda, some understanding of the type-

checking algorithm is needed, and we will discuss this briefly in Section 5. How-
ever, the full story is a complex matter beyond the scope of these notes. The
basic ideas behind the present type-checking algorithm was first presented by
Coquand [7]. More information about type-checking and normalisation can be
found in in Norell’s thesis [26], in Abel, Coquand, and Dybjer [1,2] and in Co-
quand, Kinoshita, Nordström, and Takeyama [8].

Programming with dependent types would be difficult without an interface
where terms can be interactively refined with the aid of the type-checker. For
this purpose Agda has an Emacs interface which however, will not be described



here. A few words on the help provided when interactively defining a program
can be found in section A.5.

The reader who wants a more complete understanding of dependent type
theory should read one of the books about Martin-Löf type theory and related
systems. Martin-Löf’s “Intuitionistic Type Theory” [22] is a classic, although the
reader should be aware that it describes an extensional version of the theory. The
book by Nordström, Petersson, and Smith [25] contains a description of the later
intensional theory on which Agda is based. Other books on variants of dependent
type theory are by Thompson [34], by Constable et al [6] on the NuPRL-system,
and by Bertot and Casteran [4] on the Coq-system. The recent lecture notes
(available from the Agda wiki [3]) by Norell are a complement to the present
notes. They provide a collection of somewhat more advanced examples of how
to use Agda for dependently typed programming.

The present volume also contains other material which is useful for further
reading. Geuvers’ lecture notes provide an introduction to type theory including
Barendregt’s pure type systems and their most important meta-theoretic prop-
erties. Bertot’s notes describe how dependent types (in Coq) can be used for
implementing a number of concepts occurring in a course in programming lan-
guage theory with the focus on abstract interpretation. Barthe, Grégoire, and
Riba’s notes present a method for making more powerful termination-checkers.

The rest of the notes are organised as follows. In Section 2, we show how
to do ordinary functional programming in Agda. Section 3 introduces some ba-
sic dependent types and shows how to use them. In Section 4, we explain the
Curry-Howard isomorphism. In Section 5 we briefly discuss some aspects of type-
checking and pattern matching with dependent types. In Section 6 we show how
to use Agda as a programming logic. Section 7 describes how to represent gen-
eral recursion and partial functions as total functions in Agda. To avoid entering
into too many details, we will postpone, as far as possible, an account of Agda’s
concrete syntax until Appendix A.

2 Simply Typed Functional Programming in Agda

We begin by showing how to do ordinary functional programming in Agda. We
will discuss the correspondence with programming in Haskell [27], the standard
lazy simply typed functional programming language. Haskell is the implementa-
tion language of the Agda system and, as one can see below, Agda has borrowed
a number of features from Haskell.

Here we show how to introduce the basic data structures of truth values
(a.k.a. boolean values) and natural numbers, and how to write some basic func-
tions over them. Then, we show a first use of dependent types: how to write
polymorphic programs in Agda using quantification over a type of small types.

2.1 Truth Values

We first introduce the type of truth values in Agda:



data Bool : Set where
true : Bool
false : Bool

This states that Bool is a data type with the two constructors true and false.
In this particular case both constructors are also elements of the data type since
they do not have any arguments. Note that the types of the constructors are
explicitly given and that “:” denotes type membership in Agda. Observe also
that the above definition states that Bool is a member of the type Set. This is
the type of sets (using a terminology introduced by Martin-Löf [22]) or small
types (mentioned in the introduction). Bool is a small type, but Set itself is not,
it is a large type. If we added that Set : Set, the system would actually become
inconsistent and hence, we would be able to prove any property.

Let us now define a simple function, negation, on truth values:

not : Bool -> Bool
not true = false
not false = true

Note that we begin by declaring the type of not: it is a function from truth
values to truth values. Then we define the function by case analysis using pattern
matching on the argument.

To give the same definition in Haskell, it will be sufficient to write the two
defining equations. The Haskell type system will then infer that not has the type
Bool -> Bool by using the Hindley-Milner type inference algorithm. In Agda
we cannot infer types in general, but we can always check whether a certain term
has a certain type provided it is normal. The reason for this is that the type-
checking algorithm in Agda uses normalisation (simplification), and without the
normality restriction it may not terminate. We will discuss some aspects of type-
checking dependent types in Section 3, but the full story is a complex matter
which is beyond the scope of these notes.

Agda checks that patterns cover all cases and does not accept functions with
missing patterns. The following definition will not be accepted:

not : Bool -> Bool
not true = false

Agda will complain that it misses the case for not false. In Section 4 we explain
why all programs in Agda must be total.

We can define binary functions in a similar way, and we can even use pattern
matching on both arguments:

equiv : Bool -> Bool -> Bool
equiv true true = true
equiv true false = false
equiv false true = false
equiv false false = true



In Agda, we can define infix and mix-fix operators. Agda is more permissive
(than Haskell) about which characters can be part of the operator’s name, and
about the number and the position of its arguments. One indicates the places of
the arguments of the operators with underscore (“ ”). For example, disjunction
on truth values is usually an infix operator and it can be declared in Agda as
follows:

_||_ : Bool -> Bool -> Bool

As in Haskell, variables and the wild card character “ ” can be used in pat-
terns to denote an arbitrary argument of the appropriate type. Wild cards are
often used when the variable does not appear on the right hand side of an equa-
tion:

true || _ = true
_ || true = true
_ || _ = false

We can define the precedence and association of infix operators much in the
same way as in Haskell, the higher number the stronger the binding:

infixl 60 _||_

From now on, we assume operators are defined with the right precedence and
association, and therefore do not write unnecessary parentheses in our examples.

We should also mention that one can use Unicode in Agda – a much appreci-
ated feature which makes it possible to write code which looks like “mathemat-
ics”. We will only use ASCII in these notes however.

Exercise: Define some more truth functions, such as conjunction and implication.

2.2 Natural Numbers

The type of natural numbers is defined as the following data type:

data Nat : Set where
zero : Nat
succ : Nat -> Nat

In languages such as Haskell, such data types are usually known as recursive:
a natural number is either zero or the successor of another natural number.
In constructive type theory, one usually refers to them as inductive types or
inductively defined types.

We can now define the predecessor function:

pred : Nat -> Nat
pred zero = zero
pred (succ n) = n



We can define addition and multiplication as recursive functions (note that
application of the prefix succ operator has higher precedence than the infix
operators + and *, and that * has higher precedence than +):

_+_ : Nat -> Nat -> Nat _*_ : Nat -> Nat -> Nat
zero + m = m zero * n = zero
succ n + m = succ (n + m) succ n * m = n * m + m

They are examples of functions defined by primitive recursion in the first argu-
ment. We have two cases: a base case for zero, and a step case where the value
of the function for succ n is defined in terms of the value of the function for n.

Given a first order data type, we distinguish between canonical and non-ca-
nonical forms. Elements on canonical form are built up by constructors only,
whereas non-canonical elements might contain defined functions. For exam-
ple, true and false are canonical forms, but (not true) is a non-canonical
form. Moreover, zero, succ zero, succ (succ zero), . . . , are canonical forms,
whereas zero + zero and zero * zero are not. Neither is the term
succ (zero + zero).

Remark. The above notion of canonical form is sufficient for the purpose of
these notes, but Martin-Löf used another notion for the semantics of his the-
ory [21]. He instead considers lazy canonical forms, that is, it suffices that a
term begins with a constructor to be considered a canonical form. For exam-
ple, succ (zero + zero) is a lazy canonical form, but not a “full” canonical
form. Lazy canonical forms are appropriate for lazy functional programming lan-
guages, such as Haskell, where a constructor should not evaluate its arguments.

We can actually use decimal representation for natural numbers by using
some built-in definitions. Agda also provides built-in definitions for addition and
multiplication of natural numbers that are faster than our recursive definitions;
see Appendix A.2 for information on how to use the built-in representation and
operations. In what follows, we will sometimes use decimal representation and
write 3 instead of succ (succ (succ zero)) for example.

Although the natural numbers with addition and multiplication can be de-
fined in the same way in Haskell, one normally uses the primitive type Int of
integers instead. The Haskell system interprets the elements of Int as binary ma-
chine integers, and addition and multiplication are performed by the hardware
adder and multiplier.

Exercise: Write the cut-off subtraction function - the function on natural num-
bers, which returns 0 if the second argument is greater than or equal to the first.
Also write some more numerical functions like < or 6.

2.3 Lambda Notation and Polymorphism

Agda is based on the typed lambda calculus. We have already seen that applica-
tion is written by juxtaposition. Lambda abstraction is either written Curry-style



\x -> e

without a type label on the argument x, or Church-style

\(x : A) -> e

with a type label. The Curry- and Church-style identity functions are

\x -> x : A -> A \(x : A) -> x : A -> A

respectively. See Appendix A.3 for more ways to write abstractions in Agda.
The above typings are valid for any type A, so \x -> x is polymorphic, that

is, it has many types. Haskell would infer the type

\x -> x :: a -> a

for a type variable a. (Note that Haskell uses “::” for type membership.) In Agda,
however, we have no type variables. Instead we can express the fact that we have
a family of identity functions, one for each small type, as follows:

id : (A : Set) -> A -> A
id = \(A : Set) -> \(x : A) -> x

or as we have written before

id A x = x

We can also mix these two possibilities:

id A = \ x -> x

From this follows that id A : A -> A is the identity function on the small
type A, that is, we can apply this “generic” identity function id to a type argu-
ment A to obtain the identity function from A to A (it is like when we write idA

in mathematics for the identity function on a set A).
Here we see a first use of dependent types: the type A -> A depends on the

variable A : Set ranging over the small types. We see also Agda’s notation for
dependent function types; the rule says that if A is a type and B[x] is a type
which depends on (is indexed by) (x : A), then (x : A) -> B[x] is the type
of functions f mapping arguments (x : A) to values f x : B[x].

If the type-checker can figure out the value of an argument, we can use a
wild card character:

id _ x : A

Here, the system deduces that the wild card character should be filled in by A.
We now show how to define the K and S combinators in Agda:

K : (A B : Set) -> A -> B -> A
K _ _ x _ = x

S : (A B C : Set) -> (A -> B -> C) -> (A -> B) -> A -> C
S _ _ _ f g x = f x (g x)

(Note the telescopic notation (A B : Set) above; see Appendix A.3.)



2.4 Implicit Arguments

Agda also has a more sophisticated abbreviation mechanism, implicit arguments,
that is, arguments which are omitted. Implicit arguments are declared by enclos-
ing their typings within curly brackets (braces) rather than ordinary parentheses.
As a consequence, if we declare the argument A : Set of the identity function
as implicit, we do not need to lambda-abstract over it in the definition:

id : {A : Set} -> A -> A
id = \x -> x

We can also omit it on the left hand side of a definition:

id x = x

Similarly, implicit arguments are omitted in applications:

id zero : Nat

We can always explicitly write an implicit argument by using curly brackets

id {Nat} zero : Nat or even id {_} zero : Nat.

2.5 Gödel System T

We shall now show that Gödel System T is a subsystem of Agda. This is a
system of primitive recursive functionals [16] which is important in logic and a
precursor to Martin-Löf type theory. In both these systems, recursion is restricted
to primitive recursion in order to make sure that all programs terminate.

Gödel System T is based on the simply typed lambda calculus with two base
types, truth values and natural numbers. (Some formulations code truth values
as 0 and 1.) It includes constants for the constructors true, false, zero, and
succ (successor), and for the conditional and primitive recursion combinators.

First we define the conditional:

if_then_else_ : {C : Set} -> Bool -> C -> C -> C
if true then x else y = x
if false then x else y = y

(Note the mix-fix syntax and the implicit argument which gives a readable ver-
sion.)

The primitive recursion combinator for natural numbers is defined as follows:

natrec : {C : Set} -> C -> (Nat -> C -> C) -> Nat -> C
natrec p h zero = p
natrec p h (succ n) = h n (natrec p h n)

It is a functional (higher-order function) defined by primitive recursion. It re-
ceives four arguments: the first (which is implicit) is the return type, the second
(called p in the equations) is the element returned in the base case, the third
(called h in the equations) is the step function, and the last is the natural number
on which we perform the recursion.

We can now use natrec to define addition and multiplication as follows:



plus : Nat -> Nat -> Nat
plus n m = natrec m (\x y -> succ y) n

mult : Nat -> Nat -> Nat
mult n m = natrec zero (\x y -> plus y m) n

Compare this definition of addition and multiplication in terms of natrec, and
the one given in Section 2.2 where the primitive recursion schema is expressed
by two pattern matching equations.

If we work in Agda and want to make sure that we stay entirely within
Gödel system T, we must only use terms built up by variables, application,
lambda abstraction, and the constants

true, false, zero, succ, if_then_else_, natrec

As already mentioned, Gödel system T has the unusual property (for a pro-
gramming language) that all its typable programs terminate: not only do terms
in the base types Bool and Nat terminate whatever reduction is chosen, but also
terms of function type terminate; the reduction rules are β-reduction, and the
defining equations for if then else and natrec.

Reductions can be performed anywhere in a term, so in fact there may be
several ways to reduce a term. We say then that Gödel system T is strongly
normalising, that is, any typable term reaches a normal form whatever reduction
strategy is chosen.

In spite of this restriction, we can define many numerical functions in Gödel
system T. It is easy to see that we can define all primitive recursive functions (in
the usual sense without higher-order functions), but we can also define functions
which are not primitive recursive, such as the Ackermann function.

Gödel system T is very important in the history of ideas that led to the Curry-
Howard isomorphism and Martin-Löf type theory. Roughly speaking, Gödel sys-
tem T is the simply typed kernel of Martin-Löf’s constructive type theory, and
Martin-Löf type theory is the foundational system out of which the Agda lan-
guage grew. The relationship between Agda and Martin-Löf type theory is much
like the relationship between Haskell and the simply typed lambda calculus. Or
perhaps it is better to compare it with the relationship between Haskell and
Plotkin’s PCF [30]. Like Gödel system T, PCF is based on the simply typed
lambda calculus with truth values and natural numbers. However, an important
difference is that PCF has a fixed point combinator which can be used for en-
coding arbitrary general recursive definitions. As a consequence we can define
non-terminating functions in PCF.

Exercise: Define all functions previously given in the text in Gödel System T.

2.6 Parametrised Types

As already mentioned, in Haskell we have parametrised types such as the type
[a] of lists with elements of type a. In Agda the analogous definition is as follows:



data List (A : Set) : Set where
[] : List A
_::_ : A -> List A -> List A

First, this expresses that the type of the list former is

List : Set -> Set

Note also that we placed the argument type (A : Set) to the left of the colon. In
this way, we tell Agda that A is a parameter and it becomes an implicit argument
to the constructors:

[] : {A : Set} -> List A
_::_ : {A : Set} -> A -> List A -> List A

The list constructor :: (“cons”) is an infix operator, and we can declare its
precedence as usual.

Note that this list former only allows us to define lists with elements in
arbitrary small types, not with elements in arbitrary types. For example, we
cannot define lists of sets using this definition, since sets form a large type.

Now, we define the map function, one of the principal polymorphic list com-
binators, by pattern matching on the list argument:

map : {A B : Set} -> (A -> B) -> List A -> List B
map f [] = []
map f (x :: xs) = f x :: map f xs

Exercise: Define some more list combinators like for example foldl or filter.
Define also the list recursion combinator listrec which plays a similar rôle as
natrec does for natural numbers.

Another useful parametrised types is the binary Cartesian product, that is,
the type of pairs:

data _X_ (A B : Set) : Set where
<_,_> : A -> B -> A X B

We define the two projection functions as:

fst : {A B : Set} -> A X B -> A
fst < a , b > = a

snd : {A B : Set} -> A X B -> B
snd < a , b > = b

A useful list combinator that converts a pair of lists into a list of pairs is zip:

zip : {A B : Set} -> List A -> List B -> List (A X B)
zip [] [] = []
zip (x :: xs) (y :: ys) = < x , y > :: zip xs ys
zip _ _ = []



Usually we are only interested in zipping lists of equal length. The third equation
states that the elements that remain from a list when the other list has been
emptied will not be considered in the result. We will return to this later, when
we write a dependently typed versions zip function in Section 3.

Exercise: Define the sum A + B of two small types A and B as a parametrised data
type. It has two constructors: inl, which injects an element of A into A + B, and
inr, which injects an element of B into A + B. Define a combinator case which
makes it possible to define a function from A + B to a small type C by cases.
(Beware that Agda does not support overloading of names except constructor
names of different data types, so you cannot define the type + in a file where
the definition of the addition of natural numbers is defined with the name + and
is in scope.)

2.7 Termination-checking

In mainstream functional languages one can use general recursion freely; as a
consequence we can define partial functions. For example, in Haskell we can
define our own division function as (beware of the possible name clash)

div m n = if (m < n) then 0 else 1 + div (m - n) n

This definition should not be accepted by Agda, since div is a partial func-
tion: it does not terminate if n is zero, whereas Agda requires that all functions
terminate.

How can we ensure that all functions terminate? One solution is to restrict
all recursion to primitive recursion, like in Gödel system T. We should then only
be allowed to define functions by primitive recursion (including primitive list
recursion, etc), but not by general recursion as is the case of the function div.
This is indeed the approach taken in Martin-Löf type theory: all recursion is
primitive recursion, where primitive recursion should be understood as a kind
of structural recursion on the well-founded data types. We will not go into these
details, but the reader is referred to Martin-Löf’s book [22] and Dybjer’s schema
for inductive definitions [10].

Working only with this kind of structural recursion (in one argument at a
time) is often inconvenient in practice. Therefore, the Göteborg group has chosen
to use a more general form of termination-checking in Agda (and its predecessor
ALF). A correct Agda program is one which passes both type-checking and
termination-checking, and where the patterns in the definitions cover the whole
domain. We will not explain the details of Agda’s termination-checker, but limit
ourselves to noting that it allows us to do pattern matching on several arguments
simultaneously and to have recursive calls to structurally smaller arguments. In
this way, we have a generalisation of primitive recursion which is practically
useful, and still lets us remain within the world of total functions where logic
is available via the Curry-Howard correspondence. Agda’s termination-checker
has not yet been documented and studied rigorously. If Agda will be used as



a system for formalising mathematics rigorously, it is advisable to stay within
a well-specified subset such as Martin-Löf type theory [25] or Martin-Löf type
theory with inductive [11] and inductive-recursive definitions [12,14].

Most programs we have written above only use simple case analysis or prim-
itive (structural) recursion in one argument. An exception is the zip func-
tion, which has been defined by structural recursion on both arguments si-
multaneously. This function is obviously terminating and it is accepted by the
termination-checker. The div function is partial and is of course, not accepted
by the termination-checker. However, even a variant which rules out division
by zero, but uses repeated subtraction is rejected by the termination-checker
although it is actually terminating. The reason is that the termination-checker
does not recognise the recursive call to (m - n) as structurally smaller. The
reason is that subtraction is not a constructor for natural numbers, so further
reasoning is required to deduce that the recursive call is actually on a smaller
argument (with respect to some well-founded ordering).

When Agda cannot be sure that a recursive function will terminate, it marks
the name of the defined function in orange. However, the function is “accepted”
nevertheless: Agda leaves it to you to decide whether you want to continue
working without its blessing.

In Section 7 we will describe how partial and general recursive functions can
be represented in Agda. The idea is to replace a partial function by a total
function with an extra argument: a proof that the function terminates on its
arguments.

The search for more powerful termination-checkers for dependently typed
languages is a subject of current research. Here it should be noted again that
it is not sufficient to ensure that all programs of base types terminate, but
that programs of all types reduce to normal forms. This involves reducing open
terms, which leads to further difficulties. See for example the recent Ph.D. thesis
by Wahlstedt [35].

3 Dependent Types

3.1 Vectors of a Given Length

Now it is time to introduce some real dependent types. Consider again the zip
function that we have presented at the end of Section 2.6, converting a pair of
lists into a list of pairs. One could argue that we cannot turn a pair of lists into a
list of pairs, unless the lists are equally long. The third equation in the definition
of zip in page 11 tells us what to do if this is not the case: zip will simply cut
off the longer list and ignore the remaining elements.

With dependent types we can ensure that the “bad” case never happens. We
can use the dependent type of lists of a certain length, often referred to as the
dependent type of vectors.

How can we define the dependent type of vectors of length n? There are
actually two alternatives.



Recursive family: We define it by induction on n, or put differently, by prim-
itive recursion on n.

Inductive family: We define it as a family of data types by declaring its con-
structors together with their types. This is just like the definition of the data
type of ordinary lists, except that the length information is now included in
the types of the constructors.

Below, we will show how to define vectors in Agda in both ways. In the
remainder of the notes we will, however, mostly use inductive families. This
should not be taken as a statement that inductive families are always more
convenient than recursive ones. When both methods are applicable, one needs
to carefully consider how they will be used before choosing the one or the other.
For each inductive family we define below, the reader should ask him/herself
whether there is an alternative recursive definition and if so, write it in Agda.

Vectors as a Recursive Family. In mathematics we might define vectors of
length n by induction on n:

A0 = 1
An+1 = A×An

In Agda (and Martin-Löf type theory) this definition is written as follows.

Vec : Set -> Nat -> Set
Vec A zero = Unit
Vec A (succ n) = A X Vec A n

where Unit is the unit type, that is, the type with only one element

data Unit : Set where
<> : Unit

Before, we have only used primitive recursion for defining functions where
the range is in a given set (in a given small type). Here, we have an example
where we use primitive recursion for defining a family of sets, that is, a family
of elements in a given large type.

We can now define the zip function by induction on the length:

zip : {A B : Set} -> (n : Nat) ->
Vec A n -> Vec B n -> Vec (A X B) n

zip zero v w = <>
zip (succ n) < a , v > < b , w > = < < a , b > , zip n v w >

In the base case we return the empty vector, which is defined as the unique
element of the unit type. Note that this is type-correct since the right hand side
has type Vec (A X B) zero which is defined as the type Unit. The equation for
the step case is type-correct since the right hand side has type

Vec (A X B) (succ n) = (A X B) X (Vec (A X B) n),



and similarly for the type of the arguments on the left hand side. Agda uses
these definitions (which are given by equations) during type-checking to reduce
type expressions to their normal form. We will discuss type-checking dependent
types in more detail in Section 5.

Exercise. Write the functions head, tail, and map for the recursive vectors.

Vectors as an Inductive Family. We can also define vectors inductively as
the following indexed family of data types:

data Vec (A : Set) : Nat -> Set where
[] : Vec A zero
_::_ : {n : Nat} -> A -> Vec A n -> Vec A (succ n)

As before, we define the set of vectors for each length n, but this time we do not
do induction on the length but instead give constructors which generate vectors
of different lengths. The constructor [] generates a vector of length 0, and ::
generates a vector of length (n + 1) from a vector of length n by adding an
element at the beginning.

Such a data type definition is also called an inductive family, or an inductively
defined family of sets. This terminology comes from constructive type theory,
where data types such as Nat and (List A) are called inductive types.

Remark: Beware of terminological confusion. As we have mentioned before, in
programming languages one instead talks about recursive types for such data
types defined by declaring the constructors with their types. This may be a bit
confusing since we used the word recursive family for a different notion. There is
a reason for the terminological distinction between data types in ordinary func-
tional languages, and data types in languages where all programs terminate. In
the latter, we will not have any non-terminating numbers or non-terminating
lists. The set-theoretic meaning of such types is therefore simple: just build the
set inductively generated by the constructors, see [9] for details. In a language
with non-terminating programs, however, the semantic domains are more com-
plex. One typically considers various kinds of Scott domains which are complete
partially orders.

Note that (Vec A n) has two arguments: the small type A of the elements
in the vector, and the length n of type Nat. Here A is a parameter in the sense
that it remains the same throughout the definition: for a given A we define the
family Vec A : Nat -> Set. In contrast, n is not a parameter since it varies
in the types of the constructors. Non-parameters are often called indices and
we can say that Vec A is an inductive family indexed by the natural numbers.
In the definition of a data type in Agda, parameters are placed to the left of
the colon and become implicit arguments to the constructors, whilst indices are
placed to the right (observe where the parameter (A : Set) and the index type
Nat appear in the definition of the data type of vectors).



We can now define a version of zip where the type ensures that the arguments
are equally long vectors and moreover, that the result maintains this length:

zip : {A B : Set} -> (n : Nat) ->
Vec A n -> Vec B n -> Vec (A X B) n

zip zero [] [] = []
zip (succ n) (x :: xs) (y :: ys) = < x , y > :: zip n xs ys

Let us analyse this definition. We pattern match on the first vector (of type
Vec A n) and get two cases. When the vector is empty then it must be the case
that n is zero. If we now pattern match on the second vector we get only one
case, the empty vector, since the type of the second vector must be Vec B zero.
The type of the result is Vec (A X B) zero and hence, we return the empty
vector. When the first vector is not empty, that is, it is of the form (x :: xs)
(for x and xs of the corresponding type), then the length of the vector should
be (succ n) for some number n. Now again, the second vector should also have
length (succ n) and hence be of the form (y :: ys) (for y and ys of the
corresponding type). The type of zip tells us that the result should be a vector
of length (succ n) of elements of type A X B. Note that the third equation we
had before (in page 11) is ruled out by type-checking, since it covered a case
where the two input vectors have unequal length. In Section 5 we will look into
type-checking dependent types in more detail.

Another much discussed problem in computer science is what to do when we
try to take the head or the tail of an empty list. Using vectors we can easily
forbid these cases:

head : {A : Set} {n : Nat} -> Vec A (succ n) -> A
head (x :: _) = x

tail : {A : Set} {n : Nat} -> Vec A (succ n) -> Vec A n
tail (_ :: xs) = xs

The cases for the empty vector will not type-check.
Standard combinators for lists often have corresponding variants for depen-

dent types; for example,

map : {A B : Set} {n : Nat} -> (A -> B) -> Vec A n -> Vec B n
map f [] = []
map f (x :: xs) = f x :: map f xs

3.2 Finite Sets

Another interesting example is the dependent type of finite sets, here defined as
an inductive family.

data Fin : Nat -> Set where
fzero : {n : Nat} -> Fin (succ n)
fsucc : {n : Nat} -> Fin n -> Fin (succ n)



For each n, the set (Fin n) contains exactly n elements; for example, (Fin 3)
contains the elements fzero, fsucc fzero and fsucc (fsucc fzero).

This data type is useful when we want to access the element at a certain
position in a vector: if the vector has n elements and the position of the element
is given by (Fin n), we are sure that we access an element inside the vector.
Let us look at the type of such a function:

_!_ : {A : Set} {n : Nat} -> Vec A n -> Fin n -> A

If we pattern match on the vector (we work with the inductive definition
of vectors), we have two cases, the empty vector and the non-empty one. If
the vector is non-empty, then we know that n should be of the form (succ m)
for some (m : Nat). Now, the elements of Fin (succ m) are either fzero and
then we should return the first element of the vector, or (fsucc i) for some
(i : Fin m) and then we recursively call the function to look for the ith element
in the tail of the vector.

What happens when the vector is empty? Here n must be zero. According to
the type of the function, the fourth argument of the function is of type (Fin 0)
which has no elements. This means that there is no such case. In Agda this
function can be expressed as follows:

_!_ : {A : Set} {n : Nat} -> Vec A n -> Fin n -> A
[] ! ()
(x :: xs) ! fzero = x
(x :: xs) ! fsucc i = xs ! i

The () in the second line above states that there are no elements in (Fin 0)
and hence, that there is no equation for the empty vector. So [] ! () is not an
equation like the others, it is rather an annotation which tells Agda that there is
no equation. The type-checker will of course check that this is actually the case.

We will discuss empty sets more in Section 4.

Exercise: Rewrite the function !! so that it has the following type:

_!!_ : {A : Set}{n : Nat} -> Vec A (succ n) -> Fin (succ n) -> A

This will eliminate the empty vector case, but which other cases are needed?

Exercise: Give an alternative definition of Fin as a recursive family.

3.3 More Inductive Families

Just as we can use dependent types for defining lists of a certain length, we can
use them for defining binary trees of a certain height:

data DBTree (A : Set) : Nat -> Set where
dlf : A -> DBTree A zero
dnd : {n : Nat} -> DBTree A n -> DBTree A n ->

DBTree A (succ n)

With this definition, any given (t : DBTree A n) is a perfectly balanced tree
with 2n elements and information in the leaves.



Exercise: Modify the above definition in order to define the height balanced
binary trees, that is, binary trees where the difference between the heights of the
left and right subtree is at most one.

Exercise: Define lambda terms as an inductive family indexed by the maximal
number of free variables allowed in the term. Try also to define typed lambda
terms as an inductive family indexed by the type of the term.

4 Propositions as Types

As we already mentioned in the introduction, Curry observed in the 1930’s that
there is a one-to-one correspondence between propositions in propositional logic
and types. In the 1960’s, de Bruijn and Howard introduced dependent types be-
cause they wanted to extend Curry’s correspondence to predicate logic. Through
the work of Scott [31] and Martin-Löf [20], this correspondence became the ba-
sic building block of a new foundational system for constructive mathematics:
Martin-Löf’s intuitionistic type theory.

We shall now show how intuitionistic predicate logic with equality is a sub-
system of Martin-Löf type theory by realising it as a theory in Agda.

4.1 Propositional Logic

The idea behind the Curry-Howard isomorphism is that each proposition is inter-
preted as the set of its proofs. To emphasise that “proofs” here are “first-class”
mathematical object one often talks about proof objects. In constructive math-
ematics they are often referred to as constructions. A proposition is true iff its
set of proofs is inhabited; it is false iff its set of proofs is empty.

We begin by defining conjunction, the connective “and”, as follows:

data _&_ (A B : Set) : Set where
<_,_> : A -> B -> A & B

Let A and B be two propositions represented by their sets of proofs. Then, the first
line states that A & B is also a set (a set of proofs), representing the conjunction
of A and B. The second line states that all elements of A & B, that is, the proofs
of A & B, have the form < a , b >, where (a : A) and (b : B), that is, a is
a proof of A and b is a proof of B. We note that the definition of conjunction
is nothing but the definition of the Cartesian product of two sets: an element
of the Cartesian product is a pair of elements of the component sets. We could
equally well have defined

_&_ : Set -> Set -> Set
A & B = A X B

This is the Curry-Howard identification of conjunction and Cartesian product.
It may surprise the reader familiar with propositional logic, that all proofs

of A & B are pairs (of proofs of A and proofs of B). In other words, that all



such proofs are obtained by applying the constructor of the data type for &
(sometimes one refers to this as the rule of &-introduction). Surely, there must
be other ways to prove a conjunction, since there are many other axioms and
inference rules. The explanation of this mystery is that we distinguish between
canonical proofs and non-canonical proofs. When we say that all proofs of A & B
are pairs of proofs of A and proofs of B, we actually mean that all canonical proofs
of A & B are pairs of canonical proofs of A and canonical proofs of B. This is the
so called Brouwer-Heyting-Kolmogorov (BHK)-interpretation of logic, as refined
and formalised by Martin-Löf.

The distinction between canonical proofs and non-canonical proofs is analo-
gous to the distinction between canonical and non-canonical elements of a set;
see Section 2.2. As we have already mentioned, by using the rules of computation
we can always reduce a non-canonical natural number to a canonical one. The
situation is analogous for sets of proofs: we can always reduce a non-canonical
proof of a proposition to a canonical one using simplification rules for proofs.
We shall now see examples of such simplification rules.

We define the two rules of &-elimination as follows

fst : {A B : Set} -> A & B -> A
fst < a , b > = a

snd : {A B : Set} -> A & B -> B
snd < a , b > = b

Logically, these rules state that if A & B is true then A and B are also true. The
justification for these rules uses the definition of the set of canonical proofs of
A & B as the set of pairs < a , b > of canonical proofs (a : A) and of canonical
proofs (b : B). It immediately follows that if A & B is true then A and B are
also true.

The proofs

fst < a , b > : A snd < a , b > : B

are non-canonical, but the simplification rules (also called equality rules, com-
putation rules, reduction rules) explain how they are converted into canonical
ones:

fst < a , b > = a snd < a , b > = b

The definition of disjunction (connective “or”) follows similar lines. Accord-
ing to the BHK-interpretation a (canonical) proof of A \/ B is either a (canon-
ical) proof of A or a (canonical) proof of B:

data _\/_ (A B : Set) : Set where
inl : A -> A \/ B
inr : B -> A \/ B

Note that this is nothing but the definition of the disjoint union of two sets:
disjunction corresponds to disjoint union according to Curry-Howard. (Note that
we use the disjoint union rather than the ordinary union.)



At the end of Section 2.6 you were asked to define the disjoint union of two
sets A and B. Once we have defined A + B, we can define \/ in terms of + in the
same way as we defined & in terms of X above:

_\/_ : Set -> Set -> Set
A \/ B = A + B

Furthermore, the rule of \/-elimination is nothing but the rule of case analysis
for a disjoint union:

case : {A B C : Set} -> A \/ B -> (A -> C) -> (B -> C) -> C
case (inl a) d e = d a
case (inr b) d e = e b

We can also introduce the proposition which is always true, that we call True,
which corresponds to the unit set (see page 14) according to Curry-Howard:

data True : Set where
<> : True

The proposition False is the proposition that is false by definition, and it is
nothing but the empty set according to Curry-Howard. This is the set which is
defined by stating that it has no canonical elements.

data False : Set where

This set is sometimes referred as the “absurdity” set and denoted by ⊥.
The rule of ⊥-elimination states that if one has managed to prove False,

then one can prove any proposition A. This can of course only happen if one
started out with contradictory assumptions. It is defined as follows:

nocase : {A : Set} -> False -> A
nocase ()

The justification of this rule is the same as the justification of the existence of
an empty function from the empty set into an arbitrary set. Since the empty set
has no elements there is nothing to define; it is definition by no cases. Recall the
explanation on page 16 when we used the notation ().

Note that to write “no case” in Agda, that is, cases on an empty set, one
writes a “dummy case” nocase () rather than actually no cases. The dummy
case is just a marker that tells the Agda-system that there are no cases to
consider. It should not be understood as a case analogous with the lines defining
fst, snd, and case above.

As usual in constructive logic, to prove the negation of a proposition is the
same as proving that the proposition in question leads to absurdity:

Not : Set -> Set
Not A = A -> False



According to the BHK-interpretation, to prove an implication is to provide a
method for transforming a proof of A into a proof of B. When Brouwer pioneered
this idea about 100 years ago, there were no computers and no models of compu-
tation. But in modern constructive mathematics in general, and in Martin-Löf
type theory in particular, a “method” is usually understood as a computable
function (or computer program) which transforms proofs. Thus we define im-
plication as function space. To be clear, we introduce some new notation for
implications:

_==>_ : (A B : Set) -> Set
A ==> B = A -> B

The above definition is not accepted in Martin-Löf’s own version of propo-
sitions-as-sets. The reason is that each proposition should be defined by stating
what its canonical proofs are. A canonical proof should always begin with a con-
structor, but a function in A -> B does not, unless one considers the lambda-sign
(the symbol \ in Agda for variable abstraction in a function) as a constructor.

Instead, Martin-Löf defines implication as a set with one constructor:

data _==>_ (A B : Set) : Set where
fun : (A -> B) -> A ==> B

If ==> is defined in this way, a canonical proof of A ==> B always begins with
the constructor fun. The rule of ==>-elimination (modus ponens) is now defined
by pattern matching:

apply : {A B : Set} -> A ==> B -> A -> B
apply (fun f) a = f a

This finishes the definition of propositional logic inside Agda, except that we
are of course free to introduce other connectives, such as equivalence of proposi-
tions:

_<==>_ : Set -> Set -> Set
A <==> B = (A ==> B) & (B ==> A)

Exercise: Prove your favourite tautology from propositional logic. Beware that
you will not be able to prove the law of the excluded middle A \/ Not A. This is
a consequence of the definition of disjunction, can you explain why?. The law of
the excluded middle is not available in intuitonistic logic, only in classical logic.

4.2 Predicate Logic

We now move to predicate logic and introduce the universal and existential
quantifiers.

The BHK-interpretation of universal quantification (for all) ∀ x : A. B is
similar to the BHK-interpretation of implication: to prove ∀ x : A. B we need
to provide a method which transforms an arbitrary element a of the domain A



into a proof of the proposition B[x:=a], that is, the proposition B where the free
variable x has been instantiated (substituted) by the term a. (As usual we must
avoid capturing free variables.) In this way we see that universal quantification
is interpreted as the dependent function space. An alternative name is Cartesian
product of a family of sets: a universal quantifier can be viewed as the conjunc-
tion of a family of propositions. Another common name is the “Π-set”, since
Cartesian products of families of sets are often written Πx : A. B.

Forall : (A : Set) -> (B : A -> Set) -> Set
Forall A B = (x : A) -> B x

Remark: Note that implication can be defined as a special case of universal
quantification: it is the case where B does not depend on (x : A).

For similar reasons as for implication, Martin-Löf does not accept the above
definition in his version of the BHK-interpretation. Instead he defines the uni-
versal quantifier as a data type with one constructor:

data Forall (A : Set) (B : A -> Set) : Set where
dfun : ((a : A) -> B a) -> Forall A B

Exercise: Write the rule for ∀-elimination.

According to the BHK-interpretation, a proof of ∃x : A. B consists of an
element (a : A) and a proof of B[x:=a].

data Exists (A : Set) (B : A -> Set) : Set where
[_,_] : (a : A) -> B a -> Exists A B

Note the similarity with the definition of conjunction: a proof of an existential
proposition is a pair [ a , b ], where (a : A) is a witness, an element for
which the proposition (B a) is true, and (b : B a) is a proof object of this
latter fact.

Thinking in terms of Curry-Howard, this is also a definition of the dependent
product. An alternative name is then the disjoint union of a family of sets, since
an existential quantifier can be viewed as the disjunction of a family of proposi-
tions. Another common name is the “Σ-set”, since disjoint union of families of
sets are often written Σx : A. B.

Given a proof of an existential proposition, we can extract the witness:

dfst : {A : Set} {B : A -> Set} -> Exists A B -> A
dfst [ a , b ] = a

and the proof that the proposition is indeed true for that witness:

dsnd : {A : Set}{B : A -> Set} -> (p : Exists A B) -> B (dfst p)
dsnd [ a , b ] = b



As before, these two rules can be justified in terms of canonical proofs.
We have now introduced all rules needed for a Curry-Howard representation

of untyped constructive predicate logic. We only need a special (unspecified) set
D for the domain of the quantifiers.

However, Curry-Howard immediately gives us a typed predicate logic with a
very rich type-system. In this typed predicate logic we have further laws. For
example, there is a dependent version of the \/-elimination:

dcase : {A B : Set} -> {C : A \/ B -> Set} -> (z : A \/ B) ->
((x : A) -> C (inl x)) -> ((y : B) -> C (inr y)) -> C z

dcase (inl a) d e = d a
dcase (inr b) d e = e b

Similarly, we have the dependent version of the other elimination rules, for ex-
ample the dependent version of the ⊥-elimination is as follows:

dnocase : {A : False -> Set} -> (z : False) -> A z
dnocase ()

Exercise: Write the dependent version of the remaining elimination rules.

Exercise: Prove now a few tautologies from predicate logic. Be aware that while
classical logic always assumes that there exists an element we can use in the
proofs, this is not the case in constructive logic. When we need an element of
the domain set, we must explicitly state that such an element exists.

4.3 Equality

Martin-Löf defines equality in predicate logic [19] as the set inductively generated
by the reflexive rule. This definition was then adapted to intuitionistic type the-
ory [20], where the equality relation is given a propositions-as-sets interpretation
as the following inductive family:

data _==_ {A : Set} : A -> A -> Set where
refl : (a : A) -> a == a

This states that (refl a) is a canonical proof of a == a, provided a is a canon-
ical element of A. More generally, (refl a) is a canonical proof of a’ == a’’
provided both a’ and a’’ have a as their canonical form (obtained by simplifi-
cation).

The rule of ==-elimination is the rule which allows us to substitute equals for
equals:

subst : {A : Set} -> {C : A -> Set} -> {a’ a’’ : A} ->
a’ == a’’ -> C a’ -> C a’’

subst (refl a) c = c

This is proved by pattern matching: the only possibility to prove a’ == a’’ is
if they have the same canonical form a. In this case, (the canonical forms of)
C a’ and C a’’ are also the same; hence they contain the same elements.



4.4 Induction Principles

In Section 2.5 we have defined the combinator natrec for primitive recursion
over the natural numbers and used it for defining addition and multiplication.
Now we can give it a more general dependent type than before: the parameter
C can be a family of sets over the natural numbers instead of simply a set:

natrec : {C : Nat -> Set} -> (C zero) ->
((m : Nat) -> C m -> C (succ m)) -> (n : Nat) -> C n

natrec p h zero = p
natrec p h (succ n) = h n (natrec p h n)

Because of the Curry-Howard isomorphism, we know that natrec does not neces-
sarily need to return an ordinary element (like a number, or a list, or a function)
but also a proof of some proposition. The type of the result of natrec is deter-
mined by C. When defining plus or mult, C will be instantiated to the constant
family (\n -> Nat) (in the dependently typed version of natrec). However, C
can be a property (propositional function) of the natural numbers, for example,
“to be even” or “to be a prime number”. As a consequence, natrec can not only
be used to define functions over natural numbers but also to prove propositions
over the natural numbers. In this case, the type of natrec expresses the principle
of mathematical induction: if we prove a property for 0, and prove the property
for m + 1 assuming that it holds for m, then the property holds for arbitrary
natural numbers.

Suppose we want to prove that the two functions defining the addition in
Section 2 (+ and plus) give the same result. We can prove this by induction,
using natrec as follows ( let == be the propositional equality defined in Section
4.3):

eq-plus-rec : (n m : Nat) -> n + m == plus n m
eq-plus-rec n m = natrec (refl m) (\k’ ih -> eq-succ ih) n

Here, the proof eq-succ : {n m : Nat} -> n == m -> succ n == succ m
can also be defined (proved) using natrec. (Actually, the Agda system can-
not infer what C –in the definition of natrec– would be in this case so, in the
proof of this property, we would actually need to explicitly write the implicit
argument as {(\k -> k + m == plus k m)}.)

Exercise: Prove eq-succ and eq-mult-rec, the equivalent to eq-plus-rec but
for * and mult.

As we mentioned before, we could define structural recursion combinators
analogous to the primitive recursion combinator natrec for any inductive type
(set). Recall that inductive types are introduced by a data declaration containing
its constructors and their types. These combinators would allow us both to define
functions by structural recursion, and to prove properties by structural induction
over those data types. However, we have also seen that for defining functions, we
actually did not need the recursion combinators. If we want to, we can express



structural recursion and structural induction directly using pattern matching
(this is the alternative we have used in most examples in these notes). In practice,
this is usually more convenient when proving and programming in Agda, since
the use of pattern matching makes it easier to both write the functions (proofs)
and understand what they do.

Let us see how to prove a property by induction without using the combinator
natrec. We use pattern matching and structural recursion instead:

eq-plus : (n m : Nat) -> n + m == plus n m
eq-plus zero m = refl m
eq-plus (succ n) m = eq-succ (eq-plus n m)

This function can be understood as usual. First, the function takes two natu-
ral numbers and produces an element of type n + m == plus n m. Because of
the Curry-Howard isomorphism, this element happens to be a proof that the
addition of both numbers is the same irrespectively of whether we add them
by using + or by using plus. We proceed by cases on the first argument. If n
is 0 we need to give a proof of (an element of type) 0 + m == plus 0 m. If
we reduce the expressions on both sides of == , we see that we need a proof
of m == m. This proof is simply (refl m). The case where the first argument
is (succ n) is more interesting: here we need to return an element (a proof)
of succ (n + m) == succ (plus n m) (after making the corresponding reduc-
tions for the successor case). If we have a proof of n + m == plus n m, then
applying the function eq-succ to that proof will do it. Observe that the recur-
sive call to eq-plus on the number n gives us exactly a proof of the desired
type.

Exercise: Prove eq-succ and eq-mult using pattern matching and structural
recursion.

Remark: According to the Curry-Howard interpretation, a proof by structural
induction corresponds to a definition of a function by structural recursion: re-
cursive calls correspond to the use of induction hypotheses.

5 Type-checking Dependent Types

Type-checking dependent types is considerably more complex than type-checking
(non-dependent) Hindley-Milner types. Let us now look more closely at what
happens when type-checking the zip function on vectors.

zip : {A B : Set} -> (n : Nat) ->
Vec A n -> Vec B n -> Vec (A X B) n

zip zero [] [] = []
zip (succ n) (x :: xs) (y :: ys) = < x , y > :: zip n xs ys

There are several things to check in this definition.



First, we need to check that the type of zip is well-formed. This is rel-
atively straightforward: we check that Set is well-formed, that Nat is well-
formed, that (Vec A n) is well-formed under the assumptions that (A : Set)
and (n : Nat), and that (Vec B n) is well-formed under the assumptions that
(B : Set) and (n : Nat). Finally, we check that (Vec (A X B) n) is well-
formed under the assumptions (A : Set), (B : Set) and (n : Nat).

Then, we need to check that the left hand sides and the right hand sides of
the equations have the same well-formed types. For example, in the first equation
(zip zero [] []) and [] must have the type (Vec (A X B) zero); etc.

5.1 Pattern Matching with Dependent Types.

Agda requires patterns to be linear, that is, the same variable must not occur
more than once. However, situations arise when one is tempted to repeat a
variable. To exemplify this, let us consider a version of the zip function where
we explicitly write the index of the second constructor of vectors:

zip : {A B : Set} -> (n : Nat) ->
Vec A n -> Vec B n -> Vec (A X B) n

zip zero [] [] = []
zip (succ n) (_::_ {n} x xs) (_::_ {n} y ys) =

< x , y > :: zip n xs ys

The type-checker will complain since the variable n occurs three times. Trying
to avoid this non-linearity by writing different names

zip (succ n) (_::_ {m} x xs) (_::_ {h} y ys) = ....

or even the wild card character instead of a variable name

zip (succ n) (_::_ {_} x xs) (_::_ {_} y ys) = ....

will not help. The type-checker must check that, for example, the vector
( :: {m} x xs) has size (succ n) but it does not have enough information
for deducing this. What to do? The solution is to distinguish between what is
called accessible patterns, which arise from explicit pattern matching, and in-
accessible patterns, which arise from index instantiation. Inaccessible patterns
must then be prefixed with a “.” as in

zip (succ n) (_::_ .{n} x xs) (_::_ .{n} y ys) =
< x , y > :: zip n xs ys

The accessible parts of a pattern must form a well-formed linear pattern built
from constructors and variables. Inaccessible patterns must refer only to variables
bound in the accessible parts. When computing the pattern matching at run
time only the accessible patterns need to be considered, the inaccessible ones
are guaranteed to match simply because the program is well-typed. For further
reading about pattern matching in Agda we refer to Norell’s Ph.D. thesis [26].



It is worth noting that patterns in indices (that is, inaccessible ones) are not
required to be constructor combinations. Arbitrary terms may occur as indices
in inductive families, as the following definition of the image of a function (taken
from [26]) shows:

data Image {A B : Set} (f : A -> B) : B -> Set where
im : (x : A) -> Image f (f x)

If we want to define the right inverse of f for a given (y : B), we can pattern
match on a proof that y is in the image of f:

inv : {A B : Set} (f : A -> B) -> (y : B) -> Image f y -> A
inv f .(f x) (im x) = x

Observe that the term y should be instantiated to (f x), which is not a con-
structor combination.

5.2 Normalisation during Type-checking.

Let us now continue to explain type-checking with dependent types. Consider
the following definition of the append function over vectors, where + is the
function defined in Section 2.2:

_++_ : {A : Set} {n m : Nat} -> Vec A n -> Vec A m ->
Vec A (n + m)

[] ++ ys = ys
(x :: xs) ++ ys = x :: (xs ++ ys)

Let us analyse what happens “behind the curtains” while type-checking the
equations of this definition. Here we pattern match on the first vector. If it is
empty, then we return the second vector unchanged. In this case n must be zero,
and we know by the first equation in the definition of + that zero + m = m.
Hence, we need to return a vector of size m, which is exactly the type of the
argument ys. If the first vector is not empty, then we know that n must be of the
form (succ n’) for some (n’ : Nat), and we also know that (xs : Vec A n’).
Now, by definition of + , append must return a vector of size succ (n’ + m).
By definition of append, we have that (xs ++ ys : Vec A (n’ + m)), and by
the definition of (the second constructor of) the data type of vectors we know
that adding an element to a vector of size (n’ + m) returns a vector of size
succ (n’ + m). So here again, the resulting term is of the expected type.

This example shows how we simplify (normalise) expressions during type
checking. To show that the two sides of the first equation for append have the
same type, the type-checker needs to recognise that zero + m = m, and to this
end it uses the first equation in the definition of + . Observe that it simplifies an
open expression: zero + m contains the free variable m. This is different from the
usual situation: when evaluating a term in a functional programming language,
equations are only used to simplify closed expressions, that is, expressions where
there are no free variables.



Let us now consider what would happen if we define addition of natural
numbers by recursion on the second argument instead of on the first. That is,
if we would have the following definition of addition, which performs the task
equally well:

_+’_ : Nat -> Nat -> Nat
n +’ zero = n
n +’ succ m = succ (n +’ m)

Will the type-checker recognise that zero +’ m = m? No, it is not sufficiently
clever. To check whether two expressions are equal, it will only use the defining
equations in a left-to-right manner and this is not sufficient. It will not try to
do induction on m, which is what is needed here.

Let us see how this problem typically arises when programming in Agda. One
of the key features of Agda is that it helps us to construct a program step-by-step.
In the course of this construction, Agda will type-check half-written programs,
where the unknown parts are represented by terms containing ?-signs. The part
of the code denoted by “?” is called a goal, something that the programmer has
left to do. Agda type-checks such half-written programs, tells us whether it is
type-correct so far, and also tells the types of the goals; see Appendix A.5 for
more details.

Here is a half-written program for append defined by pattern matching on
its first argument; observe that the right hand sides are not yet written:

_++’_ : {A : Set} {n m : Nat} -> Vec A n -> Vec A m ->
Vec A (n +’ m)

[] ++’ ys = ?
(x :: xs) ++’ ys = ?

In the first equation we know that n is zero, and we know that the resulting
vector should have size (zero +’ m). However, the type-checker does not know
at this stage what the result of (zero +’ m) is. The attempt to refine the first
goal with the term ys will simply not succeed. If one looks at the definition of
+’ , one sees that the type-checker only knows the result of an addition when

the second number is either zero or of the form succ applied to another natural
number. But so far, we know nothing about the size m of the vector ys. While we
know from school that addition on natural numbers is commutative and hence,
zero +’ m == m +’ zero (for some notion of equality over natural numbers, as
for example the one defined in Section 4.3), the type-checker has no knowledge
about this property unless we prove it. What the type-checker does know is that
m +’ zero = m by definition of the new addition. So, if we are able to prove that
zero +’ m == m +’ zero, we will know that zero +’ m == m, since terms that
are defined to be equal are replaceable.

Can we finish the definition of the append function, in spite of this problem?
The answer is yes. We can prove the following substitutivity rule:

substEq : {A : Set} -> (m : Nat) -> (zero +’ m) == m ->
Vec A m -> Vec A (zero +’ m)



which is just a special case of the more general substitutivity rule defined in 4.3
(prove substEq using subst as an exercise). We can then instantiate the “?” in
the first equation with the term

substEq m (eq-z m) ys : Vec A (zero +’ m)

where eq-z m is a proof that zero +’ m == m. This proof is an explicit coercion
which changes the type of ys to the appropriate one. It is of course undesirable
to work with terms which are decorated with logical information in this way, and
it is often possible (but not always) to avoid this situation by judicious choice
of definitions.

Ideally, we would like to have the following substitutivity rule:

ys : Vec A m zero +′ m == m

ys : Vec A (zero +′ m)

This rule is actually available in extensional intuitionistic type theory [21,22],
which is the basis of the NuPRL system [6]. However, the drawback of extensional
type theory is that we loose normalisation and decidability of type-checking. As
a consequence, the user has to work on a lower level since the system cannot
check equalities automatically by using normalisation. NuPRL compensates for
this by using so called tactics for proof search. Finding a suitable compromise
between the advantages of extensional and intensional type theory is a topic of
current research.

Remark: Notice the difference between the equality we wrote above as ==
and the one we wrote as = . Here, the symbol = , which we have used when
introducing the definition of functions, stands for definitional equality. When two
terms t and t’ are defined to be equal, that is, they are such that t = t’, then
the type-checker can tell that they are the same by reducing them to normal
form. Hence, substitutivity is automatic and the type-checker will accept a term
h of type (C t) whenever it expects a term of type (C t’) and vice versa,
without needing extra logical information.

The symbol == stands, in these notes, for a propositional equality, see Sec-
tion 4.3. It is an equivalence relation, it is substitutive, and t = t’ implies
t == t’.

6 Agda as a Programming Logic

In Sections 2 and 3 we have seen how to write functional programs in type theory.
Those programs include many of the programs one would write in a standard
functional programming language such as Haskell. There are several important
differences however. Agda requires all programs to terminate whereas Haskell
does not. In Agda we need to cover all cases when doing pattern matching, but
not in Haskell. And in Agda we can write programs with more complex types,
since we have dependent types. For example, in Section 4 we have seen how to use



the Curry-Howard isomorphism to represent propositions as types in predicate
logic.

In this section, we will combine the aspects discussed in the previous sections
and show how to use Agda as a programming logic. In other words, we will use the
system to prove properties of our programs. Observe that when we use Agda as a
programming logic, we limit ourselves to programs that pass Agda’s termination-
checker. So we need to practise writing programs which use structural recursion,
maybe simultaneously in several arguments.

To show the power of dependent types in programming we consider the pro-
gram which inserts an element into a binary search tree. Binary search trees
are binary trees whose elements are sorted. We approach this problem in two
different ways.

In our first solution we work with binary trees as they would be defined in
Haskell, for example. Here, we define a predicate that checks when a binary tree
is sorted and an insertion function that, when applied to a sorted tree, returns
a sorted tree. We finally show that the insertion function behaves as expected,
that is, that the resulting tree is indeed sorted. This approach is sometimes called
external programming logic: we write a program in an ordinary type system and
afterwards we prove a property of it. The property is a logical “comment”.

In our second solution, we define a type which only contains sorted binary
trees. So these binary trees are sorted by construction. The data type of sorted
binary trees is defined simultaneously with two functions which check that the
elements in the subtrees are greater (smaller) than or equal to the root (respec-
tively). This is an example of an inductive-recursive definition [12,13]. This is
a kind of definition available in Agda which we have not yet encountered. We
then define an insertion function over those trees, which is also correct by con-
struction: its type ensures that sorted trees are mapped into sorted trees. This
approach is sometimes called integrated or internal programming logic: the logic
is integrated with the program.

We end this section by sketching alternative solutions to the problem. The
interested reader can test his/her understanding of dependent types by filling all
the gaps in the ideas we mention here.

Due to space limitations, we will not be able to show all proofs and codes
in here. In some cases, we will only show the types of the functions and explain
what they do (sometimes this is obvious from the type). We hope that by now
the reader has enough knowledge to fill in the details on his or her own.

In what follows let us assume we have a set A with an inequality relation <=
that is total, anti-symmetric, reflexive and transitive:

A : Set
_<=_ : A -> A -> Set
tot : (a b : A) -> (a <= b) \/ (b <= a)
antisym : {a b : A} -> a <= b -> b <= a -> a == b
refl : (a : A) -> a <= a
trans : {a b c : A} -> a <= b -> b <= c -> a <= c



Such assumptions can be declared as postulates in Agda. They can also be mod-
ule parameters (see Appendix A.1).

We shall use a version of binary search trees which allows multiple occurrences
of an element. This is a suitable choice for representing multi-sets. If binary
search trees are used to represent sets, it is preferable to keep just one copy of
each element only. The reader can modify the code accordingly as an exercise.

6.1 The Data Type of Binary Trees and the Sorted Predicate

Let us define the data type of binary trees with information on the nodes:

data BTree : Set where
lf : BTree
nd : A -> BTree -> BTree -> BTree

We want to define the property of being a sorted tree. We first define when
all elements in a tree are smaller than or equal to a certain given element (below,
the element a):

all-leq : BTree -> A -> Set
all-leq lf a = True
all-leq (nd x l r) a = (x <= a) & all-leq l a & all-leq r a

What does this definition tell us? The first equation says that all elements in
the empty tree (just a leaf with no information) are smaller than or equal to a.
The second equation considers the case where the tree is a node with root x and
subtrees l and r. (From now on we take the convention of using the variables
l and r to stand for the left and the right subtree, respectively). The equation
says that all elements in the tree (nd x l r) will be smaller than or equal to a
if x <= a, that is, x is smaller than or equal to a, and also all elements in both l
and r are smaller than or equal to a. Notice the two structurally recursive calls
in this definition.

Remark. Note that this is a recursive definition of a set. In fact, we could equally
well have chosen to return a truth value in Bool since the property all-leq is
decidable. In general, a property of type A -> Bool is decidable, that is, there is
an algorithm which for an arbitrary element of A decides whether the property
holds for that element or not. A property of type A -> Set may not be decidable,
however. As we learn in computability theory, there is no general method for
looking at a proposition (e.g. in predicate logic) and decide whether it is true or
not. Similarly, there is no general method for deciding whether a Set in Agda is
inhabited or not.

Exercise. Write the similar property which is true when all elements in a tree
are greater than or equal to a certain element:

all-geq : BTree -> A -> Set



Finally, a tree is sorted when its leaves increase from right to left:

Sorted : BTree -> Set
Sorted lf = True
Sorted (nd a l r) = (all-geq l a & Sorted l) &

(all-leq r a & Sorted r)

The empty tree is sorted. A non-empty tree will be sorted if all the elements in
the left subtree are greater than or equal to the root, if all the elements in the
right subtree are smaller than or equal to the root, and if both subtrees are also
sorted. (The formal definition actually requires the proofs in a different order,
but we can prove that & is commutative, hence the explanation is valid.)

Let us now define a function which inserts an element in a sorted tree in the
right place so that the resulting tree is also sorted.

insert : A -> BTree -> BTree
insert a lf = nd a lf lf
insert a (nd b l r) with tot a b
... | inl _ = nd b l (insert a r)
... | inr _ = nd b (insert a l) r

The empty case is easy. To insert an element into a non-empty tree we need to
compare it to the root of the tree to decide whether we should insert it into the
right or into the left subtree. This comparison is done by (tot a b).

Here we use a new feature of Agda: the with construct which lets us analyse
(tot a b) before giving the result of insert. Recall that (tot a b) is a proof
that either a <= b or b <= a. The insertion function performs case analysis on
this proof. If the proof has the form (inl ) then a <= b (the actual proof of
this is irrelevant, which is denoted by a wild card character) and we (recursively)
insert a into the right subtree. If b <= a (this is given by the fact that the result
of (tot a b) is of the form inr ) we insert a into the left subtree.

The with construct is very useful in the presence of inductive families; see
Appendix A.4 for more information.

Observe that the type of the function neither tells us that the input tree nor
that the output tree are sorted. Actually, one can use this function to insert an
element into a unsorted tree and obtain another unsorted tree.

So how can we be sure that our function behaves correctly when it is applied
to a sorted tree, that is, how can we be sure it will return a sorted tree? We have
to prove it.

Let us assume we have the following two proofs:

all-leq-ins : (t : BTree) -> (a b : A) -> all-leq t b ->
a <= b -> all-leq (insert a t) b

all-geq-ins : (t : BTree) -> (a b : A) -> all-geq t b ->
b <= a -> all-geq (insert a t) b



The first proof states that if all elements in the tree t are smaller than or equal
to b, then the tree that results from inserting an element a such that a <= b,
is also a tree where all the elements are smaller than or equal to b. The second
proof can be understood similarly.

We can now prove that the tree that results from inserting an element into
a sorted tree is also sorted. Note that a proof that a non-empty tree is sorted
consist of four subproofs, structured as a pair of pairs of proofs; recall that the
constructor of a pair of proofs is the mix-fix operator < , > (see Section 4.1).

sorted : (a : A) -> (t : BTree) -> Sorted t ->
Sorted (insert a t)

sorted a lf _ = < < <> , <> > , < <> , <> > >
sorted a (nd b l r) < < pl1 , pl2 > , < pr1 , pr2 > >

with tot a b
... | inl h = < < pl1 , pl2 > ,

< all-leq-ins r a b pr1 h , sorted a r pr2 > >
... | inr h = < < all-geq-ins l a b pl1 h , sorted a l pl2 > ,

< pr1 , pr2 > >

Again, the empty case is easy. Let t be the tree (nd b l r). The proof that t
is sorted is given here by the term < < pl1 , pl2 > , < pr1 , pr2 > > where
pl1 : all-geq l b, pl2 : Sorted l, pr1 : all-leq r b, and
pr2 : Sorted r. Now, the actual resulting tree, (insert a t), will depend
on how the element a compares to the root b. If a <= b, with h being a proof
of that statement, we leave the left subtree unchanged and we insert the new
element in the right subtree. Since both the left subtree and the root remain the
same, the proofs that all the elements in the left subtree are greater than or equal
to the root, and the proof that the left subtree is sorted, are the same as before.
We construct the corresponding proofs for the new right subtree (insert a r).
We know by pr1 that all the elements in r are smaller than or equal to b, and
by h that a <= b. Hence, by applying all-leq-ins to the corresponding argu-
ments we obtain one of the proofs we need, that is, a proof that all the elements
in (insert a r) are smaller than or equal to b. The last proof needed in this
case is a proof that the tree (insert a r) is sorted, which is obtained by the
inductive hypothesis. The case where b <= a is similar.

This proof tells us that if we start from the empty tree, which is sorted, and
we only add elements to the tree by repeated use of the function insert defined
above, we obtain yet another sorted tree.

Alternatively, we could give the insertion function the following type:

insert : A -> (t : BTree) -> Sorted t ->
Exists BTree (\(t’ : BTree) -> Sorted t’)

This type expresses that both the input and the output trees are sorted: the
output is a pair consisting of a tree and a proof that it is sorted. The type
of this function is a more refined specification of what the insertion function
does. An insert function with this type needs to manipulate both the output



trees and the proof objects which are involved in verifying the sorting property.
Here, computational information is mixed with logical information. Note that
the information that the initial tree is sorted will be needed to produce a proof
that the resulting tree will also be sorted.

Exercise: Write this version of the insertion function.

6.2 An Inductive-recursive Definition of Binary Search Trees

The idea here is to define a data type of sorted binary trees, that is, a data type
where binary trees are sorted already by construction.

What would such a data type look like? The data type must certainly contain
a constructor for the empty tree, since this is clearly sorted. What should the
constructor for the node case be? Let BSTree be the type we want to define, that
is, the type of sorted binary trees. If we only want to construct sorted trees, it is
not enough to provide a root a and two sorted subtrees l and r, we also need to
know that all elements in the left subtree are greater than or equal to the root
(let us denote this by l >=T a), and that all elements in the right subtree are
smaller than or equal to the root (let us denote this by r <=T a). The fact that
both subtrees are sorted can be obtained simply by requiring that both subtrees
have type BSTree, which is the type of sorted binary trees.

The relations ( >=T ) and ( <=T ) are defined by recursion on BSTree. More-
over, they appear in the types of the constructors of BSTree. This is a phe-
nomenon that does not arise when defining data types in ordinary functional
programming. Is it really a consistent definition method? The answer is yes, such
mutual inductive-recursive definitions [12,13] are constructively valid. Inductive-
recursive definitions increase the proof-theoretic strength of the theory since they
can be used for defining large universes analogous to large cardinals in set theory.

The definitions of both relations for the empty tree are trivial. If we want to
define when all the elements in a non-empty tree with root x and subtrees l and
r are greater than or equal to an element a, that is, (snd x l r ) >=T a,
we need to check that a <= x and that r >=T a. Notice that since this tree is
sorted, it should be the case that l >=T x and hence, that l >=T a (prove this
“transitivity” property), so we do not need to explicitly ask for this relation to
hold. The condition a <= x might also seem redundant, but it is actually needed
unless we consider the singleton tree as a special case. If we simple remove that
condition from the definition we present below, it is easy to see that we could
prove t >=T a for any tree t and element a. The definition of the relation <=T
for non-empty trees is analogous.

The formal definition of the data type together with these two relations is as
follows:



mutual
data BSTree : Set where
slf : BSTree
snd : (a : A) -> (l r : BSTree) -> (l >=T a) ->

(r <=T a) -> BSTree

_>=T_ : BSTree -> A -> Set
slf >=T a = True
(snd x l r _ _) >=T a = (a <= x) & (r >=T a)

_<=T_ : BSTree -> A -> Set
slf <=T a = True
(snd x l r _ _) <=T a = (x <= a) & (l <=T a)

Remark. We tell Agda that we have a mutual definition by prefixing it with the
keyword mutual (see Appendix A.1). This keyword is used for all kinds of mu-
tual definitions: mutual inductive definitions, mutual recursive definitions, and
mutual inductive-recursive definitions.

Exercise: Define a function

bst2bt : BSTree -> BTree

that converts sorted binary trees into regular binary tree by simply keeping the
structure and forgetting all logical information.

Prove that the tree resulting from this conversion is sorted:

bst-sorted : (t : BSTree) -> Sorted (bst2bt t)

Define also the other conversion function, that is, the functions that takes a
regular binary tree that is sorted and returns a sorted binary tree:

sorted-bt2bst : (t : BTree) -> Sorted t -> BSTree

Let us return to the definition of the insertion function for this data type.
Let us simply consider the non-empty tree case from now on. Similarly to how
we defined the function insert above, we need to analyse how the new element
to insert (called a below) compares with the root of the tree (called x below)
in order to decide in which subtree the element should be actually inserted.
However, since we also need to provide extra information in order to make sure
we are constructing a sorted tree, the work does not end here. We must show
that all the elements in the new right subtree are smaller than or equal to x
when a <= x (this proof is called sins-leqT below), or that all the elements in
the new left subtree are greater than or equal to x when x <= a (this proof is
called sins-geqT below).



mutual
sinsert : (a : A) -> BSTree -> BSTree
sinsert a slf = snd a slf slf <> <>
sinsert a (snd x l r pl pr) with (tot a x)
... | inl p = snd x l (sinsert a r) pl (sins-leqT a x r pr p)
... | inr p = snd x (sinsert a l) r (sins-geqT a x l pl p) pr

sins-geqT : (a x : A) -> (t : BSTree) -> t >=T x -> x <= a ->
(sinsert a t) >=T x

sins-geqT _ _ slf _ q = < q , <> >
sins-geqT a x (snd b l r _ _) < h1 , h2 > q with tot a b
... | inl _ = < h1 , sins-geqT a x r h2 q >
... | inr _ = < h1 , h2 >

sins-leqT : (a x : A) -> (t : BSTree) -> t <=T x -> a <= x ->
(sinsert a t) <=T x

sins-leqT _ _ slf _ q = < q , <> >
sins-leqT a x (snd b l r _ _) < h1 , h2 > q with tot a b
... | inl _ = < h1 , h2 >
... | inr _ = < h1 , sins-leqT a x l h2 q >

Let us study in detail the second equation in the definition of sins-geqT.
The reader should do a similar analysis to make sure he/she understands the
rest of the code as well. Given a, x and t such that t >=T x and x <= a, we
want to show that if we insert a in t, all elements in the resulting tree are also
greater than or equal to x. Let t be a node with root b and subtrees l and r. Let
q be the proof that x <= a. In this case, the proof of t >=T x is a pair consisting
of a proof h1 : x <= b and a proof h2 : r >=T x. In order to know what the
resulting tree will look like, we analyse the result of the expression (tot a b)
with the with construct. If a <= b, we leave the left subtree unchanged and we
add a in the right subtree. The root of the resulting tree is still b. To prove the
desired result in this case we need to provide a proof that x <= b, in this case
h1, and a proof that (sinsert a r >=T x), which is given by the induction
hypothesis since r is a subterm of t and r >=T x (given by h2). In the case
where b <= a we insert a into the left subtree and hence, the desired result is
simply given by the pair < h1 , h2 >.

6.3 Bounded Binary Search Trees

There are more ways to define binary search trees. When programming with
dependent types, it is crucial to use effective definitions, and trying different
alternatives is often worth-while. When proving, one pays an even higher price
for poor design choices than when programming in the ordinary way.

For the binary search trees example, another possibility is to define bounded
binary search trees, that is binary search trees where all the elements are between
a lower and upper bound. This gives a smooth way to define an inductive family



indexed by these bounds. In this way we do not need an inductive-recursive
definition but only an inductive definition. The type of the insertion function
will now specify the bounds of the resulting tree.

Exercise: Define bounded binary search trees with an insertion function in Agda.
How can we define a type of unbounded binary search trees from the type of
bounded ones?

Write functions converting between the different kinds of binary trees dis-
cussed above.

7 General Recursion and Partial Functions

In Section 2.7 we mentioned that Agda’s type-checker will not itself force us to
use primitive recursion; we can use general recursion which then will be checked
–and rejected– by the termination-checker. In this way, the type-checker will
allow us to define partial functions such as division, but they will not pass the
termination-checker. Even total functions like the quicksort algorithm will not
be accepted by the termination-checker because the recursive calls are not to
structurally smaller arguments.

We have also mentioned that in order to use Agda as a programming logic,
we should restrict ourselves to functions that pass both the type-checker and
the termination-checker. In addition, the Agda system checks that definitions
by pattern matching cover all cases. This prevents us from writing partial func-
tions (recursive or not) such as a head function on lists, which does not have a
case for empty lists. (Note that Agda always performs termination-checking and
coverage-checking in connection with type-checking. The user does not need to
call them explicitly.)

Ideally, we would like to define in Agda more or less any function that can be
defined in Haskell, and also we would like to use the expressive power provided
by dependent types to prove properties about those functions.

One way to do this has been described by Bove and Capretta [5]. Given the
definition of a general recursive function, the idea is to define a domain predicate
that characterises the inputs on which the function will terminate. A general
recursive function of n arguments will be represented by an Agda-function of
n+ 1 arguments, where the extra (and last) argument is a proof that the n first
arguments satisfy the domain predicate. The domain predicate will be defined
inductively, and the n + 1-ary function will be defined by structural recursion
on its last argument. The domain predicate can easily and automatically be
determined from the recursive equations defining the function. If the function
is defined by nested recursion, the domain predicate and the n+ 1-ary function
need to be defined simultaneously: they form a simultaneous inductive-recursive
definition, just like in the binary search trees in the previous section.

We illustrate Bove and Capretta’s method by showing how to define division
on natural numbers in Agda; for further reading on the method we refer to [5].

Let us first give a slightly different Haskell version of the division function:



div m n | m < n = 0
div m n | m >= n = 1 + div (m - n) n

This function cannot be directly translated into Agda for two reasons. First,
and less important, Agda does not provide Haskell conditional equations. Sec-
ond, and more fundamental, this function would not be accepted by Agda’s
termination-checker since it is defined by general recursion, which might lead to
non-termination. For this particular example, when the second argument is zero
the function is partial since it will go on for ever computing the second equation.

But, as we explained in Section 2.7, even ruling out the case when n is
zero would not help. Although the recursive argument to the function actually
decreases when 0 < n (for the usual notions of –cut-off– - and of the less-
than relation on the natural numbers), the recursive call is not on a structurally
smaller argument. Hence, the system does not realise that the function will
actually terminate because (m - n) is not structurally smaller than m (there is
obvious room for improvement here and, as already mentioned, making more
powerful termination-checkers is a topic of current research).

What does the definition of div tell us? If (m < n), then the function termi-
nates (with the value 0). Otherwise, if (m >= n), then the function terminates
on the inputs m and n provided it terminates on the inputs (m - n) and n. This
actually amounts to an inductive definition of a domain predicate expressing on
which pairs of natural numbers the division algorithm terminates. If we call this
predicate DivDom, we can express the text above by the following two rules:

m < n

DivDom m n

m >= n DivDom (m− n) n
DivDom m n

Given the Agda definition of the two relations

_<_ : Nat -> Nat -> Set
_>=_ : Nat -> Nat -> Set

we can easily define an inductive predicate for the domain of the division function
as follows:

data DivDom : Nat -> Nat -> Set where
div-dom-lt : (m n : Nat) -> m < n -> DivDom m n
div-dom-geq : (m n : Nat) -> m >= n -> DivDom (m - n) n ->

DivDom m n

Observe that there is no proof of (DivDom m 0). This corresponds to the fact that
(div m 0) does not terminate for any m. The constructor div-dom-lt cannot
be used to obtain such a proof since we will not be able to prove that (m < 0)
(assuming the relation was defined correctly). On the other hand, if we want
to use the constructor div-dom-geq to build a proof of (DivDom m 0), we first
need to build a proof of (DivDom (m - 0) 0), which means, we first need a
proof of (DivDom m 0)! Moreover, if n is not zero, then there is precisely one
way to prove (DivDom m n) since either (m < n) or (m >= n), but not both.



Exercise: Define in Agda the two relations

_<_ : Nat -> Nat -> Set
_>=_ : Nat -> Nat -> Set

We can now represent division as an Agda function with a third argument: a
proof that the first two arguments belong to the domain of the function. Formally,
the function is defined by pattern matching on this last argument, that is, on
the proof that the two arguments satisfy the domain predicate DivDom.

div : (m n : Nat) -> DivDom m n -> Nat
div .m .n (div-dom-lt m n p) = zero
div .m .n (div-dom-geq m n p q) = 1 + div (m - n) n q

(Observe also the “.” notation in the definition of div, which was explained in
Section 5.)

Pattern matching on (DivDom m n) gives us two cases. In the first case, given
by div-dom-lt, we have that (p : m < n). Looking at the Haskell version of
the algorithm, we know that we should simply return zero here. In the second
case, given by div-dom-geq, we have that (p : m >= n) and that (m - n)
and n satisfy the relation DivDom (with q a proof of this). If we look at the
Haskell version of the algorithm, we learn that we should now recursively call
the division function on the arguments (m - n) and n. Now, in the Agda version
of this function, unlike in the Haskell one, we also need to provide a proof that
DivDom (m - n) n, but this is exactly the type of q.

The definition of the division function is now accepted both by the type-
checker and by the termination-checker and hence, we can use Agda as a pro-
gramming logic and prove properties about the division function, as we showed
in Section 6.

However, it is worth noting that in order to use the function div (either to run
it or to prove something about it) we need to provide a proof that its arguments
satisfy the domain predicate for the function. When the actual domain of the
function is easy to identify, it might be convenient to prove a lemma, once and for
all, establishing the set of elements for which the domain predicate is satisfied.
For our example, this lemma could have the following type:

divdom : (m n : Nat) -> Not (n == zero) -> DivDom m n

Then, given the numbers m and n and a proof p that n is not zero, we can call
the division function simply as (div m n (divdom m n p)).
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cation à l’elimination des coupures dans l’analyse et la théorie des types. In J. E.
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A More about the Agda System

Documentation about Agda with examples (both programs and proofs) and
instructions on how to download the system can be found on the Agda Wiki
page http://appserv.cs.chalmers.se/users/ulfn/wiki/agda.php. Norell’s
Ph.D thesis [26] is a good source of information about the system and its features.

A.1 Short Remarks on Agda Syntax

Indentation. When working with Agda, beware that, as in Haskell, indentation
plays a major role.

White Space. Agda likes white spaces; the following typing judgement is not
correct:

not:Bool->Bool

The reason is that the set of characters is not partitioned into those which can be
used in operators and those which can be used in identifiers (or other categories),
since doing that for the full set of Unicode characters is neither tractable nor
desirable. Hence, strings like xs++ys and a->b are treated as one token.

Comments. Comments in Agda are as in Haskell. Short comments begin with
“--” followed by whitespace, which turns the rest of the line into a comment.
Long comments are enclosed between {- and -}; whitespace separates these
delimiters from the rest of the text.

Postulates. Agda has a mechanism for assuming that certain constructions
exist, without actually defining them. In this way we can write down postulates
(axioms), and reason on the assumption that these postulates are true. We can
also introduce new constants of given types, without constructing them. Beware
that this allows us to introduce an element in the empty set.

Postulates are introduced by the keyword postulate. Some examples are

postulate S : Set
postulate one : Nat
postulate _<=_ : Nat -> Nat -> Set
postulate zero-lower-bound : (n : Nat) -> zero <= n

Here we introduce a set S about which we know nothing; an arbitrary natural
number one; and a binary relation <= on natural numbers about which we know
nothing but the fact that zero is a least element with respect to it.

Modules. All definitions in Agda should be inside a module. Modules can
be parametrised and can contain submodules. There should only be one main
module per file and it should have the same name as the file. We refer to the
Agda Wiki for details.



Mutual Definitions. Agda accepts mutual definitions: mutually inductive def-
initions of sets and families, mutually recursive definitions of functions, and mu-
tually inductive-recursive definitions [12,14].

A block of mutually recursive definitions is introduced by the keyword mutual.

A.2 Built-in Representation of Natural Numbers

In order to use decimal representation for natural numbers and the built-in
definitions for addition and multiplication of natural numbers, one should give
the following code to Agda (for the names of the data type, constructors and
operation given in these notes):

{-# BUILTIN NATURAL Nat #-}
{-# BUILTIN ZERO zero #-}
{-# BUILTIN SUC succ #-}
{-# BUILTIN NATPLUS _+_ #-}
{-# BUILTIN NATTIMES _*_ #-}

Internally, closed natural numbers will be represented by Haskell integers and
addition of closed natural numbers will be computed by Haskell integer addition.

A.3 More on the Syntax of Abstractions and Function Definitions

Repeated lambda abstractions are common. Agda allows us to abbreviate the
Church-style abstractions

\(A : Set) -> \(x : A) -> x as \(A : Set) (x : A) -> x

If we use Curry-style and omit type labels, we can abbreviate

\A -> \x -> x as \A x -> x

Telescopes. When several arguments have the same types, as A and B in

K : (A : Set) -> (B : Set) -> A -> B -> A

we do not need to repeat the type:

K : (A B : Set) -> A -> B -> A

This is called telescopic notation.

A.4 The with Construct

The with construct is useful when we are defining a function and we need to
analyse an intermediate result on the left hand side of the definition rather than
on the right hand side. When using with to pattern match on intermediate



results, the terms matched on are abstracted from the goal type and possibly
also from the types of previous arguments.

The with construct is not a basic type-theoretic construct. It is rather a con-
venient shorthand. A full explanation and reduction of this construct is beyond
the scope of these notes.

The (informal) syntax is as follows: if when defining a function f on the
pattern p we want to use the with construct on the expression d we write:

f p with d
f p1 | q1 = e1

:
f pn | qn = en

where p1,. . . ,pn are instances of p, and q1,. . . ,qn are the different possibilities
for d. An alternative syntax for the above is:

f p with d
... | q1 = e1

:
... | qn = en

where we drop the information about the pattern pi which corresponds to the
equation.

There might be more than one expression d we would like to analyse, in which
case we write:

f p with d1 | ... | dm
f p1 | q11 | ... | q1m = e1

:
f pn | qn1 | ... | qnm = en

The with construct can also be nested. Beware that mixing nested with
and ... notation to the left will not always behave as one would expect; it is
recommended to not use the ... notation in these cases.

A.5 Goals

Agda is a system which helps us to interactively write a correct program. It is
often hard to write the whole program before type-checking it, especially if the
type expresses a complex correctness property. Agda helps us to build up the
program interactively; we write a partially defined term, where the undefined
parts are marked with “?”. Agda checks that the partially instantiated program
is type-correct so far, and shows us both the type of the undefined parts and
the possible constrains they should satisfy. Those “unknown” terms are called
goals and will be filled-in later, either at once or by successive refinement of
a previous goal. Goals cannot be written anywhere. They may have to satisfy
certain constraints and there is a context which contains the types of the variables
that may be used when instantiating the goal. There are special commands which
can be used for instantiating goals or for inspecting the context associated to a
certain goal.


